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The emergency vehicle scheduling problem is studied under the objective function to minimize the total transportation time with
uncertain road travel time. Firstly, we build a stochastic programmingmodel considering the constrained chance.Then, we analyze
the model based on robust optimization method and get its equivalent set of uncertainty constraint, which has good mathematical
properties with consideration of the robustness of solutions. Finally, we implement a numerical example to compare the results of
robust optimizationmethod and that of the particle swarm optimization algorithm.The case study shows that the proposedmethod
achieves better performance on computational complexity and stability.

1. Introduction

Vehicle scheduling problem is a key problem in logistics
management, which refers to organizing the appropriate
route to make vehicles ordered. Under the satisfaction with
certain constraints (such as goods demand and supply, deliv-
ery time, distance restriction, vehicle capacity constraint,
etc.), it achieves a certain goal (such as minimum cost,
minimum transportation time, minimum vehicle number,
etc.). Emergency vehicle scheduling problem is a kind of
special logistics activity to cope with unexpected disasters
and accidents by vehicle scheduling for emergency supplies,
personnel, and so on. From the 1970s, there are somemethods
proposed to solve the problem of disaster relief for its
importance. Chaiken and Larson [1] provided a description
of emergency service systems and designed a strategy to
solve the corresponding operational problems. Based on their
model, several improvements have been achieved for specific
requirements and conditions in the disasters or incidents.
Bozorgi-Amiri et al. [2] proposed the multiobjective stochas-
tic programming model of emergency vehicle scheduling
problem under uncertainty and constructed the three-layer
model from the supplier to the distribution center according
to the needs so that the final cost and satisfaction are optimal.

Vitoriano et al. [3] developed a multicriteria optimization
model for humanitarian aid distribution. This model is the
core of a decision support system under development to assist
organizations in charge of the distribution of humanitarian
aid and is illustrated with a case study based on the 2010 Haiti
catastrophic earthquake. Campbell et al. [4] specially focus
on two alternative objective functions for the TSP and VRP:
one that minimizes themaximum arrival time (minmax) and
one that minimizes the average arrival time (minavg). Yuan
and Wang [5] proposed two vehicle scheduling models of
the emergency logistics management. The first model used
the modified Dijkstra algorithm to solve related problems
in order to minimize total travel time along a path. The
second model used the ant colony algorithm to minimize the
total travel time and the path complexity. Zhang et al. [6]
proposed an emergency vehicle scheduling problem which
considered the multiple resource constraints and possible
secondary disasters and established a heuristic algorithm to
solve this problem effectively.

However, the above literatures rarely considered the
scenario of the uncertainty of the vehicle travel time. In fact,
when the unexpected disasters and accidents happened, the
communication facilities could not be used as usual due to
destruction of the nature force. As a result, we could not get
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the real road information. Besides, there are various sudden
factors that cause the travel time on the road to be uncertain.
At this time, the decision-makers just depend on the limited
data to predict extent of the damage and the disaster range
andmake the emergency rescues in the shortest possible time.

The robust optimization method is first proposed by
Soyster in 1973 [7], which uses math set theory to describe
the uncertain information of the parameters. It uses the large
probability to avoid the decision deviation in bad condition,
get the robust domain, and avoid the huge losses.Thismethod
can effectively avoid the instability of other algorithms, and
it also has great application. For example, Ben-Tal et al. [8]
applied the robust optimization method into the dynamic
management of supply contract. Bertsimas and Thiele [9]
applied the robust optimization method into the inventory-
pricing model and inventory management. Bertsimas et al.
[10] surveyed the primary research, both theoretical and
applied, in the area of robust optimization. They highlighted
applications of RO across a wide spectrum of domains,
including finance, statistics, learning, and various areas of
engineering. Therefore, this paper will use the robust opti-
mization method to analyze the question of the emergency
vehicle scheduling problem under the uncertainty of the
travel time. And then, we will propose a new optimization
algorithm to solve this problem.

The structure of this paper is as follows. In Section 2, we
introduce the model of emergency vehicle routing problem
in uncertain travel time. In Section 3, we give the robust
counterpart of the uncertainty set and formulate a new
equivalent determined set. Section 4 involves an example and
the comparison between two algorithms. Section 5 contains a
summary and conclusions.

2. Problem Description

In general, assuming that the situation of all roads is com-
pletely known, the network includes a material center 𝑜 and
𝑛 affected areas. We need to deliver supplies from material
center 𝑜 to the 𝑛 affected nodes. The vehicles 𝑚 start from
the center 𝑜 and return to the 𝑜 after task is finished. Each
node can only be visited once. The total transportation time
is required to beminimum.Then themodel is given as follows
((2a), (2b), (2c), (2d), and (2e)):

min
𝑥𝑖𝑗𝑘

𝑚

∑

𝑘=1

𝑛

∑

𝑗=0
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𝑚
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𝑦
𝑠𝑘
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𝑦
0𝑘
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𝑛

∑

𝑖=1

𝑥
𝑖𝑠𝑘
+

𝑛

∑

𝑗=1

𝑥
𝑠𝑗𝑘
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𝑠𝑘
, 𝑘 = 1, . . . , 𝑚, 𝑠 = 1, . . . , 𝑛

(2d)

𝑥
𝑖𝑗𝑘
= {0, 1} , 𝑦

𝑠𝑘
= {0, 1} , (2e)

where (2a) is the load constraint for vehicle; (2b) represents
the total number of all vehicles to access the node 𝑠; each
affected node should be visited one time.The formula of (2c)
ensures that each vehicle starts from thematerials center. (2d)
shows that the vehicle goes into the node and then leaves from
it, which can ensure the right order of the access nodes. Of
which, 𝑞

𝑖
is the demand at the node 𝑖; 𝑄

𝑘
is the maximum

weight load of the 𝑘th vehicle; 𝑡
𝑖𝑗𝑘

is the travel time on the
arc(𝑖, 𝑗) of the 𝑘th vehicle. 𝑥

𝑖𝑗𝑘
is 0-1 integer variables, where 1

means through the arc(𝑖, 𝑗) and 0 is otherwise. 𝑦
𝑠𝑘
is also 0-1

integer decision variables and 1 means the 𝑘th vehicle visits
the node 𝑠 and 0 is otherwise.

However, in the reality, when unexpected disasters occur,
such as earthquake and floods, the road information becomes
unknown and all kinds of unexpected factors make the travel
time along the road in be determinable. At this time, we
can only give the probability distribution of the travel time
through the limited information and historical data. Thus,
it creates a special kind of emergency vehicle scheduling
problem. The road information is uncertain in the transport
network.The vehicle starts from a rescue center and traverses
all affected locations and then back to the center, which
requires the minimum total expected travel time. In the
model (2a), (2b), (2c), (2d), and (2e), the travel time in which
the vehicle 𝑘 travels on the arc(𝑖, 𝑗) cannot be determined,
so the travel time of the 𝑘th vehicle is uncertain, which is
denoted by �̃�

𝑖𝑗𝑘
.The objective function is adjusted to themean

of �̃�
𝑖𝑗𝑘
. Adding constraints (4f), 𝜃 is the effective time of the

rescue and 𝛽 is the small probability. This constraint means
that ensuring the relief supplies arrives in time in greater
probability. The stochastic programming model is as follows
((4a), (4b), (4c), (4d), (4e), and (4f)):

min 𝐸(
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≥ 1 − 𝛽, 𝑘 = 1, . . . , 𝑚.

(4f)
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In this model, the chance constraint with uncertainties
(4f) is the difficulty of solving the model. In order to describe
it conveniently, wewill use∑𝑛

𝑖=0
∑
𝑛

𝑗=0
�̃�
𝑖𝑗𝑘
𝑥
𝑖𝑗𝑘
≤ 𝜃’s vector form

�̃�𝑥 − 𝜃 ≤ 0.

3. Robust Optimization Analysis

3.1. Related Knowledge. We present uncertainties of the data
�̃� as affinely dependent on a set of independent random
variables �̃�

𝑖
, 𝑖 = 1, . . . , 𝑙, as

�̃� = 𝑡
0

+

𝑙

∑

𝑖=1

Δ𝑡
𝑖

�̃�
𝑖
, �̃�
𝑖
∈ 𝑊, 𝑊 = (−𝑧, 𝑧) , (5)

where 𝑡0 is the nominal value of the data andΔ𝑡𝑖 is a direction
of data perturbation. We call �̃�

𝑖
the primitive uncertainty,

which has mean zero and support in (−𝑧
𝑖
, 𝑧
𝑖
).

In this paper, for 𝑢 ∈ 𝑅
𝑛 is a vector, we denote the

definition of vector norm and dual norm according to [11,
12]. We restrict the vector norm to be considered in an
uncertainty set as follows:

‖𝑢‖ = ‖|𝑢|‖ and ‖𝑢‖ ≤ ‖𝑢‖
2
∀𝑢, where |𝑢| is the vector

with the 𝑗 component equal to |𝑢
𝑗
| for each 𝑗 from 1 to 𝑙. We

call this an absolute norm. The dual norm ‖ ⋅ ‖
∗ is defined as

‖𝑢‖
∗

= max
‖𝑥‖≤1

𝑢


𝑥.
We next show some basic properties, which are from [11,

12].

Proposition 1. For the absolute norm,
(a) one has

‖𝑤‖
∗

= ‖|𝑤|‖
∗

; (6)

(b) for all V, 𝑤, such that |V| ≤ |𝑤|, ‖V‖∗ ≤ ‖𝑤‖∗;
(c) for all V, 𝑤, such that |V| ≤ |𝑤|, ‖V‖ ≤ ‖𝑤‖;
(d) ‖𝑡‖∗ ≥ ‖𝑡‖

2
, ∀𝑡.

Proposition 2. For the programming as follows:

𝑧
∗

= max 𝑎V + 𝑏𝑤,

s.t. ‖V + 𝑤‖ ≤ 𝛿 V, 𝑤 ≥ 0.

(7)

The optimal value is 𝑧∗ = 𝛿‖𝑡‖
∗, where 𝑡

𝑗
= max{𝑎

𝑗
, 𝑏
𝑗
, 0},

𝑗 = 1, . . . , 𝑙.

When random variables are incorporated in optimization
models, operations are often cumbersome and computa-
tionally intractable. Instead of using complete distributional
information, our aim is to obtain nontrivial probability
bounds against constraint violation. Here, we denote the set
of values associated with forward and backward deviations
of random variable �̃�. Let �̃� be a random variable and let
𝑀
�̃�
(𝑠) = 𝐸(exp(𝑠�̃�)) be its moment-generating function. We

denote the set of values associated with forward deviations of
�̃� as follows:

𝐹 (�̃�) = {𝛼 : 𝛼 ≥ 0,𝑀
�̃�−𝐸(�̃�)

(

𝜙

𝛼

) ≤ exp(
𝜙
2

2

) , ∀𝜙 ≥ 0} .

(8)

Likewise, for backward deviations, the following set is
defined:

𝐵 (�̃�) = {𝛼 : 𝛼 ≥ 0,𝑀
�̃�−𝐸(�̃�)

(−

𝜙

𝛼

) ≤ exp(
𝜙
2

2

) , ∀𝜙 ≥ 0} .

(9)

When �̃� is symmetrically distributed around its mean,
then we have 𝐹(�̃�) = 𝐵(�̃�).

Proposition 3. Let 𝑥 and 𝑦 be two independent random
variables with zero means, such that 𝑝

𝑥
∈ 𝐹(𝑥), 𝑞

𝑥
∈

𝐵(𝑥), 𝑝
𝑦
∈ 𝐹(𝑦), and 𝑞

𝑦
∈ 𝐵(𝑦).

(a) If �̃� = 𝑥 + 𝑦, then (𝑝
�̃�
, 𝑞
�̃�
) = (√𝑝

2

𝑥
+ 𝑝
2

𝑦
, √𝑞
2

𝑥
+ 𝑞
2

𝑦
)

satisfies 𝑝
�̃�
∈ 𝐹(�̃�), 𝑞

�̃�
∈ 𝐵(�̃�).

(b) 𝑃(𝑥 > Ω𝑝
𝑥
) ≤ exp(−Ω2/2) and 𝑃(𝑥 < −Ω𝑞

𝑥
) ≤

exp(−Ω2/2).

We will analyze the primitive uncertainty �̃�
𝑖
in two cases.

The first is only about the norm uncertainty set, which is
computed in the short time. In the second case, we will
discuss the constraint of 𝑊 in (5) at the base of the norm
uncertainty set, which has the high complexity.

3.2. The Robust Analysis Based on Norm Uncertainty Set. If �̃�
is symmetrically distributed, we use the symmetrically norm
uncertainty set as follows:

𝐴
1
= {�̃� : ‖�̃�‖ ≤ Ω}, where Ω ∈ 𝑅 is a fixed number.

Generally, if �̃� is asymmetrically distributed, we may use the
asymmetrically norm uncertainty set as follows:

𝐴
2
= {�̃� : �̃� = Ṽ − 𝑤, ‖𝑃−1Ṽ + 𝑄−1𝑤‖ ≤ Ω, Ṽ, 𝑤 ≥ 0, Ṽ, 𝑤 ∈

𝑅
𝑙

}, where 𝑃 = diag(𝑝
1
, . . . , 𝑝

𝑙
) and 𝑄 = diag(𝑞

1
, . . . , 𝑞

𝑙
),

𝑝
𝑖
, 𝑞
𝑖
> 0. Particularly, when 𝑃, 𝑄 are identity matrix, the set

𝐴
2
is equivalent to the 𝐴

1
. Then, (5) can be written as

�̃� = 𝑡
0

+

𝑙

∑

𝑖=1

Δ𝑡
𝑖

(Ṽ
𝑖
− 𝑤
𝑖
) . (10)

And the constraint �̃�𝑥 − 𝜃 ≤ 0 is equivalent to

(𝑡
0

+

𝑙

∑

𝑖=1

Δ𝑡
𝑖

(Ṽ
𝑖
− 𝑤
𝑖
))𝑥 ≤ 𝜃,

with 




𝑃
−1Ṽ + 𝑄−1𝑤






≤ Ω, Ṽ, 𝑤 ≥ 0.

(11)

Theorem 4. For Ω = √2 ln(1/𝛽), ∃𝑃 = diag(𝑝
1
, . . . , 𝑝

𝑙
), 𝑄 =

diag(𝑞
1
, . . . , 𝑞

𝑙
), 𝑢 ∈ 𝑅𝑙, if 𝑥 satisfies the robust counterpart as

follows:

𝑡
0


+ Ω‖𝑢‖
∗

≤ 𝜃

𝑢
𝑗
≥ 𝑝
𝑗
(Δ𝑡
𝑗


𝑥)

𝑢
𝑗
≥ − 𝑞
𝑗
(Δ𝑡
𝑗


𝑥)

𝑗 = 1, . . . , 𝑙,

(12)

then 𝑃{ �̃�𝑥 > 𝜃} ≤ 𝛽 holds.
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Proof. We first express how to get the set (12). Let

𝜑 = (𝜑
1
, 𝜑
2
, . . . , 𝜑

𝑙
) = (𝑥Δ𝑡

1

, . . . , 𝑥Δ𝑡
𝑙

) . (13)

Thus, (11) can be rewritten as

𝑡
0

𝑥 +

𝑙

∑

𝑖=1

𝜑
𝑖
(Ṽ
𝑖
− 𝑤
𝑖
) ≤ 𝜃,






𝑃
−1Ṽ + 𝑄−1𝑤






≤ Ω, Ṽ, 𝑤 ≥ 0

⇐⇒ 𝑡
0

𝑥 + max
{Ṽ,𝑤:‖𝑃−1 Ṽ+𝑄−1𝑤‖≤Ω,Ṽ,𝑤≥0}

{𝜑 (Ṽ − 𝑤)} ≤ 𝜃.

(14)

According to Proposition 2, we have

𝑡
0

𝑥 + Ω‖𝑢‖
∗

≤ 𝜃, (15)

where
𝑢 = (𝑢

1
, 𝑢
2
, . . . , 𝑢

𝑙
) ,

𝑢
𝑗
= max {𝑝

𝑗
𝜑
𝑗
, −𝑞
𝑗
𝜑
𝑗
, 0} = max {𝑝

𝑗
𝜑
𝑗
, −𝑞
𝑗
𝜑
𝑗
} .

(16)

So a new set which is called robust counterpart is got:

𝑡
0

+ Ω‖𝑢‖
∗

≤ 𝜃

𝑢
𝑗
≥ 𝑝
𝑗
(Δ𝑡
𝑗

𝑥)

𝑢
𝑗
≥ −𝑞
𝑗
(Δ𝑡
𝑗

𝑥)

𝑢 ∈ 𝑅
𝑙

, 𝑢
𝑗
≥ 0, 𝑗 = (1, . . . , 𝑙) .

(17)

Next, we will prove that 𝑥 satisfies (12) if and only if 𝑃( �̃�𝑥 >
𝜃) < 𝛽 holds.

From (16), we have

𝑃 {�̃�𝑥 > 𝜃} = 𝑃(𝑡
0

𝑥 +

𝑙

∑

𝑖=1

�̃� (Δ𝑡
𝑖

𝑥) > 𝜃)

= 𝑃 (𝜑�̃� > 𝜃 − 𝑡
0

𝑥) ≤ 𝑃 (𝜑�̃� > Ω‖𝑢‖
∗

) .

(18)

Thus,

𝑃(

𝑛

∑

𝑖=0

𝑛

∑

𝑗=0

�̃�
𝑖𝑗
𝑥
𝑖𝑗
> 𝜃) ≤ 𝑃 (𝜑�̃� > Ω‖𝑢‖

∗

) ≤ 𝑃 (𝜑�̃� > Ω‖𝑢‖
2
) .

(19)

Let the elements of 𝑃, 𝑄 form the sets 𝑃(�̃�), 𝑄(�̃�),
according to Proposition 3; then ‖𝑢‖

2
∈ 𝑃(𝜑



�̃�). At the same
time, whenΩ = √2 ln(1/𝛽) holds, we have

𝑃(

𝑛

∑

𝑖=0

𝑛

∑

𝑗=0

�̃�
𝑖𝑗
𝑥
𝑖𝑗
> 𝜃) ≤ exp(−Ω

2

2

) = 𝛽. (20)

In this case, 𝐴
1
, 𝐴
2
are discussed only considering the

absolute norm Ω. The distribution of random variable is not
computed, such as the constraint of �̃�

𝑖
∈ 𝑊, 𝑊 = (−𝑧, 𝑧) in

(5), so there is some deviation between the counterpart set
and the original set. Further, we consider the distribution𝑊
of the random variable based on norm uncertainty set in (6).

3.3. The Robust Analysis Based on Norm Uncertainty Set and
𝑊. In this case, we consider all probable values of �̃�, including
the worst-case 𝑊 = (−𝑧, 𝑧). The constraint of �̃� in norm
uncertainty set 𝐴

1
may be written as

𝐵
1
= {

̃
𝜉 :







̃
𝜉






≤ Ω, −𝑧 ≤

̃
𝜉 ≤ 𝑧} . (21)

Corresponding to 𝐴
2
, we have

𝐵
2
= {

̃
𝜉 :
̃
𝜉 = Ṽ
𝑖
− 𝑤
𝑖
,






𝑃
−1Ṽ + 𝑄−1𝑤






≤ Ω,

−𝑧 ≤ Ṽ
𝑖
− 𝑤
𝑖
≤ 𝑧, Ṽ, 𝑤 ≥ 0} ,

(22)

where 𝑃 = diag(𝑝
1
, . . . , 𝑝

𝑙
) and likewise 𝑄 = diag(𝑞

1
, . . . , 𝑞

𝑙
)

with 𝑝
𝑖
, 𝑞
𝑖
> 0, 𝑖 = 1, . . . , 𝑙.

Then,

�̃� = 𝑡
0

+

𝑙

∑

𝑖=1

Δ𝑡
𝑖

(Ṽ
𝑖
− 𝑤
𝑖
) . (23)

So, �̃�𝑥 − 𝜃 ≤ 0 can be expressed as follows:

(𝑡
0

+

𝑙

∑

𝑖=1

Δ𝑡
𝑖

(Ṽ
𝑖
− 𝑤
𝑖
))𝑥 ≤ 𝜃,

with 

𝑃
−1Ṽ + 𝑄−1𝑤






≤ Ω, Ṽ, 𝑤 ≥ 0, −𝑧 ≤ Ṽ − 𝑤 ≤ 𝑧.

(24)

Similarly, we have the following conclusions.

Theorem 5. For 𝑃 = diag(𝑝
1
, . . . , 𝑝

𝑙
), 𝑄 = diag(𝑞

1
, . . . , 𝑞

𝑙
),

𝑢 ∈ 𝑅
𝑙, and Ω = √2 ln(1/𝛽), if 𝑥 satisfies the robust

counterpart as follows:

𝑡
0

𝑥 +min
𝑟,𝑠≥0

{Ω‖𝑢‖
∗

+ 𝑟𝑧 + 𝑠𝑧} ≤ 𝜃,

𝑢
𝑗
≥ 𝑝
𝑗
(Δ𝑡
𝑗

𝑥 − 𝑟
𝑗
+ 𝑠
𝑗
) ,

𝑢
𝑗
≥ −𝑞
𝑗
(Δ𝑡
𝑗

𝑥 − 𝑟
𝑗
+ 𝑠
𝑗
) ,

𝑟
𝑗
, 𝑠
𝑗
≥ 0, ∀𝑗 = 1, 2, . . . , 𝑙,

(25)

then 𝑃{�̃�𝑥 > 𝜃} ≤ 𝛽 holds.

Proof. We first express how to get the set (25).
Let

𝜑 = (𝜑
1
, 𝜑
2
, . . . , 𝜑

𝑙
) = (𝑥Δ𝑡

1

, 𝑥Δ𝑡
2

, . . . , 𝑥Δ𝑡
𝑙

) . (26)
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Thus, (24) can be rewritten as

𝑡
0

𝑥 +

𝑙

∑

𝑖=1

Δ𝑡
𝑖

(Ṽ
𝑖
− 𝑤
𝑖
)


𝜑
𝑖
≤ 𝜃,






𝑃
−1Ṽ + 𝑄−1𝑤






≤ Ω, Ṽ, 𝑤 ≥ 0, −𝑧 ≤ Ṽ − 𝑤 ≤ 𝑧

⇐⇒ 𝑡
0

𝑥 + max
{Ṽ,𝑤:‖𝑃−1 Ṽ+𝑄−1𝑤‖≤Ω,−𝑧≤Ṽ−𝑤≤𝑧,Ṽ,𝑤≥0}

{(Ṽ − 𝑤) 𝑦} ≤ 𝜃

⇐⇒ 𝑡
0

𝑥 +min
𝑟,𝑠>0

{ max
{Ṽ,𝑤:‖𝑃−1 Ṽ+𝑄−1𝑤‖≤Ω,Ṽ,𝑤≥0}

{(Ṽ − 𝑤) 𝜑 + 𝑟 (𝑧 − Ṽ + 𝑤) + 𝑠 (𝑧 + Ṽ − 𝑤)}} ≤ 𝜃

⇐⇒ 𝑡
0

𝑥 +min
𝑟,𝑠>0

{ max
{Ṽ,𝑤:‖𝑃−1 Ṽ+𝑄−1𝑤‖≤Ω,Ṽ,𝑤≥0}

{(𝜑 − 𝑟 + 𝑠) Ṽ − (𝜑 − 𝑟 + 𝑠)𝑤 + 𝑟𝑧 + 𝑠𝑧}} ≤ 𝜃.

(27)

According to Proposition 2, we have

𝑡
0

𝑥 +min
𝑟,𝑠≥0

{Ω‖𝑢‖
∗

+ 𝑟𝑧 + 𝑠𝑧} ≤ 𝜃, (28)

where

𝑢
𝑗
(𝑟, 𝑠) = max {𝑝

𝑗
(𝜑
𝑗
− 𝑟
𝑗
+ 𝑠
𝑗
) , −𝑞
𝑗
(𝜑
𝑗
− 𝑟
𝑗
+ 𝑠
𝑗
) , 0}

= max {𝑝
𝑗
(𝜑
𝑗
− 𝑟
𝑗
+ 𝑠
𝑗
) , −𝑞
𝑗
(𝜑
𝑗
− 𝑟
𝑗
+ 𝑠
𝑗
)} .

(29)

So, a new set which is called robust counterpart is got:

𝑡
0

𝑥 +min
𝑟,𝑠≥0

{Ω‖𝑢‖
∗

+ 𝑟𝑧 + 𝑠𝑧} ≤ 𝜃,

𝑢
𝑗
≥ 𝑝
𝑗
(Δ𝑡
𝑗

𝑥 − 𝑟
𝑗
+ 𝑠
𝑗
) ,

𝑢
𝑗
≥ −𝑞
𝑗
(Δ𝑡
𝑗

𝑥 − 𝑟
𝑗
+ 𝑠
𝑗
) ,

𝑟
𝑗
, 𝑠
𝑗
≥ 0, ∀𝑗 = 1, 2, . . . , 𝑙.

(30)

Next, we will prove that Ω = √2 ln(1/𝛽) if and only if
𝑃( �̃�𝑥 > 𝜃) < 𝛽.

From (28),

𝑃 {�̃�𝑥 > 𝜃} = 𝑃 (𝜑
̃
𝜉 > 𝜃 − 𝑡

0

𝑥)

≤ 𝑃(𝜑
̃
𝜉 > min
𝑟,𝑠≥0

{Ω‖𝑢‖
∗

+ 𝑟𝑧 + 𝑠𝑧}) .

(31)

According to Proposition 1,

𝑃(

𝑛

∑

𝑖=0

𝑛

∑

𝑗=0

�̃�
𝑖𝑗
𝑥
𝑖𝑗
> 𝜃) ≤ 𝑃(𝜑

̃
𝜉 > min
𝑟,𝑠≥0

{Ω‖𝑢‖
∗

+ 𝑟𝑧 + 𝑠𝑧})

≤ 𝑃(𝜑
̃
𝜉 > min
𝑟,𝑠≥0

{Ω‖𝑢‖
2
+ 𝑟𝑧 + 𝑠𝑧}) .

(32)

Let 𝑢
∗

= 𝑢(𝑟
∗

, 𝑠
∗

) be the optimal solution of
min
𝑟,𝑠≥0

{Ω‖𝑢‖
2
+ 𝑟𝑧 + 𝑠𝑧}, and, considering the inequality

̃
𝜉 ∈ (−𝑧, 𝑧), then

𝑃(𝜑
̃
𝜉 > min
𝑟,𝑠≥0

{Ω‖𝑢‖
2
+ 𝑟𝑧 + 𝑠𝑧})

= 𝑃 (𝜑
̃
𝜉 > Ω





𝑢
∗


2
+ 𝑟
∗

𝑧 + 𝑠
∗

𝑧)

≤ 𝑃 ((𝜑 − 𝑟
∗

+ 𝑠
∗

)
̃
𝜉 > Ω





𝑢
∗


2
) .

(33)

Let the elements of 𝑃, 𝑄 form the sets 𝑃(�̃�), 𝑄(�̃�),
according to Proposition 3; we have ‖𝑢∗‖

2
∈ 𝑃((𝜑−𝑟

∗

+𝑠
∗

)
̃
𝜉).

So forΩ = √2 ln(1/𝛽), the following inequality holds

𝑃(

𝑛

∑

𝑖=0

𝑛

∑

𝑗=0

�̃�
𝑖𝑗
𝑥
𝑖𝑗
> 𝜃) ≤ exp(−Ω

2

2

) = 𝛽. (34)

4. Numerical Experiments

Rescue center 𝑜 is responsible for the rescue of eight affected
areas. The vehicle began in the rescue center and back to
rescue center.The problem is how to plan the vehicle running
routes, making the recipient regions all visited once. In
order to obtain the maximum effectiveness of the rescue,
the affected people should be rescued as soon as possible.
Particularly, because the disaster has just occurred, the traffic
situation is not clear. We know that the largest transit time
may be 1.25 times of the normal.The simulation data includes
the coordinate of rescue center and eight affected areas and
the demands of emergency resources in affected areas; they
are shown in Table 1.

The rescue center can be assembled with three available
vehicles. The carrying capacity is 10 units. Under normal
circumstances, the average transport speed is 40 km/h and
the normal travel time is given as 𝑡∗

𝑘
. Based on historical data,

it can be informed that the estimated average travel time is
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Table 1: The simulation data.

Center o 1 2 3 4 5 6 7 8
Coordinate (18, 20) (22, 26) (33, 21) (38, 20) (18, 5) (18, 30) (13, 10) (28, 19) (17, 35)
Demand 0 2.9 2.6 3.7 4.2 3.4 4.7 3.5 3.2

1.25𝑡
∗

𝑘
fluctuating around the average time. Thus, we get the

chance constrained model as follows:

min 𝐸(

3

∑

𝑘=1

8

∑

𝑗=0

8

∑

𝑖=0

�̃�
𝑖𝑗𝑘
𝑥
𝑖𝑗𝑘
)

s.t.
8

∑

𝑖=1

𝑞
𝑖
𝑦
𝑖𝑘
≤ 𝑄
𝑘
, 𝑘 = 1, 2, 3

3

∑

𝑘=1

𝑦
𝑠𝑘
= 1, 𝑠 = 1, 2, . . . , 8

𝑦
0𝑘
= 1, 𝑘 = 1, 2, 3

8

∑

𝑖=0

𝑥
𝑖𝑠𝑘
+

8

∑

𝑗=0

𝑥
𝑠𝑗𝑘
= 2𝑦
𝑘𝑠
, 𝑘 = 1, 2, 3

𝑃

{

{

{

𝑛

∑

𝑖=0

𝑛

∑

𝑗=0

�̃�
𝑖𝑗𝑘
𝑥
𝑖𝑗𝑘
> 𝜃

}

}

}

≤ 𝛽, 𝑘 = 1, 2, 3

𝑥
𝑖𝑗𝑘
= {0, 1} , 𝑦

𝑠𝑘
= {0, 1} ,

(35)

where the demand vector is 𝑞 = (2.9, 2.6, 3.7, 4.2, 3.4, 4.7, 3.5,
and 3.2).

In this section, we will solve the model (35) using the
robust analysis in Section 3.2 and hybrid particle swarm
method and then carry on the comparison and analysis of
results.

4.1. The Robust Analysis. For only considering the time delay
of the road, we present uncertainties of the data �̃�

𝑘
as the

following representation:

�̃�
𝑘
= 𝑡
0

𝑘
+ 𝑡
𝑘
�̃�
𝑘

. (36)

Base on the experiment above, �̃�
𝑘
∈ (𝑡
∗

𝑘
, 1.5𝑡
∗

𝑘
), so let 𝑡0

𝑘
=

1.25𝑡
∗

𝑘
. Here, we choose the symmetrically norm uncertainty

𝐴
1
to describe �̃�

𝑘
; that is,

�̃�
𝑘
= 𝑡
0

𝑘
+ Δ𝑡
𝑘
�̃�
𝑘

, �̃�
𝑘

∈ (−0.25𝑡
∗

𝑘
, 0.25𝑡

∗

𝑘
) . (37)

Then, Δ𝑡
𝑘
= 𝑡
∗

𝑘
; we can use ‖ ⋅ ‖∗ = ‖ ⋅ ‖ = | ⋅ |; thus,






�̃�
𝑘





=






�̃�
𝑘





≤ 0.25. (38)

Let 𝛽 = 0.01 and Ω = 0.1; according to Theorem 4, we
get the equivalent form of the chance constrained in (35) as
follows:

1.25𝑡
∗

𝑘



𝑥 + 0.1ℎ ≤ 𝜃,

∃𝑢, ℎ ∈ 𝑅,

|𝑢| ≤ ℎ,

𝑢 ≥ (𝑡
∗

𝑥) ,

𝑢 ≥ − (𝑡
∗


𝑥) .

(39)

So, model (35) is transformed into the following model,

min 𝐸(

𝑚

∑

𝑘=1

𝑛

∑

𝑗=0

𝑛

∑

𝑖=0

�̃�
𝑖𝑗𝑘
𝑥
𝑖𝑗𝑘
)

s.t.
8

∑

𝑖=1

𝑞
𝑖
𝑦
𝑖𝑘
≤ 𝑄
𝑘
, 𝑘 = 1, . . . , 3

3

∑

𝑘=1

𝑦
𝑠𝑘
= 1, 𝑠 = 1, . . . , 8

𝑦
0𝑘
= 1, 𝑘 = 1, 2, 3

8

∑

𝑖=1

𝑥
𝑖𝑠𝑘
+

8

∑

𝑗=1

𝑥
𝑠𝑗𝑘
= 2𝑦
𝑠𝑘
, 𝑘 = 1, 2, 3, 𝑠 = 0, 1, . . . , 8

1.25𝑡
∗

𝑘
𝑥 + 0.1ℎ ≤ 𝜃, 𝑘 = 1, 2, 3

ℎ − 1.25𝑡
∗

𝑘
𝑥 ≥ 0, 𝑘 = 1, 2, 3

𝑥
𝑖𝑗𝑘
= {0, 1} , 𝑦

𝑠𝑘
= {0, 1} .

(40)

This model is a 0-1 integer programming with the vari-
ables 𝑥

𝑖𝑗𝑘
, 𝑦
𝑠𝑘
, and ℎ. We get the optimal value 5.3242 and the

optimal rescue route 0- 1- 5 -8- 0 -6 -4 -0- 2 -3 -7- 0 by LINGO
solver. The optimal rescue route is shown in Figure 1.

4.2. Hybrid Particle Swarm Optimization Algorithm. Particle
swarm optimization (PSO) algorithm is a swarm intelligence
algorithm, originating from the simulation of birds flocks
looking for food and has been paid attention and researched
wildly. In this paper, we use global and local hybrid particle
swarm algorithm to solve the stochastic optimization prob-
lem, where the selected update formula for the velocity vector
is as follows:

V
ℎ
= 𝛼 ∗ V

𝑞
+ (1 − 𝛼) ∗ V

𝑙
, 𝛼 ∈ (0, 1) . (41)
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Node 0

Node 1 Node 2

Node 3Node 4Node 5

Node 6

Node 7Node 8

Figure 1: The optimal rescue route in model (40).

In order to obtain better experimental effect, momentum
factor 𝑤 in a nonlinear concave function declined.

According to model (5), we select the fitness function as
follows:

𝐸(

𝑚

∑

𝑘=1

𝑛

∑

𝑗=0

𝑛

∑

𝑖=0

�̃�
𝑖𝑗𝑘
𝑥
𝑖𝑗𝑘
) +𝑀

1

𝑚

∑

𝑘=1

max {𝑞
𝑖
𝑦
𝑖
− 𝑄
𝑘
, 0}

+ 𝑀
2

𝑚

∑

𝑘=1

max
{

{

{

𝐸(

𝑛

∑

𝑗=0

𝑛

∑

𝑖=0

�̃�
𝑖𝑗𝑘
𝑥
𝑖𝑗𝑘
) − 𝜃, 0

}

}

}

.

(42)

Encoded mode uses real number coding way, which
transforms 0-1 problem of the vehicle routing problem into
the continuous problem.

The process of algorithm is as follows.

Step 1. Population initialization and calculation of the fitness
of initial.

Step 2. Update formula using the particle velocity and the
location of the particle 𝑑 is 𝑥

𝑑
(𝑘 + 1) = 𝑥

𝑑
(𝑘) + V𝑑(𝑘 + 1).

Step 3. Calculate and record the latest fitness of the particle
population.

Step 4. Determine whether accord with the termination
condition or go back Step 2.

4.3. The Analysis of the Operation Results. Figure 2 shows the
trajectory of fitness function of the group size of 20 particles
in an iterative 1000 times. It is observed that it has better
convergence for a single test.

Figure 3 is the record of 50-time tests results, and each
test has 1000-time iterations. Because the random time is
different, so the computation time is 2.5 hours.

Table 2 is the result of the 50-time tests and group size
of each test is 20. In the 50-time tests, the first 4 lines
presented repeated solutions and the fifth line is the result
only appearing once. So this table shows that the hybrid
particle swarmalgorithm results have strong randomness and
stability is obviously insufficient.
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Figure 2: The convergence graph of a single test of fitness function.
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Figure 3:The convergence graph of 50-time tests of fitness function.

Table 2: Result of PSO.

The optimal
solution The results of the path The number of

times
𝑥
1

= 0 2 5 3 0 4 6 0 1 7 8 0 6
𝑥
2

= 0 1 3 8 0 4 6 0 2 5 7 0 4
𝑥
3

= 0 2 3 7 0 4 6 0 1 5 8 0 13
𝑥
4

= 0 8 7 2 0 6 4 0 5 3 1 0 5
Other 22

In the result of the hybrid particle swarm algorithm, as we
can see from Table 2, the optimal solution 𝑥3 appears most
frequently. The result is identical with robust optimization,
which illustrates feasibility of the robust optimization meth-
ods, and comparedwith the hybrid particle swarm algorithm,
the robust optimization methods have better stability. In
this case, the hybrid particle swarm optimization algorithm
occupies a large space, and it requires multiple iterations
and several tests in order to obtain a stable solution, which
is far greater than the robust method. In a word, from the
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perspective of the computational complexity and the stability
of solution results, robust optimization method has good
application value.

5. Conclusions

It is a key research content of emergency management of dis-
asters. It is also a key step of emergency rescue and assistance.
This research will provide prompt and effective guidance for
scientific decision making and support in disaster manage-
ment. This paper studied the emergency vehicle scheduling
problem under the uncertainty of travel time and proposed
the stochastic programming model, and objective constraint
is the minimum total transportation time. Considering the
chance constraint in the model, we used the robust optimiza-
tion method to analyze this model from the model’s robust-
ness and get the equivalence set of the uncertainty constraint.
Finally, this paper compared thismethodwith PSO algorithm
through a numerical example.The numerical simulation pro-
vides evidence for its effectiveness and efficiency. The results
showed that the robust optimization method has better effect
on computational complexity and stability. In the future,
considering specific case, such as “Wenchuan” earthquake, we
will study the application of this method to routing vehicles
with variable route times due to traffic or other uncertainties.
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