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ON RECOGNITION OF THE FINITE SIMPLE

ORTHOGONAL GROUPS OF DIMENSION 2m, 2m + 1,
AND 2m + 2 OVER A FIELD OF CHARACTERISTIC 2

A. V. Vasil′ev and M. A. Grechkoseeva UDC 512.542

Abstract: The spectrum ω(G) of a finite group G is the set of element orders of G. A finite group G is
said to be recognizable by spectrum (briefly, recognizable) if H ' G for every finite group H such that
ω(H) = ω(G). We give two series, infinite by dimension, of finite simple classical groups recognizable
by spectrum.
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Introduction

The spectrum ω(G) of a finite group G is the set of element orders of G. In other words, a natural
number n is in ω(G) if and only if there is an element of order n in G. A finite group G is said to be
recognizable by spectrum (briefly, recognizable) if H ' G for every finite group H such that ω(H) = ω(G).
Since a finite group with a nontrivial normal soluble subgroup is not recognizable (see [1, Lemma 1]),
each recognizable group is an extension of the direct product M of simple nonabelian groups by some
subgroup of Out(M). So, of prime interest is the recognition problem for simple and almost simple
groups (recall that G is almost simple if S ≤ G ≤ Aut(S) for some simple nonabelian group S). In the
middle of the 1980s Shi found the first examples of recognizable finite simple groups (see [2, 3]). In 1994
Shi and Brandl obtained an infinite series of recognizable simple linear groups L2(q), q 6= 9 (see [4, 5]).
The recognition (or nonrecognition) problem is solved at present for all groups with prime divisors at
most 13 (see [6]) and several infinite series of recognizable finite simple and almost simple groups are
obtained. The list of groups is available in [6] for which the recognition problem is solved. However,
all examples of recognizable groups, except for alternating and symmetrical permutation groups, have
dimensions bounded in a certain sense. Let us put it more precisely. In view of the classification theorem
all finite simple nonabelian groups except for alternating permutation groups and 26 sporadic groups
are groups of Lie type. The Lie rank of every finite group with the recognition problem solved is at
most 6 if the group is twisted and at most 5 otherwise. In particular, the dimension of every known
recognizable classical group, i.e., a group with natural matrix representation, is at most 10. The main
purpose of this paper is to give two series, infinite by dimension, of finite simple groups recognizable by
spectrum; namely, the series of orthogonal groups O2m+1(2) and O−

2m+2(2). Since the proof of this result
rests mainly on the description of these groups as those of Lie type, we will use the notation of groups of
Lie type.

Theorem 1. For every natural number m > 2 the groups C2m(2) and 2D2m+1(2) are recognizable
by spectrum.

Remark 1. The following isomorphisms are available:
C2m(2k) ' S2m+1(2k) ' O2·2m+1(2k), 2D2m+1(q) ' O−

2(2m+1)(q).
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Novosibirsk. Translated from Sibirskĭı Matematicheskĭı Zhurnal, Vol. 45, No. 3, pp. 510–526, May–June, 2004.
Original article submitted December 29, 2003.

420 0037-4466/04/4503–0420 c© 2004 Plenum Publishing Corporation

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357570954?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Remark 2. Recognizability of 2D5(2) is proved in [7]. Nonrecognizability of C2(2) ' S4(2) and
2D3(2) ' U4(2) is obtained in [8, 9] respectively. The group C4(2) is not recognizable since its spectrum
is equal to that of the natural extension of 2D4(2) by an outer automorphism of order 2. The last fact
can be easily checked by using [10]. Thus, modulo Theorem 1, the recognition problem for the groups
C2m(2) and 2D2m+1(2) is completely solved for all natural m.

A proof of recognizability usually includes two principal steps. The first is to prove that a group H
whose spectrum equals that of the group G under study contains a composition factor isomorphic to G.
The second consists in establishing that H coincides with this factor; i.e., H is isomorphic to G. Since
the result of the first step itself is of great import and, moreover, the corresponding assertion can be
often obtained for a wider class of groups; it is reasonable to state this result as an especial theorem.
To formulate it, we will use a convenient term that was recently introduced in [11]. A finite simple
nonabelian group G is said to be quasirecognizable if every finite group H with ω(H) = ω(G) contains
a composition factor that is isomorphic to G.

Theorem 2. Let m and k be arbitrary natural numbers. A group G is quasirecognizable in each of
the following cases:

(a) G = 2D2m(2k);
(b) G = 2D2m+1(2) and m 6= 1;
(c) G = C2m(2k) and m > 2.
Remark 1. The fact that 2D3(2) ' U4(2) is not quasirecognizable follows from the proof of Propo-

sition 6 in [9]. The similar fact about C2(2k) follows from Proposition 1 in [6]. The group C4(2) is not
quasirecognizable by the argument in Remark 2 on Theorem 1. The quasirecognition problem for C4(2k)
remains open for k > 1. Finally, since recognizability of G = 2D2(2k) ' A1(22k) was established by
Brandl and Shi, we may assume that m > 1 while proving the theorem.

Remark 2. Observe that all known quasirecognizable groups of Lie type have bounded Lie ranks in
much the same way as recognizable groups.

§ 1. Preliminaries

The set ω(H) of a finite group H is closed under divisibility and uniquely determined by the set µ(H)
of those elements in ω(H) that are maximal under the divisibility relation. Moreover, ω(H) determines
the Gruenberg–Kegel graph GK(H) whose vertices are all prime divisors of the order of H, and two
primes p and q are adjacent if H has an element of order p · q. Denote by s(H) the number of connected
components of GK(H) and by πi(H), i = 1, . . . , s(H), the ith connected component of GK(H). Given
a group H of even order, put 2 ∈ π1(H). Denote by µi(H) (ωi(H)) the set of numbers n ∈ µ(H)
(n ∈ ω(H)) such that every prime divisor of n belongs to πi.

Lemma 1.1 (Gruenberg–Kegel). If H is a finite group with disconnected graph GK(H) then one
of the following holds:

(a) s(H) = 2 and H is a Frobenius group;
(b) s(H) = 2 and H = ABC, where A and AB are normal subgroups of H; AB and BC are Frobenius

groups with kernels A and B and complements B and C respectively;
(c) there exists a simple nonabelian group S such that S ≤ H = H/K ≤ Aut(S) for some nilpotent

normal π1(H)-subgroup K of H and the group H/S is a π1(H)-subgroup; moreover, the graph GK(S)
is disconnected, s(S) ≥ s(H) and for every i, 2 ≤ i ≤ s(H), there is j, 2 ≤ j ≤ s(S), such that
ωi(H) = ωj(S).

Proof. See [12].

Lemma 1.2. Let S be a finite simple group with the disconnected graph GK(S). Then |µi(S)| = 1
for 2 ≤ i ≤ s(S). Denote by ni = ni(S) the only element of µi(S), i ≥ 2. Then S, π1(S), and ni(S),
2 ≤ i ≤ s(S), are as indicated in Tables 1a–1c.

Proof. See [13, Lemma 2].
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Table 1a. Finite simple groups S with s(S) = 2

S Restrictions on S π1(S) n2

An 6 < n = p, p + 1, p + 2; π((n − 3)!) p

not both n and n − 2
are primes

Ap−1(q) (p, q) 6= (3, 2), (3, 4) π(q
∏p−1

i=1 (qi − 1)) qp−1
(q−1)(p,q−1)

Ap(q) (q − 1)|(p + 1) π(q(qp+1 − 1)
∏p−1

i=1 (qi − 1)) qp−1
q−1

2Ap−1(q) π(q
∏p−1

i=1 (qi − (−1)i)) qp+1
(q+1)(p,q+1)

2Ap(q) (q + 1)|(p + 1), π(q(qp+1 − 1)
∏p−1

i=1 (qi − (−1)i)) qp+1
q+1

(p, q) 6= (3, 3), (5, 2)
2A3(2) {2, 3} 5
Bn(q) n = 2m ≥ 4, π(q

∏n−1
i=1 (q2i − 1)) (qn + 1)/2

q odd
Bp(3) π(3(3p + 1)

∏p−1
i=1 (32i − 1)) (3p − 1)/2

Cn(q) n = 2m ≥ 2 π(q
∏n−1

i=1 (q2i − 1)) qn+1
(2,q−1)

Cp(q) q = 2, 3 π(q(qp + 1)
∏p−1

i=1 (q2i − 1)) qp−1
(2,q−1)

Dp(q) p ≥ 5, q = 2, 3, 5 π(q
∏p−1

i=1 (q2i − 1)) qp−1
(q−1)

Dp+1(q) q = 2, 3 π(q(qp + 1)
∏p−1

i=1 (q2i − 1)) qp−1
(2,q−1)

2Dn(q) n = 2m ≥ 4 π(q
∏n−1

i=1 (q2i − 1)) qn+1
(2,q+1)

2Dn(2) n = 2m + 1 ≥ 5 π(2(2n + 1)
∏n−2

i=1 (22i − 1)) 2n−1 + 1
2Dp(3) 5 ≤ p 6= 2m + 1 π(3

∏p−1
i=1 (32i − 1)) (3p + 1)/4

2Dn(3) 9 ≤ n = 2m + 1 6= p π(3(3n + 1)
∏n−2

i=1 (32i − 1)) (3n−1 + 1)/2
G2(q) 2 < q ≡ ε(3), ε = ±1 π(q(q2 − 1)(q3 − ε)) q2 − εq + 1
3D4(q) π(q(q6 − 1)) q4 − q2 + 1
F4(q) q odd π(q(q6 − 1)(q8 − 1)) q4 − q2 + 1

2F4(2)′ {2, 3, 5} 13

E6(q) π(q(q5 − 1)(q8 − 1)(q12 − 1)) q6+q3+1
(3,q−1)

2E6(q) q > 2 π(q(q5 + 1)(q8 − 1)(q12 − 1)) q6−q3+1
(3,q+1)

M12 {2, 3, 5} 11
J2 {2, 3, 5} 7
Ru {2, 3, 5, 7, 13} 29
He {2, 3, 5, 7} 17

McL {2, 3, 5, 7} 11
Co1 {2, 3, 5, 7, 11, 13} 23
Co3 {2, 3, 5, 7, 11} 23
Fi22 {2, 3, 5, 7, 11} 13
HN {2, 3, 5, 7, 11} 19
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Table 1b. Finite simple groups S with s(S) = 3

S Restrictions on S π1(S) n2 n3

An n > 6, n = p π((n − 3)!) p p − 2
p − 2 is a prime

A1(q) 3 < q ≡ ε(4), ε = ±1 π(q − ε) π(q) (q + ε)/2
A1(q) q > 2, q even {2} q − 1 q + 1
2A5(2) {2, 3, 5} 7 11
2Dp(3) p = 2m + 1 π(3(3p−1 − 1)

∏p−2
i=1 (32i − 1)) 3p−1+1

2 (3p + 1)/4
G2(q) q ≡ 0(3) π(q(q2 − 1)) q2 − q + 1 q2 + q + 1
2G2(q) q = 32m+1 > 3 π(q(q2 − 1)) q −

√
3q + 1 q +

√
3q + 1

F4(q) q even π(q(q4−1)(q6−1)) q4 + 1 q4 − q2 + 1
2F4(q) q = 22m+1 > 2 π(q(q3+1)(q4−1)) q2−

√
2q3+ q2+

√
2q3+

+q−
√

2q+1 +q+
√

2q+1
E7(2) {2, 3, 5, 7, 11, 13, 17, 19, 31, 43} 73 127
E7(3) {2, 3, 5, 7, 11, 13, 19, 757 1093

37, 41, 61, 73, 547}
M11 {2, 3} 5 11
M23 {2, 3, 5, 7} 11 23
M24 {2, 3, 5, 7} 11 23
J3 {2, 3, 5} 17 19

HiS {2, 3, 5} 7 11
Suz {2, 3, 5, 7} 11 13
Co2 {2, 3, 5, 7} 11 23
Fi23 {2, 3, 5, 7, 11, 13} 17 23
F3 {2, 3, 5, 7, 13} 19 31
F2 {2, 3, 5, 7, 11, 13, 17, 19, 23} 31 47

Lemma 1.3. Let H be a finite group, and let K be a normal nilpotent subgroup of H with H/K ' S
and R ≤ S. Assume that for some prime p a Sylow p-subgroup V of K is an elementary abelian p-subgroup
and denote the natural semidirect product V h R by M . Then ω(M) ⊆ ω(H).

Proof. Since V ⊆ Z(K), the action of R on V is defined correctly. If v ∈ V , r ∈ R ≤ S and r̄ is
the coset of H in K corresponding to r then vr = vh for all h ∈ r̄.

Suppose that g ∈ M and |g| 6∈ ω(H). Then g = r · v, where r ∈ R, v ∈ V . If |r| = m then
gm = rmvrm−1

. . . vrv ∈ V . Therefore the order of g is equal to mp, and mp 6∈ ω(H). Consider the
coset r̄. Each h ∈ r̄ has order mt for some t. If (t, p) = p then mp ∈ ω(H), hence (t, p) = 1. Denote by N
the least common multiple of the element of {|h|, h ∈ r̄}. Then N is divisible by m and not divisible
by mp. For each h ∈ r̄, k ∈ K we have hk ∈ r̄. Therefore,

1 = (hk)N = hNkhN−1
. . . khk = khN−1

. . . khk.

Since V ⊆ K, for every v ∈ V we have vhN−1
. . . vhv = 1 if h ∈ r. On the other hand, vh = vr. Hence,

gN = (r · v)N = rNvrN−1
. . . vrv = vhN−1

. . . vhv = 1.

But N does not divide the order of g; a contradiction. The lemma is proved.
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Table 1c. Finite simple groups S with s(S) > 3

s(S) S Restrictions on S π1(S) n2 n3 n4 n5 n6

4 A2(4) {2} 3 5 7
2B2(q) q = 22m+1 > 2 {2} q − 1 q−

√
2q+1 q+

√
2q+1

2E6(2) {2, 3, 5, 7, 11} 13 17 19

E8(q) q ≡ 2, 3(5) π(q(q8 − 1) q10−q5+1
q2−q+1

q10+q5+1
q2+q+1

q8−q4+1

(q12 − 1)
(q14 − 1)
(q18 − 1)
(q20 − 1))

M22 {2, 3} 5 7 11
J1 {2, 3, 5} 7 11 19

O′N {2, 3, 5, 7} 11 19 31
LyS {2, 3, 5, 7, 11} 31 37 67
Fi′24 {2, 3, 5, 7, 11, 13} 17 23 29
F1 {2, 3, 5, 7, 11, 13, 17, 41 59 71

19, 23, 29, 31, 47}
5 E8(q) q 6≡ 2, 3(5) π(q(q8 − 1) q10−q5+1

q2−q+1
q10+q5+1
q2+q+1

q8−q4+1 q10+1
q2+1

(q10 − 1)
(q12 − 1)
(q14 − 1)
(q18 − 1))

6 J4 {2, 3, 5, 7, 11} 23 29 31 37 43

Lemma 1.4. Let H be a finite group, and let K C H and H/K be a Frobenius group with kernel F
and cyclic complement C. If (|F |, |K|) = 1 and F does not lie in KCH(K)/K then p|C| ∈ ω(H) for some
prime divisor p of |K|.

Proof. See [14, Lemma 1].

Lemma 1.5 (Zsigmondy). Let q be a prime and let s be a natural, s ≥ 2. Then one of the following
holds:

(a) there exists a prime p such that p divides qs − 1 and p does not divide qt − 1 for all natural t < s;
(b) s = 6 and q = 2;
(c) s = 2 and q = 2t − 1 for some natural t.

Proof. See [15].
A prime p satisfying condition (a) of Lemma 1.5 is called a primitive prime divisor of qs − 1.

Lemma 1.6. Let r = ql be a power of a prime q and s be a natural number, s ≥ 2. Then the
following hold:

(a) if s is odd then a primitive prime divisor of rs − 1 does not divide rt + 1 for all natural t < s;
(b) if (r, s) 6= (2, 3) then there exists a prime p such that p divides rs + 1 and p does not divide

rt − 1 and rt + 1 for all natural t < s (by analogy with the previous definition we will call this prime p
a primitive prime divisor of rs + 1);

(c) if p is a primitive prime divisor of rs − ε, ε = ±1, then p does not divide l.
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Proof. (a) Let p be a primitive prime divisor of rs−1. Suppose that p divides rt +1 for some t < s.
Then p divides the greatest common divisor of rs − 1 and r2t − 1 that equal to r(s,2t) − 1. Since s is odd,
we have (s, 2t) = (s, t) < s; a contradiction with the choice of p.

(b) Let p be a primitive prime divisor of r2s − 1. Then p does not divide rs − 1, therefore p divides
rs + 1. Moreover, p does not divide r2t − 1 for all t < s.

(c) Suppose that p divides l and let l = tp. By hypothesis, p divides rs − ε = qls − ε = qtps − ε. On
the other hand, p divides qtps − qts by Fermat’s Little Theorem. Hence p divides qts − ε; this contradicts
the primitivity of p.

Lemma 1.7. Let l and s be natural numbers. Then the following hold:

(a) 23l−1
+ 1 is divisible by 3l and not divisible by 3l+1;

(b) if 2s + 1 or 2s − 1 is divisible by 3l then s ≥ 3l−1.

Proof. (a) We proceed by induction. The claim is true for l = 1. Assume that it is true for all
natural numbers smaller than l + 1 and consider the number

23l
+ 1 = (23l−1

+ 1)(22·3l−1 − 23l−1
+ 1).

An expression in the first parentheses is divisible by 3l and not divisible by 3l+1; an expression in the
second is divisible by 3 and not divisible by 9. Therefore, the whole expression is divisible by 3l+1 and
not divisible by 3l+2.

(b) Suppose that s < 3l−1. By hypothesis, 22s − 1 is divisible by 3l. Thus the greatest common
divisor of 22·3l−1 − 1 and 22s − 1 equal to 22(s,3l−1) − 1 = 22·3t − 1, where t < l − 1, is divisible by 3l as
well. Therefore, 23t

+ 1 is divisible by 3l; this contradicts item (a) of the lemma.

§ 2. Properties of Cn(q) and 2Dn(q)

Lemma 2.1. Let T be a maximal torus in Cn(q) or 2Dn(q). Then the order of T is given by

|T | =
t∏

j=1

(qtj − 1)
s∏

i=1

(qsi + 1),

where natural numbers si and tj satisfy

t∑

j=1

tj +
s∑

i=1

si = n (1)

and in the case of 2Dn(q) a number s is odd.
Conversely, if natural numbers tj, si, 1 ≤ j ≤ t, 1 ≤ i ≤ s, satisfy (1), then Cn(q) contains a torus of

the corresponding order. If, in addition, s is odd then 2Dn(q) contains such torus as well.

Proof. See [16, Part E, Chapter II, § 1, Theorem 1.7 (b) and Part G, Items 15 and 16].

Lemma 2.2. Let n ≥ 4, q = 2k ≥ 2 and let p be an odd prime. Then the following hold:
(a) if n = 2m and G = Cn(q), 2Dn(q), or 2Dn+1(q), then 4n 6∈ ω(G);
(b) if n is even and p(qn−1 − 1) ∈ ω(Cn(q)) then p divides q + 1 or q − 1;
(c) if 3l < n < 3l+1 then 3l+2 6∈ ω(Cn(2)).

Proof. (a) Since 2Dn(2k) < Cn(2k) < 2Dn+1(2k) < Dn+1(22k), it suffices to prove that 4n 6∈
ω(Dn+1(22k)). A Sylow 2-subgroup U of Dn+1(22k) is generated by elements of order 2. Hence, if U (l) is
the lth derived group of U and u is an arbitrary element of U then u2l ∈ U (l). By [17, Theorem 5.3.3]
the class of U is equal to 2n − 1 = 2m+1 − 1. Therefore, U (m+1) = 1 and there is no an element of order
2m+2 = 4n in U .
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(b) Let T be a maximal torus of Cn(q) containing an element of order p(qn−1 − 1). By Lemma 2.1
the order of T is equal to

∏t
j=1(q

tj − 1)
∏s

i=1(q
si + 1), where

∑t
j=1 tj +

∑s
i=1 si is equal to n. Let p′ be

a primitive prime divisor of qn−1−1. The number n−1 is odd, therefore, if si < n−1 and ti < n−1 then
p′ does not divide the order of T by Lemma 1.6(a). Moreover, if si = n, n−1 then (qn−1 −1, qsi +1) = 1;
if tj = n then (qn−1 − 1, qtj − 1) = q − 1. Thus, t1 = n − 1 and t2 = 1, or t1 = n − 1 and s1 = 1.
Hence the order of T is equal to (qn−1 − 1)(q − 1) or (qn−1 − 1)(q + 1). From this the conclusion of (b)
follows at once.

(c) Suppose that there is an element of order 3l+2 in the group Cn(2) and let T be a maximal torus
containing this element. From results of Parts E and G in [16] it follows that T ' T1 × T2 × · · · × Ts,
where |Ti| = 2si + εi, si ≤ n, εi = ±1, 1 ≤ i ≤ s. Therefore there is a number i, 1 ≤ i ≤ s, such
that 3l+2 ∈ ω(Ti) and hence 2si + εi is divisible by 3l+2. Lemma 1.7(b) implies that si ≥ 3l+1 > n;
a contradiction.

Lemma 2.3. The group An(q), n ≥ 4, q ≥ 2, contains a Frobenius subgroup with kernel of order qn

and cyclic complement of order qn − 1.

Proof. See [18, Lemma 3].

The group Cn(2) contains a subgroup isomorphic to An−1(2). Thus, by Lemma 2.3 we have

Corollary. The group Cn(2), n ≥ 5, contains a Frobenius group with kernel of order 2n−1 and cyclic
complement of order 2n−1 − 1.

We need some definitions and notations related to the groups of Lie type, first of all to Cn(2). See [17]
for details.

Let Φ be a root system, Φ+ be a positive system and Π = {r1, r2, . . . , rn} be a fundamental system
of the algebra Cn, and let Dynkin diagram be as below:

r1 r2 rn−2 rn−1 rn

Denote by Πi the subset Π\{ri} of the fundamental system; by Φi, the set of those roots that are integral
combinations of roots in Πi; and by Φ+

i , the set Φi ∩ Φ+.
Let W be the Weyl group of Φ and wr be the reflection in the hyperplane orthogonal to the root r.

For simplicity we will denote by wi the reflection wri corresponding to the fundamental root ri.
The group G = Cn(2) is generated by the root subgroups Xr for all r ∈ Φ. The order of every root

subgroup Xr is 2. Denote by xr the only nontrivial element of Xr.
Let nr = xrx−rxr, where r ∈ Φ. The subgroup N = 〈nr | r ∈ Φ〉, the monomial subgroup of G, is

isomorphic to the Weyl group. Moreover, under a suitable isomorphism the element nr maps into the
element wr. We will thus identify N with W .

Lemma 2.4. Let n = 2m ≥ 2. Then G = Cn(2) contains a Frobenius subgroup with kernel of
order 2n + 1 and cyclic complement of order 2n.

Proof. There is a maximal torus T of order 2n + 1 in G. The set π(T ) constitutes the connected
component π2(G) of GK(G), therefore, the normalizer NG(T ) of T in G is a Frobenius group with
complement T . The factor-group NG(T )/T is isomorphic to the centralizer of a Coxeter element w0 =
w1w2 . . . wn in the Weyl group (see [16, Parts E and G]). Therefore it contains an element having the same
order as the element w0 has. The order of the element w0 is 2n (see, for instance, [17, Theorem 10.5.3]),
and the lemma is proved.

The group 2Dn+1(2) contains a subgroup isomorphic to Cn(2). By Lemma 2.4 we have

Corollary. Let n = 2m ≥ 4. Then 2Dn+1(2) contains a Frobenius subgroup with kernel of order
2n + 1 and cyclic complement of order 2n.
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Lemma 2.5. Let n = 3l + 1. Then G = Cn(2) contains a Frobenius subgroup with kernel of order

22· 3l
and cyclic complement of order 3l+1.

Proof. Consider a parabolic subgroup P1 of G associated with the set Π1 of fundamental roots. By
the Levi decomposition [17, Theorem 8.5.2] the group P1 equals U1 : L1, where U1 = 〈Xr | r ∈ Φ+ \ Φ1〉
and L1 = 〈Xr | r ∈ Φ1〉.

The order of the group U1 equals 22n−1. It is proved in [19] that U1 is an elementary abelian 2-group.
The element x = w2w3 . . . wn−1xrnx−rn ∈ L1 acts on U1 by conjugation. This action is determined by
the action of elements w2, w3, . . . , wn−1, xrn , x−rn on the generators of U1. Put a = r1 + r2 + · · · + rn−1,
b = r1 + r2 + · · · + rn, and c = 2(r1 + r2 + · · · + rn−1) + rn. Then

xwi
r = xwi(r), r ∈ Φ,

xrnxrxrn = xr, r ∈ Φ+ \ (Φ1 ∪ {a}),
x−rnxrx−rn = xr, r ∈ Φ+ \ (Φ1 ∪ {b}),

xrnxaxrn = x−rnxbx−rn = xaxbxc.

These formulae provide the following action pattern for x:

xa
x→ xa−rn−1

x→ xa−rn−1−rn−2

x→ . . .
x→ xr1

x→ xb,

xb
x→ xb+rn−1

x→ xb+rn−1+rn−2

x→ . . .
x→ xc−r1

x→ xaxbxc,

xc
x→ xc.

Put
v1 = xaxc, v2 = xa−rn−1xc, . . . , vn−1 = xr1xc,

vn = xbxc, vn+1 = xb+rn−1xc, . . . , v2n−2 = xc−r1xc.

The element x normalizes the group U ′
1 = 〈v1, v2, . . . , v2n−2〉. Identify the group U ′

1 with a vector space V
over the field of order 2. The elements v1, v2, . . . , v2n−2 are a basis for V . Above identification implies
a natural homomorphism of the group 〈x〉 to the group GL2n−2(2) of all 2n − 2 × 2n − 2 nonsingular
matrices over the field of order 2. This homomorphism sends the element x to the matrix

X =
[

02n−3,1 E2n−3

E1 v

]
,

where Ek is the k × k identity matrix, 0k1, k2 is the k1 × k2 null matrix, and v is a row of length 2n − 3
whose (n − 1)th entry is 1 and the others are all 0.

It is easy to obtain that

Xk =
[

02n−2−k, k E2n−2−k

Ek Y

]
, where Y = [ 0k, n−k−1 Ek 0k, n−k−1 ] .

Hence

Xn−1 =
[

0n−1, n−1 En−1

En−1 En−1

]
and X3(n−1) = E2n−2.

Since n− 1 = 3l, X acts regularly on V if Xn−1 does. The latter is true because det(Xn−1 +E2n−2) = 1.
The order of x is divisible by |X| = 3l+1 and is not divisible by 3l+2 by Lemma 2.2(c). Therefore,

|x| = 3l+1t, where (t, 3) = 1. The element xt is of order 3l+1 and, moreover, acts regularly on U ′
1, since

its image Xt acts regularly on V . Thus, U ′
1 · 〈xt〉 is a desired Frobenius group.

Lemma 2.6. Let n = 2m ≥ 4. Then G = 2Dn+1(2) contains a Frobenius subgroup with kernel of
order 22n and cyclic complement of order 2n + 1.

Proof. In [19] some description is found for the parabolic subgroup P 1
1 of G. Namely, P 1

1 = U1
1 : L1

1,
where U1

1 is an elementary abelian 2-group of order 22n and the group L1
1 is isomorphic to 2Dn(2). The

group L1
1 acts on U1

1 by conjugation and contains an element y of order 2n + 1. This element acts
regularly, since prime divisors of 2n + 1 constitute the connected component π2(G). Thus, U1 · 〈y〉 is
a desired Frobenius group.
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§ 3. Proof of Theorem 2

Let k and m be natural numbers, m ≥ 2, and let n = 2m, r = 2k. Throughout this section, except
for specially mentioned cases, G will denote one of the groups 2Dn(r), Cn(r), or 2Dn+1(2). In the last
case we assume that r = 2, k = 1.

Let H be a finite group with ω(H) = ω(G). By Table 1a we then have s(H) = s(G) = 2 and
n2(H) = n2(G) = rn + 1.

Since s(H) > 1, there are three possibilities for the group H corresponding to items (a)–(c) of
Lemma 1.1. The results of [20] imply that condition (c) holds for H. Thus, H = K · S1, where
S ≤ S1 ≤ Aut(S) for some simple nonabelian group S. Moreover, ω(S) ⊆ ω(H), s(S) ≥ 2, and there is i,
2 ≤ i ≤ s(S), such that ni(S) = n2(H) = rn + 1.

We claim that S ' G. Consider each group in Tables 1a–1c. In these tables p denotes an odd prime
and q denotes the order of the field related to a group. The orders and automorphism groups of the
groups under consideration can be found in [10]. We will first assume that n is sufficiently large. The
cases of small dimensions, remaining unproved, will be considered specially at the end of this section.

It is easy to verify that S coincides with none of the groups listed in the tables individually. Show
that S is not an alternating group Al with l > 6 either.

If S = Al, where l = p, p + 1, p + 2 and at least one of the members l and l − 2 is not prime; then
s(S) = 2 and n2(S) = p. Since n2(S) = n2(H), we have p = rn +1. The groups Arn+1, Arn+2, and Arn+3

contain a product of two independent cycles of length rn/2, i.e., an element of order rn/2 = 2kn−1. By
Lemma 2.2(a) the set ω(G) does not contain 4n, therefore 2n ≥ rn/2 ≥ 2n−1. This contradicts to the
fact that 2n < 2n−1 for n > 4.

If S = Ap and p − 2 is prime then s(S) = 3 and n2(S) = p, n3(S) = p − 2. If n2(H) = n2(S) then
rn + 1 = p and p − 2 is not prime. If n2(H) = n3(S) then rn + 1 = p − 2, S = Arn+3, and this case is
already considered.

Now we may assume that S is a group of Lie type over the field of order q. Then suppose that S
and i, 1 < i ≤ s(S), are such that the number ni(S) can be represented as qlf(q) + 1, where f(x) is
some polynomial with integer coefficients and (q, f(q)) = 1. If f(q) 6= 1 then qlf(q) 6= rn and hence
ni(S) 6= n2(H). Thus it suffices to consider the groups S to which the above argument is inapplicable.

Suppose S = Ap−1(q), where (p, q) 6= (3, 2), (3, 4) and p divides q − 1, or S = 2Ap−1(q), where p
divides q + 1. Then s(S) = 2 and n2(S) = (qp − ε)/p(q − ε), where ε = 1 in the first case and ε = −1 in
the second. Since n2(H) = n2(S), we have rn + 1 = (qp − ε)/p(q − ε) and p(q − ε)(rn + 1) = qp − ε. Let
q − ε = pt. Then p2t(rn + 1) = (pt + ε)p − ε = p3ts + p2t, where s is some natural number. Dividing it
by p2t, obtain rn + 1 = ps + 1 and 2kn = rn = ps, which is impossible.

Let S be equal to Bn′(q), 2Dn′(q), or Cn′(q), where q is odd, n′ = 2m′
, n′ ≥ 4 in the first and second

cases and n′ ≥ 2 in the last case. Then s(S) = 2 and n2(S) = (qn′
+1)/2. Since n2(S) = n2(H), we have

qn′
= 2rn + 1 ≡ 0 (3), therefore q = 3l and 3ln′

= 2kn+1 + 1. The last equation has only two solutions:
nk + 1 = 1 and nk + 1 = 3, which is false for n > 2.

If S = Bp(3), Cp(3), or Dp+1(3) then n2(S) = (3p − 1)/2. It follows from n2(H) = n2(S) that
3p = 2rn + 3, which is false.

If S = Cp(2) or Dp+1(2) then n2(S) = 2p − 1, but the equality 2p − 1 = 2kn + 1 is impossible. By
similar reasons the case of S = 2B2(q), q = 22l+1 > 2, n2(S) = n2(H) is impossible either.

If S = 2Dn′(3), where 9 ≤ n′ = 2m′
+ 1 6= p, then s(S) = 2 and n2(S) = (3n′−1 + 1)/2. Since

(3n′−1 + 1)/2 = rn + 1, we have 3n′−1 = 2rn + 1. The last equation, as mentioned, has no solutions for
n > 2. It can be proved similarly that the case of S = 2Dp(3) is impossible either.

Let S = E6(q) or 2E6(q), q > 2, and 3 divides q − ε, where ε = 1 in the first case and ε = −1 in the
last. Then n2(S) = (q6 + εq3 + 1)/3. Since n2(S) = n2(H), we have q6 + εq3 − 2 = 3 · rn. Note that if
q− ε is divisible by 3 then q3 − ε is divisible by 9. Thus q6 + εq3 − 2 = q6 − 1 + ε(q3 − ε) is divisible by 9,
therefore rn is divisible by 3; a contradiction.

Suppose that S = A1(q), where q = pl, 3 < q ≡ ε(4), ε = ±1. Then s(S) = 3, n2(S) = p, and
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n3(S) = (q + ε)/2. If p = rn + 1 then the Cartan subgroup of S contains a cyclic subgroup of order
(p − 1)/2 = rn/2 = 2kn−1. By Lemma 2.2(a) the set ω(G) does not contain 4n. Therefore, 2kn−1 ≤ 2n,
which is false for n > 4. Now let n3(S) = n2(H). If ε = 1 then q = 2rn + 1 ≡ 0(3), hence p = 3 and
3l = 2kn+1 + 1, which is impossible for n > 2. If ε = −1 then q = 2rn + 3 ≡ 0(5), therefore q ≡ 1(4);
a contradiction.

Suppose that S = F4(q), where q is even, and n2(S) = n2(H). Then q4+1 = rn+1 and q = rn/4. Let
p′ be a primitive prime divisor of q6 + 1 = r3n/2 + 1. Then p′ divides the order of S and, by primitivity,
does not divide that of G, since

π(G) ⊆ π(2(rn+1 + 1)(rn + 1)(rn − 1)(rn−1 + 1)(rn−1 − 1) . . . (r + 1)(r − 1)).

Hence ω(S) 6⊆ ω(G), and this case is impossible.
Suppose that S = 2Dn′+1(2), n′ = 2m′ ≥ 4, and G 6= S. Then n2(S) = 2n′

+ 1 and 2n′
+ 1 = rn + 1,

thus n′ = kn. Let p′ be a primitive prime divisor of 2n′+1 + 1 = 2nk+1 + 1. Then p′ divides |S| and, by
primitivity, does not divide |G|, since

π(G) = π(2(2nk + 1)(2nk − 1)(2nk−k + 1)(2nk−k − 1) . . . (2k + 1)(2k − 1)).

Thus ω(S) 6⊆ ω(G), and this case is impossible either.
Suppose that S = Cn′(2k′

), n′ = 2m′ ≥ 2, 2Dn′(2k′
), n′ = 2m′ ≥ 4, and n2(H) = n2(S) = 2k′n′

+ 1,
or S = A1(2k′

) and n2(H) = n3(S) = 2k′
+ 1. In the latter case we assume that n′ = 1. Then

rn + 1 = 2n′k′
+ 1, thereby rn/n′

= 2k′
and k′ = kn/n′. Observe that |Out(S)| = dk′ = dk2m−m′

, where
d = 1 or d = 2.

If a pair (r, n) does not equal (2, 4) then there exist primitive prime divisors p+ and p− of rn−1 + 1
and rn−1 − 1 respectively, and they are distinct. We will prove that if n 6= n′ then p+ and p− do not
divide the order of S, and hence that of S1 by Lemma 1.6(c).

If S = A1(rn) then |S| = rn(rn + 1)(rn − 1)2 and the assertion is valid, since if ε1, ε2 = ±1 then
(rn + ε1, r

n−1 + ε2) divides r − ε1ε2.
If S = Cn′(rn/n′

) then

|S| = rnn′
(rn + 1)(rn − 1)(rn−n/n′

+ 1)(rn−n/n′ − 1) . . . (rn/n′
+ 1)(rn/n′ − 1).

If S = 2Dn′(rn/n′
) then

|S| = rn(n′−1)(rn + 1)(rn−n/n′
+ 1)(rn−n/n′ − 1) . . . (rn/n′

+ 1)(rn/n′ − 1).

Since n 6= n′, it follows that p+ and p− do not divide the order of S by primitivity and the above remark.
Unlike the order of S1, the order of G is divisible by rn−1 +1 and rn−1−1. Therefore p+, p− ∈ ω(G).

Suppose that p+ · p− ∈ ω(G). Then some maximal torus T of G contains an element of order p+ · p−. By
Lemma 2.1 the order of this torus equals

∏
i(r

si + 1)
∏

j(r
tj − 1), where

∑
i si +

∑
j tj = n. The number

|T | is divisible by (rn−1 +1)(rn−1 − 1) because p+ and p− are primitive. But n− 1 +n− 1 > n for n > 2
and there is no such torus in the group G. Hence p+ · p− 6∈ ω(G).

Since p+ ∈ ω(H) \ ω(S1), we have p+ ∈ ω(K). The same is true for p−. The group K is nilpotent,
hence p+ · p− ∈ ω(K) ⊆ ω(H) = ω(G); a contradiction.

To complete the proof, it remains to consider the cases when S = Cn(r) or S = 2Dn(r).
Let G = 2Dn(r) and S = Cn(r). Let p+

1 and p−1 be primitive prime divisors of rn/2+1 − 1 and
rn/2−1 − 1 respectively. The numbers p+

1 and p−1 are distinct for n > 4, since for such n we have

(rn/2+1 − 1, rn/2−1 − 1) = (r2 − 1, rn/2−1 − 1) = 1.

By Lemma 2.1 the group S contains a torus of order (rn/2+1 + 1)(rn/2−1 + 1), therefore p+
1 · p−1 ∈ ω(S).

By the lemma the orders of maximal tori of G coincide with the numbers
∏s

i=1(r
si + 1)

∏
j(r

tj − 1),
where s is odd and

∑s
i=1 si +

∑
j tj = n. Therefore p+

1 , p−1 ∈ ω(G). Suppose that p+
1 · p−1 ∈ ω(G). Then
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there is a torus T in G of order divisible by rn/2+1 − 1 and rn/2−1 − 1. Since a number of those factors
in |T | that are in form of 2s′ + 1 must be odd, |T | has at least one more factor in form of 2s′ + 1. On
the other hand, s′ + (n/2 + 1) + (n/2 − 1) = s′ + n > n; a contradiction. Therefore p+

1 p−1 6∈ ω(G). Thus
ω(S) 6⊆ ω(G), and this case is impossible.

Conversely, let G = Cn(r) and S = 2Dn(r). Consider numbers p+
1 , p−1 , p+

2 , p−2 , p+
3 , and p−3 that

are primitive prime divisors of rn/2+1 − 1, rn/2−1 − 1, rn/2+1 + 1, rn/2−1 + 1, rn/2+3 + 1, and rn/2−3 + 1
respectively. If n > 8 then p+

1 , p−1 , p+
2 , p−2 , p+

3 , and p−3 are pairwise distinct. By analogy to the previous
case we find that for each i = 1, 2, 3 a number p+

i · p−i lies in ω(G), but does not lie in ω(S). Moreover,
by Lemma 1.6(c) this number does not lie in ω(S1).

Suppose that pε1
1 · pε2

2 · pε3
3 ∈ ω(G) for some ε1, ε2, ε3 ∈ {+,−}. Then there is a torus T in G of order

divisible by
(rn/2+ε1 − 1)(rn/2+ε2 + 1)(rn/2+3ε3 − 1),

but
n/2 + ε1 + n/2 + ε2 + n/2 + 3ε3 ≥ 3n/2 − 5 > n

for n > 10; a contradiction.
For each i = 1, 2, 3 we have p+

i ·p−i ∈ ω(H)\ω(S1), therefore there is εi ∈ {+,−} such that pεi
i ∈ ω(K).

The group K is nilpotent. Hence,

pε1
1 · pε2

2 · pε3
3 ∈ ω(K) ⊆ ω(H) = ω(G),

which is false.
It remains to consider G = 2Dn+1(2) and S = Cn(2) or 2Dn(2). Note that S1 = S or S1 = S · 2 in

this case. By above, if p′ is a primitive prime divisor of 2n+1 − 1 then p′ ∈ ω(G) \ ω(S). Let p1 and p2

be the primitive prime divisors of 2n/2 + 1 and 2n/2+1 − 1 respectively. The numbers p′, p1 and p2 are
pairwise distinct for n > 2.

The number p1 · p2 belongs to ω(G) \ ω(S), since by Lemma 2.1 there is a torus of order (2n/2 + 1)
(2n/2+1 − 1) in G, and there is no such torus in S. By the lemma there are no tori of order (2n+1 − 1)
(2n/2 + 1) and (2n+1 − 1)(2n/2+1 − 1) in G. Hence, p′ · p1, p′ · p2 6∈ ω(G).

Since p′, p1 · p2 ∈ ω(H) \ ω(S), it implies that p′, pi ∈ ω(K) for some i ∈ {1, 2}. Therefore, p′ · pi ∈
ω(K) ⊆ ω(H) = ω(G), which is false.

Thus the theorem is proved for all 2Dn+1(2) and 2Dn(2k) with n > 4, and for all Cn(2k) with
n > 8. Furthermore, it proved in [7] that 2D4(2) and 2D5(2) are recognizable by spectrum. Therefore,
to complete the proof, we need to consider 2D4(r), r > 2, and C8(r).

Let G = 2D4(r), r = 2k > 2. It suffices to consider those groups S that we rejected using the
condition n > 4.

Suppose that S = Ap+1, Ap+2, Ap+3, where p = r4 + 1. Let p′ be a primitive prime divisor of r6 + 1.
Then p′ divides (r6 + 1)/(r2 + 1) = r4 − r2 + 1 < p. Therefore, there is an element of order p′ in S. On
the other hand, p′ does not divide the order of G by primitivity. Thus p′ ∈ ω(S) \ ω(G), and we arrive
at a contradiction.

Suppose that S = A1(pl), where p = r4 + 1. The order of S equals pl(pl + 1)(pl − 1)2. It is easy to
show that this number is divisible by

p + 1 = r4 + 2 = 24k + 2 = 2(24k−1 + 1).

Since k > 1, a primitive prime divisor of 24k−1 + 1 does not divide the order of G. Hence, ω(S) 6⊆ ω(G),
and we arrive at a contradiction again.

Suppose that S = C4(r). It suffices to show that ω(S) 6⊆ ω(G).
We prove a more general assertion that for some odd prime p a number 2 · p belongs to ω(Cn(r)) \

ω(2Dn(r)), where r = 2k ≥ 2, n ≥ 4. The properties of involution centralizers in Cn(r) and 2Dn(r)
are described in [21]. If C is a centralizer of an involution in 2Dn(r) then the factor-group C/O2(C)
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is isomorphic to Cl(r) × 2Dn−2l(r) or Cl−1(r) × Cn−2l(r), where l ≤ n/2. Thus, π(C) ⊆ π(Cn−2(r)).
There is an involution centralizer C in Cn(r) such that C/O2(C) ' Cn−1(r). If (n, r) 6= (4, 2) and p is
a primitive prime divisor of rn−1 + 1 then p does not divide the order of Cn−2(r) and divides that of
Cn−1(r). If (n, r) = (4, 2) then p = 7 has the same property. Thus p is connected with 2 in ω(Cn(r)) and
not connected with it in ω(2Dn(r)).

The case if G = 2D4(r) is examined completely.
Let G = C8(r). The only simple group S that we rejected using the condition n > 8 is S = 2D8(r).

By above, if p+
1 and p−1 are primitive prime divisors of rn/2+1 − 1 and rn/2−1 − 1 respectively then

p+
1 p−1 ∈ ω(G) \ ω(S). Hence p = pε

1 ∈ ω(K) for some ε ∈ {+,−}.
Let P be a Sylow p-subgroup of the group K. The subgroup Φ(P ) is normal in H. Consider the

factor-groups H = H/Φ(P ), K = K/Φ(P ), and V = P/Φ(P ) instead of H, K and P . It is easy to
observe that since p ∈ π1(H), the graph GK(H), as well as GK(H), is disconnected. By the Corollary
of Lemma 2.3 there is a Frobenius subgroup R with kernel of order r7 and cyclic complement of order
r7 − 1 in G. The groups H, K, R ≤ G ' H/K, V , and M = V h R satisfy the conditions of Lemma 1.3.
Hence, ω(M) ⊆ ω(H) ⊆ ω(H) = ω(G).

Since K ≤ CH(V ) E (H) and a group H/K ' G is simple, we have CH(V ) = K or CH(V ) = H.
Since the graph GK(H) is disconnected, the latter is impossible and CH(V ) = K. By Lemma 1.4 the
group M contains an element of order p · (r7 − 1), so does the group G. Lemma 2.2(b) implies that p
divides either r + 1 or r − 1, which contradicts the primitivity of p.

The case if G = C8(r) is examined similarly, and the theorem is proved.

§ 4. Proof of Theorem 1

Let G = Cn(2), n = 2m > 4, and let H be a finite group such that ω(H) = ω(G). By the results of
the preceding section, H contains a normal nilpotent subgroup K such that G ≤ H/K ≤ Aut(G). We
have Aut(G) = G, therefore H/K = G. We will prove that K = 1.

Suppose that K 6= 1. We may assume without loss of generality that K is an elementary abelian
p-group. Since GK(H) is disconnected, CH(K) 6= H. Since G is simple, CH(K) = K. Therefore, H
induces by conjugation a group of automorphisms of K isomorphic to G. We will use Lemma 1.4 and
the Frobenius subgroups of G in further reasoning.

By Lemma 2.4 the group G contains a Frobenius subgroup with kernel of order 2n + 1 and cyclic
complement of order 2n. If p = 2 then by Lemma 1.4 the group H, as well as G, contains an element of
order 2 · 2n, which contradicts Lemma 2.2(a).

By Lemma 2.5 G contains a Frobenius subgroup with kernel of order 22· 3l
and cyclic complement of

order 3l+1, where 3l < n < 3l+1. If p = 3 then by Lemma 1.4 H contains an element of order 3 · 3l+1,
which contradicts Lemma 2.2(c).

Now let p 6= 2, 3. By the Corollary of Lemma 2.3, G contains a Frobenius subgroup with kernel of
order 2n−1 and cyclic complement of order 2n−1 − 1. Since p 6= 2, by Lemma 1.4 H contains an element
of order p · (2n−1 − 1). Lemma 2.2(b) implies that p equals 3; a contradiction.

Thus K = 1. Hence H = G, and the theorem is proved for Cn(2).
Let G = 2Dn+1(2), n = 2m > 4, and let H be a finite group such that ω(H) = ω(G). By the results

of the preceding section, H contains a normal nilpotent subgroup K such that G ≤ H/K ≤ Aut(G). It is
known that Aut(G) = G · 2 and Aut(G) \G contains an involutive field automorphism g. The centralizer
of g in G contains a subgroup isomorphic to Cn(2). Therefore, it contains an element of order 2n + 1.
Thus, 2 · (2n +1) belongs to ω(Aut(G)) and does not belong to ω(G). Hence, ω(Aut(G)) 6= ω(G) = ω(H)
and H/K = G.

As in the previous case, we may assume that K is an elementary abelian p-group and CH(K) = K.
If p = 2 then we apply the same argument as to Cn(2). By the Corollary of Lemma 2.4 the group G

contains a Frobenius subgroup with kernel of order 2n +1 and cyclic complement of order 2n. Hence, by
Lemma 1.4 H contains an element of order 2 · 2n, which contradicts Lemma 2.2(a).
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Let p 6= 2. By Lemma 2.6 the group G contains a Frobenius subgroup with kernel of even order
and cyclic complement of order 2n + 1. By Lemma 1.4 H contains an element of order p(2n + 1), but
a number 2n + 1 belongs to µ(G) = µ(H) by Lemma 1.2. This contradiction completes the proof.
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