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Time-Optimal Output Transition
for Minimum-Phase Systems
The time-optimal output transition control problem for stable or marginally stable
systems with minimum-phase zeros is discussed in this paper. A double integrator system
with a real left-half plane zero is used to illustrate the development of the time-optimal
output transition controller. It is shown that an exponentially decaying postactuation
control profile is necessary to maintain the output at the desired final location. It is shown
that the resulting solution to the output transition time-optimal control profile can be
generated by a time-delay filter whose zeros and poles cancels the poles and zeros of the
system to be controlled. The design of the time-optimal output transition problem is
generalized and illustrated on the benchmark floating oscillator problem.
[DOI: 10.1115/1.4025032]

1 Introduction

Feedforward control is now a reliable approach for precision
motion control in applications ranging from hard disk drives [1],
wafer scanners [2], cranes [3], to flexible space structures [4].
This includes shaping the reference input for a stable system, i.e.,
feedback stabilized system or an open loop-control such as time-
optimal control which provides the nominal trajectories which
are followed by a perturbation feedback controller. The input-
shaping/time-delay filtering [5,6] approach which eliminates re-
sidual vibration by a simple phase shifted harmonic cancelation
has been extensively studied. Issues dealing with desensitizing the
reference shaper to model parameter uncertainties has been the
focus to permit robust design [7,8] while techniques to minimize
excitation of unmodeled modes has been addressed by limiting
the jerk [9] or by using smooth trajectories [10]. Modifications to
the traditional input shaper design include work by Dijkstra and
Bosgra [11] where they illustrate the use of iterative learning
control to design an input shaper to eliminate residual vibrations
in rest-to-rest maneuvers of wafer scanners. An adaptive input-
shaping technique was presented by Bodson [12] where the tradi-
tional time-delay filter and a second order prefilter are designed to
eliminate residual vibrations.

Another class of open-loop controller which focuses on rest-to-
rest maneuvers such a time-optimal [13–15] fuel-time optimal
[16,17], jerk-limited time-optimal [18,19] which explicitly
includes control constraints has also been the focus of numerous
researchers over the past three decades. All the aforementioned
papers deal with state-to-state transition. Often one is interested in
regulating specific outputs which can be a function of multiple
states. For systems whose transfer functions are characterized by
zeros, the output is a function of multiple states. For such systems,
one can pose an optimal control problem which endeavors to tran-
sition the output from a state of rest to a state of rest. This optimal
output transition problem has been addressed by Iamratanakul
et al. [20] for a dual-stage disk drive where pre- and postactuation
is used to minimize the energy consumed in the output-to-output
transition problem. Iamratanakul and Devasia [21] extended the
minimum-energy control profile to a weighted time/energy cost
function. They show that using pre- and postactuation results in
reducing the weighted time/energy cost function for output-to-out-
put transition relative to state-to-state transition. Devasia [22]
developed a time-optimal design strategy for system with rigid

and flexible modes and illustrated the technique on a benchmark
floating oscillator problem with multiple inputs. The output-to-
output transition problem was shown to be a bang–bang profile in
the transition time window and an output-maintaining inverse
input law was derived to synthesize the pre- and postactuation
control profiles.

This paper focuses on systems with minimum-phase zeros, i.e.,
zeros in the left half of the complex plane. To help illustrate
the motivation for the parameterizations of the time-optimal out-
put-to-output transition control profile, a double integrator with a
left-half plane zero is considered. The optimal control is shown to
be identical to one synthesized from a time-delay filter which is
designed to cancel the poles and zeros of the system via the zeros
and poles of the transfer function of the time-delay filter. The
change in the structure of the postactuation time-optimal control
profile as a function of the transition maneuver is illustrated for
the double integrator problem. A generalization of the design
approach is presented followed by the illustration of the design of
a postactuation time-optimal controller for the benchmark floating
oscillator problem.

2 Problem Formulation

This section will focus on the development of a postactuation
time-optimal controller for a double integrator with a left-half
plane zero. Closed form solutions to the output transition
minimum-time control will be derived. Variation in the structure
of the time-optimal control as a function of the maneuver distance
will be illustrated. The design of the postactuation control is initi-
ated in the time-domain since it permits a clear motivation for
the form of the postactuation control. It also help transition and
illustrate the parity in formulating the postactuation control in the
frequency domain, leading to the final generalization in the fre-
quency domain.

2.1 Time-Domain Development. Consider the time-optimal
control of the system

€yðtÞ ¼ k _uðtÞ þ auðtÞ (1)

to transition from a initial state of rest to a terminal state where
the output is at rest. Assume k and a are greater than zero, result-
ing in a minimum-phase zero of the transfer function relating the
input u to the output y. Rewriting the system in state space form,
the time-optimal control problem can be stated as

min J ¼ tf (2a)
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subject to

_/1
_/2

� �
¼ 0 1

0 0

� �
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� �
þ 0
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� �
u (2b)

y ¼ a k½ � /1

/2

� �
(2c)

/1ð0Þ ¼ /2ð0Þ ¼ 0; and yðtfÞ ¼ yf ; _yðtfÞ ¼ 0; 8t � tf

(2d)

� 1 � uðtÞ � 18t (2e)

Since the terminal constraint is

_yðtfÞ ¼ a/2ðtfÞ þ kuðtfÞ ¼ 0 (3)

and with the knowledge that uðtfÞ is constrained to lie between
�1 and 1, and assuming k is positive, Eq. (3) can be rewritten as
the inequality constraints

a/2ðtfÞ � k � _yðtfÞ ¼ 0 � a/2ðtfÞ þ k (4)

using the limiting value of u. The resulting inequality constraints
are

a/2ðtfÞ � k � _yðtfÞ � 0 (5)

� a/2ðtfÞ � k þ _yðtfÞ � 0 (6)

where the terminal velocity of zero has been represented symboli-
cally to permit the determination of an analytical expression of
the Lagrange multiplier associated with the inequality constraint.
The resulting optimal control problem is

min J ¼ tf (7a)

subject to

_/1
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B

u (7b)

y ¼ a k½ � /1

/2

� �
(7c)

/1ð0Þ ¼ /2ð0Þ ¼ 0 (7d)

a/1ðtfÞ þ k/2ðtfÞ ¼ yf (7e)

a/2ðtfÞ � k � _yðtfÞ � 0 (7f )

� a/2ðtfÞ � k þ _yðtfÞ � 0 (7g)

� 1 � uðtÞ � 18t (7h)

Including the terminal equality and inequality constraints into
the cost function, the augmented cost function can be written as

Ja ¼ �1 a/2ðtfÞ � k � _yðtfÞð Þ þ �2 �a/2ðtfÞ � k þ _yðtfÞð Þ

þ b a/1ðtfÞ þ k/2ðtfÞ � yfð Þ þ
ðtf

0

1þ kT Axþ Bu� _xð Þ
� �

dt

(8)

where the Lagrange multipliers associated with the terminal
inequality constraints: �1 and �2 � 0 and the Hamiltonian is
defined as

H ¼ 1þ kT Axþ Buð Þ (9)

The necessary conditions for optimality are
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0

a

� �
� �2

0

a

� �
þ b

a
k

� �
(12)

u ¼ � sign BTk
� �

(13)

�1; �2 � 0 (14)

Hð0Þ ¼ 0 (15)

Solving the costate equations, we have

k1ðtÞ ¼ C (16)

k2ðtÞ ¼ �Ctþ D (17)

Since k1ðtfÞ ¼ ba from Eq. (12), we have C ¼ ab. Exploiting the
constraint given by Eq. (15), we have

Hð0Þ ¼ 1þ k2ð0Þ ¼ 1þ D ¼ 0 (18)

assuming that the initial control magnitude is 1, resulting in
D ¼ �1. The resulting time-optimal control is

u ¼ �sign �abt� 1ð Þ (19)

It is clear from the structure of the switching function �abt� 1,
that the control can switch at most once. Assuming a single-
switch parameterization of the time-optimal control profile as

uðtÞ ¼ 1� 2Hðt� TsÞ 8t � 0 (20)

where Hðt� TsÞ is the Heaviside step function and the control
switches at time Ts, we have

� abTs � 1 ¼ 0) Ts ¼ �
1

ab
(21)

Integrating the state equations given by Eq. (10), we have

/1ðtÞ ¼
1

2
t2 � t� Tsð Þ2H t� Tsð Þ 8t � 0 (22)

/2ðtÞ ¼ t� 2 t� Tsð ÞH t� Tsð Þ 8t � 0 (23)

Since at time tf, the terminal control is �1, the active terminal
constraint is

a/2ðtfÞ � k � _yðtfÞ ¼ 0) a �tf þ 2Tsð Þ � k � _yðtfÞ ¼ 0 (24)

which results in the solution

tf ¼
2aTs � k � _yðtfÞ

a
(25)

From the terminal equality constraint

a/1ðtfÞ þ k/2ðtfÞ ¼ yf (26)
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) a
1

2
t2
f � tf � Tsð Þ2

	 

þ k tf � 2 tf � Tsð Þð Þ ¼ yf (27)

the switch time can be solved in closed form

Ts ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2k2 þ 4yfa

p
a

;� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2k2 þ 4yfa

p
a

(28)

Equation (21) leads to the closed form solution for the Lagrange
multiplier

b ¼ � 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2k2 þ 4ayf

p (29)

Since k2ðtfÞ from Eq. (12) is

k2ðtfÞ ¼ �1 � �2ð Þaþ bk ¼ �abtf � 1 (30)

and with the knowledge that �2 ¼ 0, since the corresponding con-
straint is inactive, we have

�1 ¼
1

a
(31)

which is a positive number since a > 0.
With the knowledge that the Lagrange multipliers are the sensi-

tivity of the cost function to variation in the level of the constraint,
we have

dJa

dyf

¼ �b (32)

dJa

d _yf

¼ ��1 if constraint u ¼ �1 is active (33)

dJa

d _yf

¼ �2 if constraint u ¼ 1 is active (34)

Since the Lagrange multiplier b is defined as the sensitivity of
the cost function to a perturbation in the constraint level yf, we
have

b ¼ � dtf
dyf

¼ � 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2k2 þ 4ayf

p (35)

which matches the solution given by Eq. (29).

�1 can also be calculated from the sensitivity equation

�1 ¼ �
dtf
d _yf

¼ 1

a
(36)

which matches the solution given by Eq. (31). Figure 1 illustrates
the variation of the switch time (solid line) and the maneuver time
(dashed line) as a function of the final displacement for a ¼ 1 and
k¼ 2. It should be noted that the switch time and the maneuver
time are coincident for a displacement of yf ¼ 6. The structure of
the time-optimal postactuation control for maneuvers smaller than
yf ¼ 6 will be presented later.

2.2 Post Actuation. Figure 2 illustrates the terminal equality
constraint for the output. It is clear that the terminal states /1ðtfÞ
and /2ðtfÞ have to lie on the line given by Eq. (3) shown by the
dashed line. Once the states have reached the constraint line, the
states have to evolve such that they slide along the constraint line
ensuring that yðtÞ ¼ yf and _yðtÞ ¼ 0 for all time greater than tf.

Since

a/1ðtÞ þ k/2ðtÞ ¼ yf ;8t > tf (37)

) /2ðtÞ ¼
yf � a/1ðtÞ

k
(38)

and

_yðtfÞ ¼ a/2ðtÞ þ kuðtÞ ¼ 0;8t > tf (39)

) uðtÞ ¼ � a
k
/2ðtÞ (40)

Substituting the control given by Eq. (40) into the state equation,
the resulting evolution of the states after time tf are

_/2 ¼ u ¼ � a
k
/2 (41)

) /2ðtÞ ¼ e�
a
kðt�tfÞ/2ðtfÞ 8t � tf (42)

Fig. 1 Variation of maneuver and switch time Fig. 2 Output constraint for postactuation
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and

/1ðtÞ ¼ �
k

a
e�

a
kðt�tf Þ/2ðtf Þ þ

k

a
/2ðtf Þ þ /1ðtf Þ (43)

The control can now be represented as

u ¼ _/2 ¼ �
a
k

e�
a
kðt�tf Þ/2ðtfÞ (44)

With the knowledge that uðtfÞ ¼ �1, we have

uðtfÞ ¼ �1 ¼ � a
k
/2ðtfÞ ) /2ðtfÞ ¼

k

a
(45)

or

u ¼ �e�
a
kðt�tf Þ 8t � tf (46)

is the postactuation control which constrains the output y(t) to
equal yf for all time greater than tf. Note that the control given in
Eq. (46) starts at �1 and transitions exponentially to zero thus sat-
isfying the control constraint given by Eq. (7h).

2.3 Frequency Domain Development. Singh and Vadali
[15] presented a frequency domain approach for the design of
time-optimal controllers. A time-delay filter was parameterized
in terms of the switch times and the maneuver time with the
knowledge that the time-optimal control profile is bang–bang. The
output of the time-delay filter when subject to a step input results
in a bang–bang control profile. A parameter optimization problem
is posed so as to require zeros of the transfer function of the
time-delay filter cancel the poles of the system with an additional
constraint to satisfy the terminal maneuver constraint. The same
approach of designing a time-delay filter will be used for optimal
output-to-output transition control.

With the knowledge that the postactuation time-optimal control
for the second order system given by Eq. (1) is

uðtÞ ¼ 1� 2Hðt� TsÞ þ ð1� e�
a
kðt�tfÞÞHðt� tfÞ (47)

the frequency domain representation of the control profile is

UðsÞ ¼ 1

s
1� 2 exp �sTsð Þ þ

a
k

sþ a
k

exp �stfð Þ

0
B@

1
CA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
GcðsÞ

(48)

where GcðsÞ is the transfer function of a time-delay filter which
generates the time-optimal postactuation control profile.

Note that the transfer function of the time-delay filter includes a
pole located at s ¼ �ða=kÞ which corresponds to the zero of the
system transfer function, in essence canceling the zero of the
transfer function with a pole of the time-delay filter. Evaluating
the transfer function of the time-delay filter at s¼ 0, we have

Gcðs ¼ 0Þ ¼ 1� 2e�sTs þ
a
k

e�stf

sþ a
k

�  ¼ 1� 2þ 1 ¼ 0 (49)

which cancels one pole of the system transfer function located at
the origin. To cancel a second pole at the origin, we require

dGcðsÞ
ds
ðs ¼ 0Þ ¼ 2Tse

�sTs �
a
k

tfe
�stf

sþ a
k

� �
a
k

e�stf

sþ a
k

� 2
(50)

) ¼ 2Ts � tf �
1
a
k

�  ¼ 0 (51)

when substituting the closed form solution for Ts and tf given by
Eqs. (25) and (28). Thus, the time-optimal postactuation control
can be derived by designing a time-delay filter which uses its
poles and zeros to cancel the zeros and poles of the system respec-
tively. Note that the structure of the time-delay filter for output-to-
output transition depends on the zeros of transfer function of the
system as opposed to the structure of the time-delay filter for
state-to-state transition which is a sum of delayed step inputs,
which results in a bang–bang control profile.

2.4 Small Maneuvers. Equation (25) presents the relation-
ship between the maneuver time and the switch time

tf ¼ 2Ts �
k

a
(52)

when _yðtfÞ ¼ 0. It can be seen that the maneuver time and the
switch time coincide when

Ts ¼
k

a
(53)

which corresponds to a maneuver of

yf ¼
3k2

2a
(54)

For maneuvers smaller than yf ¼ 3k2=2a, the inequality
constraints

a/2ðtfÞ � k � 0 (55)

� a/2ðtfÞ � k � 0 (56)

are not active and consequently, the corresponding Lagrange mul-
tipliers �1 and �2 are zero. This implies that the magnitude of the
control at the final time is neither �1 nor 1. Assuming the initial
control is u¼ 1, the state evolution is given by the equations

/1ðtÞ ¼
1

2
t2 (57)

/2ðtÞ ¼ t (58)

which results in the terminal constraint

a
1

2
t2f þ ktf ¼ yf (59)

which results in the solution

tf ¼
�k6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ 2ayf

p
a

(60)

The final time has to be

tf ¼
�k þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ 2ayf

p
a

(61)

since the other solution results in a negative time. Since the output
velocity at the terminal time should be 0, we have:

atf þ kuðtfÞ ¼ 0;! uðtfÞ ¼ �
atf

k
¼ k �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ 2ayf

p
k

(62)
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The transversality conditions are

k1

k2

� �
ðtfÞ ¼ �1

0

a

� �
� �2

0

a

� �
þ b

a
k

� �
(63)

and since

k1ðtÞ ¼ C (64)

k2ðtÞ ¼ �Ctþ D (65)

Hð0Þ ¼ 1þ k2ð0Þ ¼ 0 (66)

we have

C ¼ ab (67)

D ¼ �1 (68)

b ¼ � 1

k þ atf

¼ � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ 2ayf

p (69)

�1 ¼ �2 ¼ 0 (70)

Since the Lagrange multiplier b is defined as the sensitivity of the
cost function to a perturbation in the constraint, we have

b ¼ � dtf
dyf

¼ � 1

2a
2affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 þ 2ayf

p (71)

which matches the solution given by Eq. (69).
The postactuation control to maintain y(t) at yf was shown in

Eq. (44) to be

u ¼ _/2 ¼ �
a
k

e�
a
kðt�tf Þ/2ðtfÞ (72)

and with the knowledge that

/2ðtfÞ ¼ tf ¼
�k þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ 2ayf

p
a

(73)

the postactuation control is

uðtÞ ¼ k �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ 2ayf

p
k

e�
a
kðt�tfÞ (74)

Since this control is valid for maneuvers less than yf � 3k2=2a, it
is clear that the coefficient of the exponentially decaying term in
the control is less than �1, satisfying the control constraints.

The transfer function of a time-delay filter to generate the time-
optimal postactuation control profile can be shown to be

GcðsÞ ¼ 1� s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ 2ayf

p
þ a

ksþ a
expð�stfÞ (75)

Evaluating Gcðs ¼ 0Þ, and ðdGc=dsÞðs ¼ 0Þ, we have

Gcðs ¼ 0Þ ¼ 1� 1 ¼ 0 (76)

and

dGc

ds
ðs ¼ 0Þ ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ 2ayf

p
ksþ a

expð�stfÞ

þ tf

s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ 2ayf

p
þ a

ksþ a
expð�stfÞ

� k
s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ 2ayf

p
þ a

ðksþ aÞ2
expð�stfÞ ¼ 0 (77)

when tf is given by Eq. (61). It can again be noted that the transfer
function given by Eq. (75) cancels the poles and zeros of the sec-
ond order system.

Figure 3 illustrates the variation of the maneuver time and the
switch time as a function of varying maneuvers. Section 3 will
generalize the design of pole-zero zero-pole canceling postactua-
tion controllers.

3 Generalization

Consider a stable or marginally stable transfer function of the
form

YðsÞ
UðsÞ ¼ GpðsÞ ¼

Xm

i¼0

ais
i

sn þ
Xn�1

j¼0

bjs
j

(78)

where n � m. All the zeros of the plant GpðsÞ are assumed to lie
in the left-half of the complex plane. For systems which include
nonminimum phase zeros, only the left-half plane zeros are con-
sidered in the design.

For the design of a postactuation time-delay filter, consider the
prefilter parameterization

UðsÞ
RðsÞ ¼ GcðsÞ ¼ 1þ

XL�1

k¼1

ð�1Þk2 expð�sTkÞ þ expð�sTLÞ

Xm

r¼0

crs
r

Xm

i¼0

ais
i

(79)

The parameters of the time-delay filter, i.e., cr, and Tk need to sat-
isfy the constraints

Gcðs ¼ pjÞ ¼ 0; 8pj ¼ roots sn þ
Xn�1

j¼0

bjs
j

 !
(80)

which guarantees cancelation of all the poles of the system with
zeros of the time-delay filter. The poles include the rigid body
poles, i.e., s ¼ 0; 0. To ensure that the final values of the desired
step input of magnitude yf is achieved, we require

yf ¼ lim
s!0

1

s
sGcGp ¼

a0

b0

c0

a0

þ 1þ
XL�1

k¼1

ð�1Þk2

 !
(81)

Fig. 3 Variation of maneuver and switch time
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If the limit is indeterminate, L’Hôpitals rule is used repeatedly
until the limit can be determined. Finally, since the postactuation
control is required to satisfy the control constraints, constraints
which ensure that the control bounds are satisfied after time TL,
which corresponds to the postactuation phase of the control are
added to the optimization problem. The post actuation part of the
control is given by the equation

UðsÞ ¼ 1

s
61þ

Pm
r¼0

crs
r

Pm
i¼0

aisi

0
BB@

1
CCA (82)

the inverse Laplace transform of which results in the solution u(t).
Since the zeros of the system which are the poles of the
time-delay filter transfer function, are stable, one can ensure satis-
faction of the control constraints by determining the time t ¼ TLþ1

when

du

dt

����
TLþ1

¼ 0 (83)

and requiring the control to be

� 1 � uðTLþ1Þ � 1 (84)

An optimization problem can be posed to determine the param-
eters of the postactuation time-delay filter. The statement of the
problem is

minJ ¼ TL (85a)

subject to

1þ
XL�1

k¼1

ð�1Þk2 expð�sTkÞ þ expð�sTLÞ

Xm

r¼0

crs
r

Xm

i¼0

ais
i

���������
s¼�pj

¼ 08pj

(85b)

lim
s!0

1

s
sGcGp ¼

a0

b0

c0

a0

þ 1þ
XL�1

k¼1

ð�1Þk2

 !
¼ yf (85c)

� 1 � uðTLþ1Þ ¼ L�1 6
1

s
þ

Xm

r¼0

crs
r

Xm

i¼0

ais
i

0
BBBB@

1
CCCCA � 1 (85d)

du

dt

����
TLþ1

¼ 0 (85e)

TLþ1 > TL > TL�1 > ::: > T2 > T1 > 0 (85f )

This is a nonlinear parameter optimization problem which can
converge to multiple solutions. To ensure optimality, necessary
conditions for optimality need to be derived.

In output transition problems, the goal is to force the output to
the desired value and maintain it there for all future time. This can
be accomplished using postactuation control for system with
minimum-phase zeros. The terminal output constraint is

yðtfÞ ¼ CxðtfÞ ¼ yf (86)

To maintain the output at the desired value for all time greater
than tf, we require

dy

dt

����
tf

¼ C AxðtfÞ þ BuðtfÞð Þ ¼ 0 (87)

If CB¼ 0, then the next sequence of derivatives need to be tested
until u(t) explicitly shows up in the equation

dqy

dtq

����
tf

¼ CAq�1 AxðtfÞ þ BuðtfÞð Þ ¼ 0 (88)

which is called the qth order state variable equality constraint.
Here, the qth total time derivative is the control variable constraint
which can be rewritten as inequality constraints using the limits of
u(t)

� CAq�1 AxðtfÞ þ BÞð Þ � 0 (89)

CAq�1 AxðtfÞ � BÞð Þ � 0 (90)

The constrained optimal control problem can be represented as

min J ¼
ðtf

0

dt (91a)

subject to (91b)

_x ¼ Axþ Bu (91c)

xð0Þ ¼ 0 (91d)

CxðtfÞ ¼ yf (91e)

CAq�1xðtfÞ ¼ 0 (91f )

� CAq�1 AxðtfÞ þ BÞð Þ � 0 (91g)

CAq�1 AxðtfÞ � BÞð Þ � 0 (91h)

� 1 � uðtÞ � 1 (91i)

To determine the necessary conditions for optimality, the aug-
mented cost function is

Ja ¼ �1CAq�1 AxðtfÞ � BÞð Þ þ �2CAq�1 �AxðtfÞ � BÞð Þ

þ b0 CxðtfÞ � yfð Þ þ
Xq�1

i¼1

biCAixðtfÞ

þ
ðtf

0

1þ kT Axþ Bu� _xð Þ
� �

dt (92)

where the Hamiltonian is defined as

H ¼ 1þ kT Axþ Buð Þ (93)

The necessary conditions for optimality are given by the
equations

_x ¼ @H

@k
¼ Axþ Bu (94a)

_k ¼ � @H

@x
¼ �ATk (94b)

u ¼ �sign BTk
� �

(94c)

xð0Þ ¼ 0 (94d)

kðtfÞ ¼ Aqð ÞTCT�1 � Aqð ÞTCT�2 þ CTb0 þ
Xq�1

i¼1

bi Ai
� �T

CT (94e)

�1 � 0; �2 � 0 (94f )

yðtfÞ ¼ CxðtfÞ ¼ yf (94g)
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CAq�1xðtfÞ ¼ 0 (94h)

CAqxðtfÞ � CAq�1B � 0 (94i)

� CAqxðtfÞ � CAq�1B � 0 (94j)

The proposed time-optimal postactuation controller design will
be illustrated on the benchmark floating oscillator problem in Sec. 4.

4 Benchmark Problem

For the two mass spring system shown in Fig. 4, the transfer
function relating the input to the displacement of the first mass is

Y1ðsÞ
UðsÞ ¼

s2 þ csþ 1

s2 s2 þ 2csþ 2ð Þ (95)

where the two masses are equal, the spring stiffness is unity and
the damping constant is c. The unit step response of the system is

y1ðtÞ ¼
t2

4
þ 1

4
� 1

4
e�ctcosð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2� c2
p

tÞ

� c

4
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2� c2
p e�ctsinð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2� c2
p

tÞ (96)

from which the higher derivatives can be calculated in closed
form.

To determine the structure of the post actuation control, rewrite
Eq. (95) as a differential equation

y
::::

1 þ 2c y
…

1 þ 2€y1 ¼ €uþ c _uþ u (97)

Laplace transform of Eq. (97) leads to

s4 þ 2cs3 þ 2s2
� �

Y1ðsÞ � ðs3y1ð0Þ þ s2 _y1ð0Þ þ s€y1ð0Þ þ y
…

1ð0ÞÞ
� 2cðs2y1ð0Þ þ s _y1ð0Þ þ €y1ð0ÞÞ � 2ðsy1ð0Þ þ _y1ð0ÞÞ
¼ s2 þ csþ 1
� �

UðsÞ � ðsuð0Þ þ _uð0ÞÞ � cuð0Þ (98)

At the initiation of the postactuation control, we have

y1ð0Þ ¼ yf ; _y1ð0Þ ¼ 0; or Y1ðsÞ ¼
yf

s
(99)

which permits rewriting Eq. (98) as

�ðs€y1ð0Þ þ y
…

1ð0ÞÞ � 2c€y1ð0Þ ¼ s2 þ csþ 1
� �

UðsÞ
� ðsuð0Þ þ _uð0ÞÞ � cuð0Þ

or

UðsÞ ¼ ðsþ cÞuð0Þ þ _uð0Þ � ðsþ 2cÞ€y1ð0Þ � y
…

1ð0Þ
s2 þ csþ 1

¼ �asþ b

s2 þ csþ 1
(100)

To arrive at a time-delay filter transfer function which generates
the postactuation control given by Eq. (100), we have

1

s
�1þ Gpa

� �
¼ ðsþ cÞuð0Þ þ _uð0Þ � ðsþ 2cÞ€yð0Þ � y

…
ð0Þ

s2 þ csþ 1

(101)

assuming the control magnitude is �1 prior to the initiation of the
postactuation control. Solving Eq. (101) for Gpa, we have

Gpa ¼
sðsþ cÞuð0Þ þ s _uð0Þ � sðsþ 2cÞ€y1ð0Þ � s y

…

1ð0Þ
s2 þ csþ 1

þ 1

(102)

which can be simplified to

Gpa ¼
s2 ðuð0Þ� €y1ð0Þþ1Þ
zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{P

þsðcuð0Þþ _uð0Þ�2c€y1ð0Þ� y
…

1ð0ÞÞ
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{Q

þ1

s2þ csþ1

(103)

Assuming a three-switch time-delay filter corresponds to the time-
optimal structure for the output-to-output transition control
profile, the time-delay filter’s transfer function can be parameter-
ized as

Gc ¼ 1� 2e�sT1 þ 2e�sT2 � 2e�sT3 þ Ps2 þ Qsþ 1

s2 þ csþ 1
e�sT4

	 

(104)

The post actuation control is given by the step response of sys-
tem with the transfer function given by Eq. (103) which can be
represented as

uðtÞ ¼ 1þ 2
bþ ac

2

� 
e�

c
2
t sin 1=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�c2 þ 4
p

t
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�c2 þ 4
p

� ae�
c
2
t cos 1=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�c2 þ 4

p
t

� 
(105)

where

a ¼ Pc� Q; and b ¼ c� P (106)

The derivative of the post actuation control

_uðtÞ ¼ �
bþ ac

2

� 
ce�1=2tc sin 1=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�c2 þ 4
p

t
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�c2 þ 4
p

þ bþ ac

2

� 
e�1=2tc cos 1=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�c2 þ 4

p
t

� 
þ ac

2
e�1=2tc cos 1=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�c2 þ 4

p
t

� 
þ 1=2ae�1=2tc sin 1=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�c2 þ 4

p
t

�  ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�c2 þ 4

p
(107)

can be used to determine when u(t) reaches it minimum and maxi-
mum. We can now constrain the limiting values of u(t) to be equal
to 61 to satisfy the bounds on the control. For the post actuation
problem, the additional constraints which need to be imposed to
ensure that the postactuation control does not violate the control
constraints requires solving the equations

_uðT5 � T4Þ ¼ 0 (108)

uðT5 � T4Þ ¼ �1 (109)

Fig. 4 Floating oscillator
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since uðT5 � T4Þ ¼ 0 corresponds to the minimum of u(t) which
when included as part of the time-delay filter response given by
Eq. (104) corresponds to uðT5Þ ¼ �1.

4.1 Necessary Conditions for Optimality. The state space
model of the benchmark problem with the output being the dis-
placement of the mass acted on by the input is

_x1

_x2

_x3

_x4

8>><
>>:

9>>=
>>;|fflfflffl{zfflfflffl}

_x

¼

0 0 1 0

0 0 0 1

�k k �c c
k �k c �c

2
664

3
775

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
A

x1

x2

x3

x4

8>><
>>:

9>>=
>>;|fflfflffl{zfflfflffl}

x

þ

0

0

1

0

2
664
3
775

|ffl{zffl}
B

u (110)

y ¼ 1 0 0 0½ �|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
C

x1

x2

x3

x4

8>><
>>:

9>>=
>>;|fflfflffl{zfflfflffl}

x

(111)

The costate equation is

_k1
_k2
_k3
_k4

8>><
>>:

9>>=
>>;|fflfflffl{zfflfflffl}

_K

¼ �

0 0 �k k
0 0 k �k
1 0 �c c
0 1 c �c

2
664

3
775

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
A

k1

k2

k3

k4

8>><
>>:

9>>=
>>;|fflfflffl{zfflfflffl}

K

(112)

Since the Hamiltonian is

H ¼ 1þ KT Axþ Buð Þ (113)

the time-optimal control is given by the equation

u ¼ �sign KTB
� �

(114)

The terminal constraints are

yðtfÞ ¼ yf ¼ 1 0 0 0½ �

x1

x2

x3

x4

8>><
>>:

9>>=
>>; ¼ x1ðtfÞ (115)

_yðtfÞ ¼ 0 ¼ 0 0 1 0½ �

x1

x2

x3

x4

8>><
>>:

9>>=
>>; ¼ x3ðtfÞ (116)

€yðtfÞ ¼ 0 ¼ �k k �c c½ �

x1

x2

x3

x4

8>><
>>:

9>>=
>>;þ uðtfÞ (117)

The constraint given by Eq. (117) can be rewritten as inequality
constraints

�k k �c c½ �

x1

x2

x3

x4

8>><
>>:

9>>=
>>;� 1 � 0 (118)

� �k k �c c½ �

x1

x2

x3

x4

8>><
>>:

9>>=
>>;� 1 � 0 (119)

The augmented cost function includes the following terms:

�1 �k k �c c½ �

x1

x2

x3

x4

8>>><
>>>:

9>>>=
>>>;� 1

0
BBB@

1
CCCA

þ �2 � �k k �c c½ �

x1

x2

x3

x4

8>>><
>>>:

9>>>=
>>>;� 1

0
BBB@

1
CCCA

þ b1ðx1ðtf Þ � yf Þ þ b2x3ðtf Þ (120)

which leads to the terminal costate constraint

k1

k2

k3

k4

8>><
>>:

9>>=
>>;ðtfÞ ¼

�k
k
�c
c

2
664

3
775�1 �

�k
k
�c
c

2
664

3
775�2 þ

1

0

0

0

2
664
3
775b1 þ

0

0

1

0

2
664
3
775b2 (121)

When the inequality constraints Eqs. (118) and (119) are inactive,
�1 and �2 are both 0. The terminal value of the control can then be
determined from Eq. (117) resulting in

uðtfÞ ¼ � �k k �c c½ �

x1ðtf Þ
x2ðtf Þ
x3ðtf Þ
x4ðtf Þ

8>><
>>:

9>>=
>>; (122)

Since the Hamiltonian is 0 at the terminal time, we have

k1ðtfÞ k2ðtfÞ k3ðtfÞ k4ðtfÞf g

�

0 0 1 0

0 0 0 1

�k k �c c

k �k c �c

2
6664

3
7775

x1ðtfÞ
x2ðtfÞ
x3ðtfÞ
x4ðtfÞ

8>>><
>>>:

9>>>=
>>>;þ

0

0

1

0

2
6664
3
7775uðtfÞ

0
BBB@

1
CCCA ¼ �1

(123)

Equations (110), (112), (115), (116), (118), (119), and (121)
form the necessary conditions for optimality.

4.2 Large Maneuver. Parameterize the time-optimal postac-
tuation control as a three-switch bang–bang control followed by a
decaying sinusoidal postactuation control as shown in Fig. 5. Note
that since the zeros of the system which need to be cancelled are a
pair of complex left-half plane zeros, the poles of the time-delay

Fig. 5 Three-switch postactuation control profile
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filter which cancel them will result in a damped harmonic
postactuation control profile.

The time-delay filter which generates the control profile illus-
trated in Fig. 5 is

Gc ¼ 1� 2e�sT1 þ 2e�sT2 � 2e�sT3 þ Ps2 þ Qsþ 1

s2 þ csþ 1
e�sT4

	 

(124)

The zeros of the transfer function GcðsÞ should cancel the poles of
the system located at

s ¼ 0; 0; �c 6 i
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2� c2
p

(125)

The parameter optimization problem can be posed as

min J ¼ T4 (126a)

subject to (126b)

dGc

ds
ðs ¼ 0Þ ¼ 2T1 � 2T2 þ 2T3 � T4 þ Q� c ¼ 0 (126c)

1þ
X3

k¼1

ð�1Þk2e�cTk cos
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2� c2
p

Tk þ ðc2 � Qc� 1þ 2PÞe�cT4

� cos
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2� c2
p

T4 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2� c2
p

ðc� QÞe�cT4 sin
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2� c2
p

T4 ¼ 0

(126d)

X3

k¼1

ð�1Þk2e�cTk sin
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2� c2
p

Tk � ðc2 � Qc� 1þ 2PÞe�cT4

� sin
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2� c2
p

T4 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2� c2
p

ðc� QÞe�cT4 cos
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2� c2
p

T4 ¼ 0

(126e)

P� QT4 þ
T2

4

2
� 1þ cðT1 � T2 þ T3Þ

	 

þ
X3

k¼1

ð�1ÞkT2
k ¼ 2yf

(126f )

_uðT5 � T4Þ ¼ 0 (126g)

uðT5 � T4Þ ¼ �1 (126h)

0 < T1 < T2 < T3 < T4 < T5 (126i)

where u(t) and _uðtÞ are given by Eqs. (105) and (107).
For an output displacement of yf ¼ 3, Fig. 6 illustrates the

postactuation time-optimal control, the switching curve and the

corresponding evolution of the displacement of the first mass of
the benchmark floating oscillator. It can be noted that the postac-
tuation control profile is a damped harmonic which reaches the
minimum of �1 at 6.2 s.

Figure 7 illustrates the variation of the switch times and the
maneuver time as a function of the final displacement yf. It can be
seen that the first two switches shown by the dash and dotted line
collapse in the vicinity of yf ¼ 1:29. The parameterization pre-
sented in this section corresponds to all maneuvers greater than
yf ¼ 1:29. For maneuvers smaller than yf ¼ 1:29, a new parame-
terization of the control profile is necessary which is presented in
Sec. 4.3.

4.3 Small Maneuver. Parameterize the time-optimal postac-
tuation control as a single-switch bang–bang control followed by
a decaying sinusoidal postactuation control as shown in Fig. 8.

The time-delay filter which generates the control profile illus-
trated in Fig. 8 is

Gc ¼ 1� 2e�sT1 þ Ps2 þ Qsþ 1

s2 þ csþ 1
e�sT2

	 

(127)

The parameter optimization problem can be posed as

min J ¼ T2 (128a)

subject to (128b)

dGc

ds
ðs ¼ 0Þ ¼ 2T1 � T2 þ Q� c ¼ 0 (128c)

Fig. 6 Large maneuver three-switch postactuation

Fig. 7 Switch and maneuver time

Fig. 8 Single-switch postactuation control profile
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1� 2e�cT1 cos
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2� c2
p

T1 þ ðc2 � Qc� 1þ 2PÞe�cT2

� cos
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2� c2
p

T2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2� c2
p

ðc� QÞe�cT2 sin
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2� c2
p

T2 ¼ 0

(128d)

� 2e�cT1 sin
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2� c2
p

T1 � ðc2 � Qc� 1þ 2PÞe�cT2

� sin
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2� c2
p

T2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2� c2
p

ðc� QÞe�cT2 cos
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2� c2
p

T2 ¼ 0

(128e)

P� QT2 þ
T2

2

2
� 1þ cT1

	 

� 1T2

1 ¼ 2yf (128f )

_uðT3 � T2Þ ¼ 0 (128g)

uðT3 � T2Þ < �1 (128h)

0 < T1 < T2 < T3 (128i)

Figure 7 illustrates the variation of the switch times and the
maneuver time as a function of the final displacement yf for
maneuvers smaller than yf ¼ 1:29.

Figure 9 illustrates a typical postactuation time-optimal control
profile. For a maneuver of 1 unit, it can be seen that a single-
switch bang–bang control transitions the output from an initial
state of rest to a terminal state of rest. The postactuation control as
opposed to the large maneuver case does not reach the control
limits in the postactuation phase of the control.

Figure 10 illustrates the variation in the maneuver time of the
state-to-state transition time-optimal control (solid line) and the
time-optimal output transition control (dashed line), as a function
of the maneuver yf. It can be seen that the postactuation time-
optimal control consistently requires significantly smaller time to
complete the maneuver.

It should be noted that the number of switches for the time-
optimal control cannot, in most application be prescribed at the
outset. The number of switches as shown in Figs. 3 and 7 changes
as a function of the maneuver. They also change for the same
maneuver, as a function of varying damping coefficient as shown
by Singh [23] for minimum time control. Consequently, the
designer must select a certain number of switches and solve the
parameter optimization problem and then check if all the neces-
sary conditions of optimality are satisfied. If they are not, a differ-
ent parametrization is selected and the process is repeated till the
right number of switches which satisfy all the necessary condi-
tions of optimality is identified.

5 Conclusions

An analytical solution to the postactuation time-optimal con-
troller for a double integrator with a left-half plane zero is pre-
sented to motivate the structure of the postactuation control
profile. A corresponding frequency domain design approach is
shown to equate to cancelling the poles and zeros of the system
transfer function with the zeros and poles of a transfer function of
a time-delay filter. The transition of the structure of the time-
optimal control profile as a function of maneuver distance is
illustrated for the double integrator problem. The postactuation
time-optimal control profile is generalized and illustrated on the
benchmark floating oscillator problem where it is shown that the
postactuation control profile is a damped harmonic. The transition
phase of the control is shown to be bang–bang with a three-switch
structure for large maneuvers and a single-switch structure for
smaller maneuvers. Comparison with the time-optimal state-to-
state transition for the benchmark problem helps illustrate the
reduction in maneuver time of the output transition time-optimal
control. For systems with nonminimum phase zeros, a pre-
actuation phase in conjunction with a bang–bang transition phase
is the solution to the time-optimal output transition problem. The
proposed postactuation design approach can be used to solve the
pre-actuation design by reversing time and solving for the trans-
formed postactuation time-optimal controller. To desensitize the
performance of the postactuation control to uncertainties in the
location of the system poles, multiples zeros of the time-delay fil-
ter can be located at the nominal location of the uncertain poles.
When knowledge of the support of the uncertain poles are known,
a minimax optimization problem can be formulated to minimize
the worst performance of the controller over the domain of
uncertainty.
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