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QUEM: An Achievement Test
for Knowledge-Based Systems

Caroline C. Hayes, Member, IEEE, and Michael I. Parzen

Abstract —This paper describes the QUality and Experience Metric (QUEM), a method for estimating the skill level of a knowledge-
based system based on the quality of the solutions it produces. It allows one to assess how many years of experience the system
would be judged to have if it were a human by providing a quantitative measure of the system’s overall competence. QUEM can be
viewed as a type of achievement or job-placement test administered to knowledge-based systems to help system designers
determine how the system should be used and by what level of user. To apply QUEM, a set of subjects, experienced judges, and
problems must be identified. The subjects should have a broad range of experience levels. Subjects and the knowledge-based
system are asked to solve the problems; and judges are asked to rank order all solutions}from worst quality to best. The data from
the subjects is used to construct a skill-function relating experience to solution quality, and confidence bands showing the variability
in performance. The system’s quality ranking is then plugged into the skill function to produce an estimate of the system’s
experience level. QUEM can be used to gauge the experience level of an individual system, to compare two systems, or to compare
a system to its intended users. This represents an important advance in providing quantitative measures of overall performance that
can be applied to a broad range of systems.

Index Terms —Knowledged-based systems, expertise, performance measures, knowledge engineering, solution quality.

——————————   ✦   ——————————

1 INTRODUCTION

HEN evaluating knowledge-based systems (KBSs) it
is often difficult to find useful metrics for assessing a

system’s overall performance. Most literature on KBS evalua-
tion deals with validation, verification and testing (VVT) [18]
in which the primary concern is with the correctness and
consistency in the databases and rule-bases. Other systems
address modifiability, ease of use, and cost of the system.
However, these properties alone may not be sufficient to
determine how well a system performs its task. A complete
and consistent KBS may not necessarily create high quality
solutions.

It would be useful to have a method to estimate a KBS’s
overall competence. Competence is used in this context to
mean the system’s ability to perform in a value adding
manner within its problem-solving context. In this paper,
we address the issue of competence in terms of experience
level and solution quality. We present the QUality and Ex-
perience Metric; we abbreviate it QUEM and pronounce the
abbreviation “kwem.” Put succinctly, QUEM is a method
for evaluating the experience level of a knowledge-based
system and the quality of its solutions. QUEM can be con-
sidered to be an achievement test for KBSs. We used expert
judges to assess the quality of solutions generated by hu-
man experts and KBSs. We then constructed a “skill func-
tion” for the human experts relating experience and solu-

tion quality. We used the skill function and the KBS’s qual-
ity ranking to estimate the KBS’s experience level.

QUEM provides a quantitative way to estimate the expe-
rience level of a KBS, compare two KBSs, or compare the
experience level of a KBS to that of its users. This last
comparison is of particular importance if a KBS is to be
used as an aid to human users. Understanding the skill
level of the KBS relative to its users is important in deter-
mining how the system should be used and in predicting
whether users will accept it. It is often necessary that the
skill level of the KBS equal or exceed that of its users. If the
KBS produces solutions of lower sophistication and quality
than the user produces on his or her own, the user may
consider the system to be a hindrance. Additionally, esti-
mation of a KBS’s experience level also allows developers
to gauge how well they have succeeded in capturing the
domain expertise.

We will demonstrate use of QUEM to estimate the
solution quality and experience level of two versions of a
KBS, Machinist [11] which produces optimized manufac-
turing plans. We used this measure to test the basic sound-
ness of our KBS problem-solving approach, and to deter-
mine if we should continue on the same approach in future
developments.

The following is a guide to the paper: In Section 2, we
discuss our motivations in developing the method and ex-
plain our choices and assumptions in creating it. In Section
3, we review related work. In Section 4, we outline the
QUEM method. In Section 5, we demonstrate QUEM by
using it to evaluate the skill level and solution quality of
two different versions of Machinist. Section 5 also describes
the results of this evaluation. Section 6 summarizes these
results, and Sections 7 and 8 discuss future work and con-
clusions, respectively.
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2 A SHORT HISTORY OF THE DEVELOPMENT

2.1 Motivations
The development of QUEM arose from the desire to meas-
ure the quality of Machinist, a knowledge-based system for
manufacturing planning [12]. Machinist creates manufac-
turing plans for machined parts when given a geometric
specification of the part. Initially, we implemented a pro-
totype system to test the basic method.

However, before pushing ahead with a large effort to
improve the completeness and robustness of the system, we
wanted to be able to evaluate the basic soundness of the
approach. In other words, if evaluation were to show that
the best solutions produced by the system were of low
quality, then we would conclude that our efforts should be
focused on re-evaluating our basic approach and problem-
solving architecture. On the other hand, if the solutions
produced proved to be of high quality then we could feel
confident in putting our efforts into further development of
the current system architecture. To make this judgment, we
needed to find a way to measure the solution quality pro-
duced by our evolving system.

2.2 Challenges in Developing a Quality Metric
Quality is in general hard to measure because it is hard
to quantify. Even if one can generate a function to describe
quality, it may be equally hard to quantify the component
factors. In our initial attempts to estimate solution quality
we attempted to construct just such a quality function
composed of factors that our experts believed to be impor-
tant: plan cost, feasibility, and reliability. However, we soon
found this approach to be inadequate. After much tweaking
and adjusting of the quality function we found that its
assessments still did not agree very closely with those
of the experts. Furthermore, we realized that it was un-
likely that it would be possible to come up with an accurate
quality function for the reason that many of the component
factors, such as reliability, were very difficult to quantify
accurately.

To describe the problem further, Plan reliability is the
likelihood that the operations within the plan will fail or
will produce marginal results. Plans can fail in catastrophic
ways, for example when tools break, or in subtler ways,
such as when the the resulting product does not meet toler-
ance requirements. Predicting reliability requires knowl-
edge of a wide variety of situations, which are hard to
capture without a large body of empirical data. Because of
these difficult to quantify factors, the task of constructing a
solution quality metric proved very difficult.

However, we found that experts were able to make
quality assessments, and that they tended to agree strongly
with each other in those assessments. One reason that ex-
perts can succeed in assessing quality where a quality
function fails is that experts are able to estimate hard-to-
quantify quality factors, such as reliability, because they
have a broad range of empirical experience to draw on.
Human experts vary some in their assessments, but that
variability can be measured (for example, by having several
experts independently rate the same solution) and taken
into account. Advantages of this approach are that an ex-

perimenter can still measure quality without explicitly
knowing the quality function.

Similar difficulties in measuring solution quality arise in
many other domains, such as design and scheduling, in
which solution quality is judged on a broad range of ill-
defined characteristics. The measures described here are
well suited for measuring quality in any domain in which a
strong correlation between experience and solution quality
can be demonstrated.

Next, we needed to devise a scoring system in which
human judges could report their quality assessments. The
scoring system must allow the quality assessments of dif-
ferent judges to be compared. Initially, we considered hav-
ing the judges assign quality scores between 1 and 10, like
Olympic sports judges, indicating the absolute quality of
each plan. However, we decided against such an approach
because machinists do not have a standard or agreed upon
method for assigning numerical quality measures to plans.
We were concerned that it might be difficult to compare
scores assigned by two judges; if 10 is the best quality score,
an enthusiastic judge might give many 10s while a conser-
vative judge may rarely give a score better than 6. How-
ever, the first judges’ 10 may mean the same thing as the sec-
ond judges’ 6. We decided, instead, to have the expert judges
rank order the plans from best to worst. This makes it easier
to compare the quality assessments of different judges.

3 RELATED WORK

As mentioned earlier, most literature on knowledge-based
system evaluation deals with validation, verification and
testing (VVT) [18] in which the primary concern is with
correctness, circularity, inconsistency, redundancy, modifi-
ability, ease of use, and cost [14], [15]. However, these
properties alone may not be enough to describe a system’s
competence. A complete, consistent, and nonredundant
system may not solve very sophisticated problems, nor
cover a broad range of problems. Conversely, a system
which performs at a high level of competence, may be nei-
ther complete nor consistent.

Clancey [6] describes 4 perspectives useful for evaluat-
ing a system’s competence: performance, articulation, accu-
racy (in terms of closeness to human reasoning), and com-
pleteness. Other parameters important to system compe-
tence are: solution feasibility, solution quality, problem-
solving range, computer effort, and user effort. Computer
effort refers to the speed at which the computer solves a
problem and the number of decisions it must make [17].
User effort refers to the degree to which an expert computer
tool increases (or decreases) the effectiveness of a human
expert in problem-solving.

MacMillan et al. [16] report on an experiment in which
expertise was assessed in a complex domain in which there
are no agreed upon expertise measures, and no single right
answers to problems. This study has certain similarities
with QUEM in the nature of the domain studied and in the
way in which data was collected. They studied various so-
lution properties and problem-solving behaviors, and cor-
related them with expertise. Their goal was to eventually
use these factors to measure human expertise, although
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they had not constructed such a measure yet. They had
several “super experts” act as judges, where super experts
were retired four-star generals with extensive experience in
a military tactical domain. Twenty-six military officers
served as subjects and were given three tactical situations to
solve. The judges rated the subjects overall level of experi-
ence and the judges’ ratings were compared. They found
that experts focus immediately on critical unknowns, build
and use a richer mental model than nonexperts, use mental
models to explore more possible outcomes, and develop
more robust and flexible plans.

The most common way of evaluating a system’s per-
formance is simply to demonstrate that it generates feasible
solutions for some family of problems. The result of such
tests is usually binary: either the the system performs suffi-
ciently or it does not. For example, Baykan and Fox dem-
onstrate the feasibility of WRIGHT [3] on a set of five
kitchen design tasks, a household layout problem, and a bin
packing problem. These solutions are compared against
standard solutions found in a kitchen designer’s manual
(which was presumably created by a human kitchen design
expert.) In all cases, WRIGHT found the design in the
kitchen manual.

Some evaluations provide relative measures of system
competence. These evaluations provide slightly more in-
formation than simply saying “the system works” or “it
doesn’t work.” They can also provide the information that
system x works better than system y, or human z. Mostow,
et al. [17] compared the effort expended by users of their
system, BOGART, verses VEXED [19]. Dixon et al. evalu-
ated their system, Dominic [8], by comparing its results
against results generated by two other KBSs and a human
expert. They tested the systems and the human on a set
of six v-belt design problems, four heat sink problems, a
rectangular beam design problem, and a tube truss design.
From this comparison they concluded that “Dominic is
a reasonably capable designer... although the two domain
specific programs produced slightly superior perform-
ance.” When Aikins evaluated her system, Puff, a medical
diagnostic system for cardio-pulmonary diseases, she com-
pared the performance of her system against the diagnostic
performance of three human doctors. She found that Puff’s
diagnosis agreed with the average diagnosis more often
than did any of the individual doctors [1]. From this
evaluation she concluded that not only could Puff perform
competently, but that it was also more accurate on the av-
erage than any of the individual experts in the study.

However, simply knowing that one KBS produces better
quality solutions than another KBS does not necessarily tell
the KBS developers if either produces particularly good
solutions. Both may produce very good solutions or poor
solutions. For this reason we also felt it was necessary to
develop a quantitative measure of KBS experience level. One
would like to be able to say, “My KBS produces solutions
equivalent in quality to an expert with n years of experi-
ence, or simply, “My KBS is estimated to have captured n
years of experience.” Such measures can better aid system

developers in assessing whether their KBS is sophisticated
enough for their purposes.

Early work in providing assessments of KBS experience
level includes work by Hayes [10], [11], in which a KBS’s
solutions are compared against those produced by humans
at various experience. In the first of these two studies, it
was found that the KBS, Machinist, performed better on av-
erage than a set of human practitioners having between 2
and 5 years of experience. However, since experts beyond 5
years of experience were not included in the study the exact
level of the KBS could not be determined. In the later study,
a new version of the KBS was developed and a wider range
of experts was used. It was found that the new version of
Machinist performed better than particular experts having
2, 2, 5, 5, 7, 11, and 24 years of experience, respectively, but
less well than particular experts having 8 and 11 years of
experience. The conclusion reached was that the new ver-
sion of Machinist performed at an experience level between
7 and 8 years of experience.

However, these studies left many open questions. For
example, if the KBS performed better than particular ex-
perts having 7, 11, and 24 years of experience but worse
than a particular expert having 8 years of experience,
what did that mean? Was the 8-year machinist particularly
good for his experience level or were the 11- and 24-year
machinists particularly bad? If the experts in the study
deviated from the average, how sure could one be about
the KBS’s estimated experience level? Is is important to know
how much confidence to assign to the KBS’s estimated
experience level. QUEM provides a way to determine this
information by constructing confidence bands to show the
expected range of variation in performance at any level.

4 GENERAL METHOD

The QUEM procedure requires one or more knowledge-based
systems for comparison, a set of problems, several subjects of
various experience levels, and two or more expert judges.
The expert judges should have experience equal to or
greater than all subjects. The judges should not double as
subjects in order for this test to produce meaningful results.
Additionally, the domain of experience for the KBS, judges,
and subjects, must all be very similar.

4.1 The QUEM Method
The QUEM procedure for rating KBS experience level is:

1) Solve: Have all subjects and all KBSs each solve all
problems in the problem set.

2) Sort: For each problem, put all solutions together in a
group. If there are three problems, there will be three
solution groups.

3) Rank: Have the expert judges independently rank
order all solutions in each group from best quality to
worst quality. Label the worst solution in each group
as number 1. Successively number each solution, as-
signing the highest number to the best solution.

4) Adjust Ranks: If a judge ranks several solutions as
equal in quality, the ranks must be normalized so that
they can be compared to other rankings. For example,
suppose Judge 1 is given 6 solutions which he ranks
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1 through 6, while Judge 2 is given the same 6
solutions but she ranks 2 solutions as worst, 3 as
intermediate, and 1 as best, producing the ranks
of 1, 1, 2, 2, 2, and 3. The rankings of Judge 2
must be adjusted if they are to be compared to
Judge 1’s rankings.
 To adjust the rankings, they must be divided in to

tied groups. Judge 2’s rankings would be divided into
three groups: (1, 1) (2, 2, 2) (3). All data points must be
renumbered starting from the lowest number, such
that each has a separate consecutive rank: (1, 2) (3, 4,
5) (6). Next, the average rank of each group is com-
puted, and each member of a group is assigned the
value of its group average. Thus, Judge 2’s adjusted
rankings would be: 1.5, 1.5, 4, 4, 4, and 6.

5) Compute subject averages: Compute the average
quality ranking for each subject and KBS across all
problems using the adjusted rankings.

6) Plot subject averages: Put the KBS data aside for a
moment. Plot each human subject’s experience on
the y axis and his or her average quality ranking on
the x axis.

7) Fit a skill function to the data: Fit a line or curve to
these data (using linear regression or other methods
appropriate to the data). Call this the skill function. For
example, if we have n human subjects and our data is
of the form (xi, yi), i = 1, �, n, with xi denoting the av-
erage quality ranking of the ith subject and yi the cor-
responding years of experience. We may model a lin-
ear relationship between x and y using simple linear
regression resulting in the skill function y = b0 + b1x
where
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8) Construct confidence bands: Construct 95 percent

pointwise confidence bands around this function.
These bands show the variation in individual per-
formances that one can expect to find at any given
quality level.

Pointwise confidence bands are crucial to the
analysis since a point estimate of experience is not
useful without some idea how accurate the estimate
is. Let xm denote the average quality rank of a KBS.
Using the linear regression model described above,
our experience estimate of the KBS is ym = b0 + b1xm. A
95 percent confidence interval for this estimate is
given by
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where t(n�2,0.025) is the 95 percent confidence coefficient

based on the t�distribution and se
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the amount of noise in the relationship between expe-
rience level and average quality rank. All these quan-
tities are standard output results from statistics pack-

ages. Note that the width of the confidence interval is
dependent on sample size, noise in the system and the
distance of xm from the average of the human sub-
jects’ average quality rank.

9) Construct an experience estimate and interval: For
each KBS in the study,
a) Plug the KBS’s average quality ranking (x) into the

skill function to obtain the experience estimate for
the KBS.

b) Again, take the KBS average quality ranking (x)
and plug it into the equation for the upper confi-
dence band. Repeat for the lower confidence band.
The 2 numbers produced represent the experience
interval for the KBS.

The results of this process are:

• An experience estimate for the KBS. This value indi-
cates the most likely value for the experience-level of
the KBS.

• An experience interval showing the range of human
experience levels that might be capable of achieving
the same average quality as the KBS, with 95-percent
confidence.

• A skill function for humans, relating length of experi-
ence to solution quality.

• Confidence bands showing the expected range of skill
in practitioners having a given length of experience.

4.2 Applications of QUEM
QUEM can be used in a variety of ways. It can be used to:

1) Estimate the experience level of a single KBS. When
applied in this way, solutions created by a single KBS
are ranked along with solutions created by a range of
humans.

2) Identify a change in experience level between an old
and a new version of a KBS. Solutions of two or more
versions of the same KBS are ranked along with solu-
tions created by humans.

3) Compare two or more KBSs in the same domain.
Same method as 2.

4) Compare 2 unrelated KBSs that operate in different
domains. In order to compare two unrelated KBSs,
two separate QUEM tests must be performed and the
resulting experience levels compared. A separate group
of judges and subjects with appropriate domain
knowledge must be selected for each test.

5) Estimate the amount by which a computer assistant
raises the skill level of a user. Run two problem-
solving trials on the same user: one without the aid of
the KBS and one with the KBS. A separate problem
set must be used for each trial to avoid learning ef-
fects. Use the same analysis method as 2)}treat the
user’s two trials as you would two versions of a KBS.
Create the skill function using a set of subjects other
than the user. Use the skill function to estimate the
skill level of the user with and without the KBS.
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4.3 Selecting Judges, Subjects, and Problems
In order to perform a test, the experimenter will need
to take some care in selecting judges and a range of sub-
jects. Selection of problems turned out to be a less difficult
issue. We found that in the problem domains which we
studied (manufacturing and software development) that
even very simple problems were of sufficient complexity to
show strong differences between practitioners ranging be-
tween 0 and 10 years of experience. This is probably true
for most real-world domains. However, it may not be true
for formal games or domains that have been simplified for
formal study because much of the richness may have been
removed.

Subject and judge selection. The judges should prefera-
bly have more than 10 years of experience. (MacMillan et al.
[16] refers to such experts as “super experts.”) However,
given the rarity of highly experienced experts, one may
have to settle for what one can get. The subjects’ and the
judges’ experience area should closely match the domain of
the KBS which is being evaluated.

Range of subjects. Ideally, one would like to select sub-
jects so that the experience level of the KBS falls in the mid-
dle of the subjects’ experience range (although the method
will still work even if the KBS falls slightly outside the
range of the subject’s experience). If the KBS falls too far
outside the range of the subjects, the experience interval
may become too broad to supply a useful estimate. For
example, if the experience level of the KBS is 5 years,
one may want to select subjects ranging from 2 to 10 years
of experience. Unfortunately, before applying QUEM, one
does not know the experience level of the KBS, so one must
make an initial guess at what the experience levels of the
subjects should be. It may be necessary to conduct one or
two pilot studies in order to find the right experience range
for the subjects. The first time we tested Machinist [10], we
did not guess right. We selected subjects between 2 and 5
years of experience, but found that Machinist’s experience
level to be above the range of these subjects. We conducted
a second test on Machinist [11] in which we selected sub-
jects between 2 and 24 years of experience. This time we
found that our KBS’s experience level did fall inside the
range of the subjects. These two previous studies enabled
us to select the correct range of subjects (2 to 10 years) for
the study in this paper.

Problem selection. There was some initial concern in
this study that it would be difficult to select appropriate
problems. A range of four problems was selected that were
intended to differ in difficulty. However, the analysis
showed that three of the problems were of equal difficulty
and the fourth was too hard for the majority of subjects.
The study also showed that it was not necessary to use
problems of varying difficulty to distinguish novices and
experts. For any one problem, the structural differences
their solutions was so great that virtually any problem
would have served equally well to distinguish skill grada-
tions between 2 and 10 years. In other work, Fiebig and
Hayes [9] found that this is also true for experts in the soft-
ware management domain.

4.4 Graceful Degradation
There are many sources of variation in the data. Variations
may arise from differences in the way judges make assess-
ments or slight mismatches between the judge’s domain of
experience and that of the subjects or KBS. Variations in
skill between two subjects having the same reported length
of experience may be due to differences in talent or moti-
vation during training. Additionally, it is often difficult to
pinpoint the start of an expert’s training precisely; a ma-
chinist who’s family runs a machine shop as a business may
have picked up a certain number of skills through observa-
tion long before the start of formal training. Thus, two sub-
jects with the same reported length of experience may not
have the same actual length of experience. The total varia-
tion in the data is reflected in the width of the confidence
bands and the experience interval.

This representation of variability makes QUEM robust to
noise to an extent. If the experimenter accidentally intro-
duces additional variation by poor selection of one judge or
subject, it will probably not greatly affect the results. In the
worst case, the experience interval may become so broad as
to provide little useful information.

4.5 Limitations
QUEM can provide useful information for a domain only
when practitioners in the field show a distinct improvement
in skill (measured through solution quality) over time. Ex-
perience may not bring skill (or wisdom) in all domains.
However, researchers wishing to evaluate a KBS may not
know a priori if an experience/solution quality relationship
exists in the domain. Since systematic measurements of this
relationship are not typically taken, it is not definitively
known in most domains whether such a relationship exists.
The existence of such a relationship can be determined by
applying QUEM; if a simple function can be found which
fits the data well then a relationship exists.

The converse, that no relation exists, is harder to deter-
mine. If no clear relationship is found in the data, it does not
necessarily mean that one does not exist. It could also mean
that the subjects or judges were not chosen well, the range of
experience levels was too narrow, or that increased skill mani-
fests itself in ways other than through increased solution
quality (such as increased speed in producing a solution).

5 EXAMPLE: EVALUATION OF A MANUFACTURING
KBS

Task domain. QUEM was used to evaluate a particular KBS,
Machinist. Machinist is designed to automatically generate
manufacturing plans given a description of an artifact. Ma-
chining is the art of shaping metal with a variety of tools. In
this particular task, parts were to be created on a A CNC
machining center, which is a computer controlled machine
tool that can perform a variety of different types of ma-
chining operations such as drilling, milling, or reaming.
Humans who perform this task are highly skilled individu-
als requiring as much as 8 to 10 years of intensive practice
to achieve master level status. To create a manufacturing
plan, the machinist must select and sequence the manufac-
turing operations. He or she must also choose particular
cutting tools clamps, and workpiece positions for each op-
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eration. Skills that must be acquired by machinists in order
to create high quality plans include the ability to select ap-
propriate operations, detect interactions, and optimize the
overall plan.

KBSs. In evaluating Machinist we examined and com-
pared two versions of the system: an early version, fro-
zen 2-1 2 years after the start of system development, and
a later version, frozen 5-1 2 years after the start of devel-
opment. We will call the early version Machinist 1 and the
later version, Machinist 2.

Subjects and judges. Seven subjects and two judges
were selected. The subjects ranged between 2 and 10 years
of experience. They had 2, 2, 5, 5, 7, 8, and 10 years of expe-
rience, respectively. The two expert judges had 15 and 18
years of experience, respectively.

Problems. We prepared three problems for the subjects to
solve. All three problems were of approximately the same
difficulty level. For each problem, subjects were given a draw-
ing of a part, a description of the stock material from which
the part was to be made, and a list of tools and machines
they could use in manufacturing the part. The subjects were
then asked to generate a manufacturing plan for fabricat-
ing the part using the given materials and equipment.

5.1 Applying QUEM
1) Solve: We had each of the subjects and the two KBS

solve all three problems. We wrote up all solutions
in a uniform format and handwriting (to disguise
their source).
 Fig. 1 shows an example of a solution created for
problem number 3 by a machinist with 5 years of
experience. The solution is a manufacturing opera-
tions plan. For each step in the plan, the changing
shape of the part is shown on the left. The opera-
tions performed are shown in the center. The com-
ments made by two experienced judges are included
in the right margin.

2) Sort: We sorted the solutions into three groups: each
group contained all solutions to a specific problem.

3) Rank: We had two expert judges independently
rank the plans in each group, from worst to best.
The worst plan was given a score of 1. The ranks as-
signed to each plan are shown in Table 1. P1, P2, and
P3 are problems 1, 2, and 3, respectively. The miss-
ing data points resulted when subjects were unable
to complete all three problems due to being called
away to attend to immediate job demands.

4) Adjust ranks. This step was not necessary for this
data because individual judges did not judge any of
the plans to be equal in quality.

5) Compute subject averages. Next the average quality
ranking received by each subject across all three
problems was computed. These values are shown in
the last column of Table 1. The lowest average score,
2.50, was received by the machinist with only 2
years of experience. The highest average score of
5.67 was received by the machinist with 10 years of
experience. The early version of Machinist, Machin-
ist 1, had an average quality ranking of 4.67 and the
later version, Machinist 2, was 5.67. A factorial

analysis performed on the data showed experience
to be statistically significant, but not judge nor part,
which is what we had hoped would be true.

6) Plot. The average quality rankings received by the
humans only, were plotted on the graph shown
in Fig. 2.

7) Fit a skill function to the data. We fit several types
of curves to these data, including logarithmic and
several types of polynomials, but found that a
simple linear regression fit the data quite well.
The regression yielded the following equation for
the model:

           y = �1.98 + 1.62x

This is the skill function. The skill function is shown
in Fig. 2 as a heavy diagonal line.

8) Construct confidence bands. Fig. 3 shows 95 per-
cent confidence bands as curved bands flanking the
skill function. The formula for the bands is given as
a function of x, the average quality rank. Numeri-
cally, the formulas are for a given x value,

high band =

�1.98 + 1.62x +  2.57
1
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9) Plot the KBS average quality rank. The average
quality ranks for both Machinist 1 and Machinist 2
were plotted on the quality (x) axis. However, only
the latter version, Machinist 2, is shown in Fig. 3 to
prevent it from becoming too cluttered.

10) Construct an experience estimate and interval. or
each KBS, Machinist 1 and Machinist 2, the result of
this step will answer the question, “If the program’s
solutions were created by a human, how much ex-
perience would an expert judge estimate that human
to have?”

Machinist 1 received an average plan quality
rating of 4.67. If one plugs this value into the skill
function as x, the equation yields y = 5.58. This
means that Machinist 1 is estimated to have an expe-
rience level of 5.58 years. This is the experience esti-
mate. This figure is supported by an earlier study
[10] which indicated that the Machinist 1 system per-
formed at a level superior to humans with 5 years of
experience. This level of competence was produced
after only 2-1 2 person-years of development.

Machinist 2 received an average plan quality
rating of 5.67. Using the skill function as above, it
was determined that Machinist 2 is estimated to
have 7.20 years of experience. This is the experience
estimate. Using the confidence bands, it was deter-
mined that the experience interval is 6.03 to 8.36 years
of experience. This means that the true experience
level of Machinist 2 lies somewhere between 6.03
and 8.36 with 95 percent confidence.
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In Fig. 3, we display both the experience estimate and
interval for Machinist 2. Both the earlier and the later ver-
sions of the Machinist system exhibit a very high experience
level. On the basis of these results we confirmed that our
problem-solving architecture was a reasonable and effective
one. We decided that our basic approach was sound and
that we should proceed with development along the same
lines. Information on how to change the system to improve

it further was derived from further knowledge engineering
and protocol analysis.

6 DISCUSSION

6.1 Changes in the Rate of KBS Skill Improvement
We had mixed feelings about the findings reported in the
previous section. On the positive side, the skill level of the

Fig. 1. An operations plan generated by a machinist with 5 years of experience.

TABLE  1
QUALITY RANKINGS ASSIGNED BY JUDGES TO SOLUTIONS

Judge 1 Judge 2

Problem
Solver

Years of
experience

P1 P2 P3 P1 P2 P3 Average Solution
Quality Rank

Subject 1   2 2 2 8 1 1 1 2.50

Subject 2   2 1 1 5 2 5 5 3.17

Subject 3   5 3 − 4 7 − 2 4.00

Subject 4   5 5 3 7 4 4 4 4.50

Subject 5   7 4 5 6 3 3 3 4.50

Subject 6   8 8 8 1 8 8 7 6.67

Subject 7 10 − 7 9 − 6 − 7.33

Machinist 1   * 6 6 3 5 2 6 4.67

Machinist 2   * 7 4 2 6 7 8 5.67
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KBS at all stages was greater than the number of person
years required to develop the system. On the negative side,
after 3 additional years of intensive development on Ma-
chinist 1, the experience level of the system was only im-
proved by another year (although we had broadened the
problem range quite a bit.)

There are several interpretations we could put on these
results. One is that the true experience levels of the two
versions of Machinist 1 and Machinist 2 are not really 5.58
and 7.20 years. Perhaps the true experience level of Ma-
chinist 1 lies somewhat lower (but within the confidence
interval) and Machinist 2 lies some what higher.

A second interpretation (which does not exclude the first
interpretation) is that this study only estimates the impact

of increased experience on solution quality. However, it does
not reflect all advancements in the system’s overall compe-
tence. Problem range is also an important part of compe-
tence. Machinist 2 can solve a much broader range of prob-
lems than can Machinist 1. If one had a good metric for
measuring range, it might also be possible to estimate expe-
rience with respect to the range of problems a KBS can
solve. To get a complete picture of all changes in a system’s
overall competence, it may be desirable to estimate experi-
ence with respect to several factors.

Now that we have introduced this method for measur-
ing skill levels of knowledge-based systems, we hope
that other researchers will perform similar studies on
other systems. We will be very interested to see if other

Fig. 2. Plot of average quality rankings and skill function.

Fig. 3. The experience estimate and interval for the KBS, Machinist 2.
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KBSs exhibit similar nonlinear changes in experience level
over time.

6.2 Cost of a QUEM Evaluation
We have frequently been asked by other researchers how
much it cost in terms of time to conduct a QUEM evalua-
tion. Our evaluation of two versions of the Machinist sys-
tem required approximately 17 hours. This will depend
partly on the domain and the difficulty of the test problems
selected. Some people are daunted because they believe
that they must collect a large group of experts, who’s serv-
ices are difficult to obtain, in order to conduct a QUEM
evaluation. However, most of the subjects used in the study
are required to be nonexperts because the method uses
subjects having a variety of experience levels. Those at
lower experience levels can be found in relative abundance.
It is only finding highly experienced judges that presents a
challenge.

The 17 hours to perform our tests was completed, inter-
mittently, over a period of about three weeks. We found
that experts and apprentices were in general quite inter-
ested in participating in the study. Each of the seven sub-
jects in the study took between 50 and 70 minutes to com-
plete all solutions to all three test problems. We also had
two additional subjects attempt solutions, but found that
their experience was not appropriate. In our prescreening
of these subjects, they claimed to have the appropriate CNC
experience, but after examining their solutions and ques-
tioning them further, we found that their CNC experience
was actually very weak. Although these two subjects were
not included in the study, we feel it is important to mention
them because time to collect unused data still needs to be
calculated in the total time required.

The two judges each took approximately 90 minutes
each to critique and rank all solutions. All together, it took
approximately 17 hours to collect the data, have judges
rank the solutions and analyze the results. We found that
the information we got from this evaluation was well worth
the small investment of time.

6.3 Advantages
The QUEM method for measuring the experience level of a
KBS has several advantages. It allows measurements to be
taken on a partially developed KBS system without requir-
ing the KBS to be complete, correct, or broad in problem cov-
erage. Such measures are important for allowing KBS sys-
tem developers to test the basic validity of an approach be-
fore spending additional effort making the system more com-
plete and robust. Additionally, it can be used in domains in
which a quality function is hard to quantify precisely.

7 FUTURE WORK

In future studies, we would like to construct models of the
many stages of problem-solving behavior and the changes
that occur in the transition from novice and expert. Addi-
tionally, we would like to examine more closely what hap-
pens between 10 and 20 years of experience. This study
does not use data in the range beyond 10 years of experi-
ence because any experts at that level were used as judges.
Consequently, it is unknown what happens in skill devel-

opment beyond 10 years of experience. Is there a leveling
off point in later years beyond which further experience
does not necessarily lead to better quality plans?

We did examine the plans of 1 subject who had 22 years
of experience. The judges rated his plans as slightly lower
in quality than the 10-year expert. However, on further
consideration, it was not clear if this was a fair comparison,
because the 22-year expert was trained on one style of ma-
chine (manual) while the plans were being judged as if they
were made for computer controlled (CNC) machines. It is
possible that the reason we found it difficult to find experts
20-plus years of relevant experience in the manufacturing
domain is that technology advances at a rate fast enough to
make experience acquired 20 years ago obsolete.

8 SUMMARY AND CONCLUSIONS

In this paper, we presented QUEM, a general method for
measuring the experience level of a KBS, and assessing the
quality of its solutions relative to human practitioners. This
method allows researchers to address the question, “How
expert is my expert system?”

The method involves having expert judges rank order
solutions produced by both KBSs and human subjects, con-
structing a skill function describing the relationship be-
tween length of experience and solution quality in the hu-
man subjects, then using function and the KBS’s quality
rankings to estimate the KBS’s experience level.

Previous methods for evaluating a KBS performance in-
volve qualitative comparisons. For example, “System x per-
forms better than system y,” which is not to say that either
system performs well at all. The QUEM procedure allows a
system developer to make a quantitative assessment of the
experience level of a KBS. This measure allows system de-
velopers to answer the questions such as, “How much better
is system x than system y?” or “How many years of experi-
ence does my KBS capture?”

Some other advantages of QUEM are that it can be
used in any domain in which increased experience leads to
measurably increased solution quality. Additionally, it can
be used on a system that is under development that may
not be entirely complete or correct in all aspects, as
long as it can construct solutions. It can be used to measure
the experience level of an individual KBS, compare several
KBSs which operate in the same or in unrelated domains, or
estimate the amount by which a computer assistant raises
the skill level of the user.

Assessing the experience level of a KBS system is im-
portant in helping developers to decide if their approach is
sufficient, and how the system should be used, and with
what level of user it should interact.
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