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ABSTRACT

A scanning tunneling microscope (STM) uses a piezo-

electric actuator to perform constant-velocity sgag motion.
Many feedback strategies have been proposed, leit th
achievable scan rate is substantially limited by tiwrnaround
transients in the scan path. Therefore, a robust-tptimal
command shaping technique with an iterative seprobedure
is introduced in this paper to improve the scanedpef
piezoactuators, and is applicable to a generak @dédsystems
without rigid-body mode. Furthermore, a time-eneogyimal
formulation is presented to reduce the in-manewgeillation.
The hysteresis nonlinearity of piezoactuators immensated
using the proposed continuous numerical inversigorahm.
Finally, the closed-loop simulation shows the perfance
robustness in the presence of hysteresis canoellatiror and
natural frequency perturbation.

INTRODUCTION

Compared to traditional actuators, piezoelectritu@ors
(or PZT actuators for short) offer enormous adwgesgasuch as
high bandwidth, theoretically unlimited resolutioand no
friction or wear. Therefore, they have found wigmlécations
in atomic force microscopes, optical fiber aligndrard disks,
and microelectronics. This paper focuses on thdicgtion of
PZT actuators to STM (Scanning Tunneling Microsqoplygich
is a tool to manipulate materials at the atomielei typical
scanning trajectory of STM consists of a constatbgity-scan
region and a return transition region [1]. Becaude
probe/actuator system of a STM is inherently fléibthe
induced vibration is the major limiting factor irctdevable
scanning precision and speed.

Many feedback strategies have been proposed t@wachi
precision scanning maneuvers. Salapaka et al. ][Zjg8/e
developed a higher-order controller based on Hhityfi
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techniques for the x-y motion of a piezo stack aixtu Tan and
Baras [4] developed a robust control framework $onart
actuators by combining inverse control with the robust
control theory. Li et al. [5] presented a learnisgif-tuning
regulator (LSTR) which improves the tracking penfiance of
PZT actuators. Daniele et al. [6] designed a cdietrausing
loop shaping technique.

Though the use of feedback control improves lingatiie
maximum scan rate is substantially limited by thenaround
transients due to velocity changes in the scan pgth
Therefore, a feedforward approach is considerece her
address the speed problem of STM. Devasia ancbhigckers
[1][7]1[8] proposed a feedforward approach that gnétes
standard optimal control techniques with the mdueded
inversion method to solve the optimal scanning f[enob Xu
and Meckl [15] developed a time-optimal commandpsig
scheme based on a constrained least-square méihioplushes
the scanning rate beyond the first resonant fregyuen

Other major concerns in STM application are hysiere
and creep nonlinearities inherent to the piezoeteetctuator.
Since creep (or drift) changes very slowly, it dam easily
corrected using a feedback controller. On the othend,
hysteresis is more significant and needs to bea@tpimodeled
and compensated. There are many ways to modelrayste
e.g., polynomial models, neural networks, and Madbsve
model. In the past few years, the classical Prhisasdel and
its derivatives [9][10] has emerged as the pretemedel for
engineering applications because of its generaliyd
practicality [11].

Many hysteresis inversion methods have been propose
Hughes and Wen [12] utilized the monotonic natdréhe first-
order reversal curves to invert the hysteresis tfanc
Venkataraman and Krishnaprasad [13] proposed a@rsion
algorithm based on the contraction mapping primecifly
exploiting the properties of Lipschitz continuitydaincrement-
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ally strict increase of the Preisach operator urgtene mild
assumptions. Tan et al. [14] developed the Closéatch
Algorithm for the inversion directly based on a aletized
hysteresis model. In an earlier paper of the asth®u and
Meckl [15] proposed a continuous numerical inversio
algorithm (CNIA) that searches for the numericapragima-
tion of the inverse hysteresis.

By compensating hysteresis using the abovementioned
CNIA, this paper introduces a robust command slippin

technique based on the linear dynamics of the RATator. In
particular, robustness to natural frequency en®esired. An
iterative search method is used to obtain the tpt#nal
solution for velocity tracking, and a time-energytimmal formu-
lation is presented to reduce in-maneuver osaltatiFinally,
the feedforward design is simulated in a closegbIstoucture.

MODELING

A PZT actuator can be modeled as the composition of
hysteresis componeht and a linear dynamic compondatas
shown in Fig. 1. Tao and Kokotovic [16] showed thaturate
position control is achievable if an inverse oparatl ™ can be
found such thaH and H™ “cancel” each other, thus allowing
the controller to be designed based on the lingaamtics.
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Fig. 1. APZT actuator model

The linear componer@ of the PZT actuator model used in
this paper is aorder transfer function adopted from [1]. The
system parameters are given in Table I.

K (s2 —2(2w23+a)f)

G(s) = (1)
(5 + 265+ o) (5°+ & wos+ )
TABLE |
PARAMETERS OF PZT ACTUATOR MODEL
{ f (Hz)
NMP zero 0.70 1643
First mode 0.008 242
Second mode 0.39 777
K 97000

HYSTERESIS COMPENSATION

A continuous numerical inversion algorithm (CNIAaded
on the classical Preisach Model was proposed irathikors’
earlier paper [15]. Instead of trying to find theaet inversion
operator, the CNIA searches for the numerical axpration of
the inverse hysteresis, thus dramatically redutiiegmathema-
tical complexity of the inversion problem.

The CNIA yields a control input” such that

IFuse) - f, u Ofu,, u,,] @
where I is the Preisach operator of the identified hystsre
model, ¢ is the input history, f  is the desired hysteresis

<E,

output ande > 0 is the allowed approximation error.

As each reversal curve (either ascending or desugnadf
the hysteresis is monotonic, the proposed seagdritdm is
guaranteed to converge. The number of iterationsdeut
depends on the choice of the stopping threskrald

The simulation result of open-loop hysteresis campéon
is shown in Fig. 2. The notation of u. in the figures is defined
in Fig. 1. The threshold is set to 0.2% of the input range in
this example. The figure shows that the original hysterssis i

almost linearized.
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Fig. 2. Linearization of the hysteresis nonlinsarit

ROBUST TIME-OPTIMAL COMMAND SHAPING

A. Optimization scheme

The proposed robust time-optimal command shaping is
based on the constrained least-square method proposed by
Reynolds and Meckl [17]. Given a discrete-time system

x(k +1) = Ax(k) + Bu(k)

3
y(k) = Cx(K) ®
subject to the tracking constraint and actuatoit lim
ly(K) -y, (k)| < e, () 4)
|u(k)[ < Fae )

By incorporating the constraints (4)(5) at eachnpan the
trajectory in a least-square programming schemejme-
optimal input profile can be obtained by increaskgntil a
solution satisfying the constraints results. Theinoigation

problem is formulated as
1/2

min {(x()=x,)" (x()-x,)} ©
U(k) subjectto (4), (5)

Many standard packages are available for solvingali
least-square programming problems, including MATLAB
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B. Robust command shaping for velocity tracking

Pao and Singhose [18] showed that the robust tiptieaal
shaper design is equivalent to the traditional topgmal
control problem on an augmented system where tirational
modes of the original model are purposely repedgdocating
multiple zeros at (or near) the system poles, tipaitiis made
less sensitive to model uncertainties.

Input robustness from the zero-placing technique been
mathematically proved by Bhat and Miu [19] from {herspec-
tive of frequency domain. Assume an n-dimensiornadls-
input system has been put into the Jordan candioical as

J, B,
a(t) =Jqg(t) +Bu(t) = am)+| : |u (@
J B,
where
p 1 0
P
J = ,B , (1=1,...
i 1 B (i n)
P 1

correspond to a polep,

showed the sufficient

bounded input as
1 dm!

3 mtn”
(m-1) s Z[ R

However, for velocity tracking, the input after &M (when
the system reaches the desired scanning speedpges at a
constant ratew, to maintain the constant velocity output and
therefore is not time-bounded, as illustrated ig. Bi. In order
to derive the sufficient condition of input robusss for
velocity tracking, the input profile in Fig. 3 isvitled into two
sections: the input history before tirfleis denoted asi, (t),

and the part after tim€ asu, (t) . The Laplace transform of the
input is:

with multiplicity m . Bhat and Miu
condition for robustness oftirae-

uU(s)

e } -q,(0) (8)

U =[ ued+[u, e d 9)
By defining
U, (9) = jOT u, (t)e (10)
and noting thau, (t) can be approximated by
U, (t) =u, (T) +w (t-T) (11)
(9) becomes
U(s) =U, (9) +Meﬂ (12)

Since u, (t) is a time bounded S|gnal, the sufficient condition
(8) can be directly applied to it. Therefore wedav

L4 Z[q.m((”k)l PT]—qi,-(o)

(m-D)ids™ ]

u(t)

.

u, (1)

u, (t)
v(t)

0 T t
Fig. 3. Input feature of velocity tracking.

Substituting (12) into the above equation, we obt#ie
sufficient condition in the frequency domain foettobustness
of a velocity-tracking input:

1 dn”’ _N (_T)k_j -pT
(m- D) Ol 'gj{q”m(k—j)!e“ } 13)
-G (0)"'(m—];j)!Dm-j(p|)

where

U (Ms+wg

In the rest of this paper, we call a robust inpbtamed
using the augmented system with multiplicity+1 for a mode
as ‘mth order robust” with respect to that mode.

Suppose a"-order input robustness for th¢h mode is
desired. The Jordan block corresponding to this endsl
augmented tam =3as:

G| [p L G.| [0
qi2 pi 1: 0 qi2 0
U3 B Gs 1
gl ] [Ep—— o ————- Sl T lu (140)
a; PPl 4;| |O
a5 o | plo1]a,| |0
L qI03 a L ! piD_ L qu3 a L 1_

The corresponding block in the output matrix israagted as

C=[0 0 ¢ 00 ¢] (14.2)
Here we only discuss for the polp. The case for the other
pole p” can be easily developed in the same manner. Asgumi
zero initial conditions in (13), we have:
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(8) j=3=m-j=0

To haveU(s) |, = 0, we set
T) w
g, =-2rD Ve (15.1)
Y P
(b) j=2=m-j=1L
d T) 2w, | _
UG, {q.zcr)—“T‘ . }e‘”
S i i
d
To have—U(9) |, = 0, we set
ds P
T) 2w,
q, (1) = &) 4 2% (152
P P
€ j=1l=m-j=2
d? up (T) |, 3w,
dZU()|5P |:Q|l(r)+ pl pl :|e AT
d2
Tohaved U(9) |-, =0, we set
T) 3w,
@, =) -2 (153)

The results in (a)-(c) can be summarized into tiwWwing
general conclusion: for 2nd-order robustificatios, set

T) 3w, 2w, T) wg
q?(T){—L“(g)— WD, 2% (D) }(16)
P b & b P P’
Similarly, for 1st-order robustification, we set
T) 2w, T) w,
ql ()= { i), 20 ”T”——?} a7
p? P P P

The last two equations imply that the choice of final
statesq, (T) depends oru, (T) which is supposed to be the

result of the optimization. Apparently, the robuwsimmand
shaping for velocity tracking has two intertwinedrgs whose
solutions depend on each other.

For the PZT actuator model, when substituting (&) the
output matrix of the augmented system, we have

_ B,
y(T) =GOy, (F)+G(O)

where S, is a constant. The equation (18) indicates thah w

Vo, V(M) =vy (18)

the augmented states set as (16), the system ewitihr the
desired speed at the positigifT) whose value is a function of

u, (T) . Sinceu, (T) is unknown, it means that the system can

reach the desired speed at many possible posititowever,
we do know that there must be one and only onesvaluy/(T)
that gives a minimum-time maneuver.

Therefore, the solution we propose is to iterayivatarch
for the optimal u, (T) (or equivalently, y(T)) that gives the

minimum-time maneuver. For each possible valug/@f) , the

robust command shaping is performed and the mandime
associated with thisy(T) is obtained. By comparing the

maneuver times over a range ¢fT) , the one with the fastest

operation is chosen, and the associated inputnis-tiptimal in
a robust sense.
In simulation, the scan distance is setpm , the desired

speed v, =10° um/s, and the velocity tracking tolerance is
0.1um/s. The sampling time is 0.2 ms. To test robustness,

+10% frequency perturbation is used. Fig. 4 shdwssearch
for the time-optimal solution of the®order robust command
shaping, and Fig. 5 shows the input/output profilehe figure,

e, represents the maximum tracking error due to tlamtp

perturbation, ands, is the maximum residual vibration due to
the plant perturbation. For short, we ca|, the perturbed
tracking error, and, the perturbed residual vibration.

8.4
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1
Fig. 4. Time-optimality search for thé&-brder robustness
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Fig. 5. fl-order robust input/output of the PZT actuator
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To further reduce the perturbed err@isand e, , 2"-order

robust command shaping can be performed. However,
increasing the order of robustness slows down theemwer.
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Realizing that for the*torder robust inputg, is good whereas
e is relatively large, we can adopt a combined-robogut
profile to reducee, only — the tracking section use¥-drder

robustness, and the return section us8sr2ler robustness, as
shown in Fig. 6. The performances of different ispare
compared in Table II.

TABLE Il
PERFORMANCE COMPARISON OF DIFFERENT INPUTS
Cycle time
Input (ms) € (um) & (pm)
Non-robust 8.4 0.18 1.37
1%torder robust 10.4 0.025 0.25
2"%order robust 14.8 0.006 0.04
Combined-robust 13.4 0.025 0.04
50 1
)
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£
= 0
(3]
z
L
o
[
&£ -50 .
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Fig. 6. Combined-robust input/output of the PZTuator

C. In-maneuver oscillation reduction by energy optimization

In Fig. 5, a remarkable oscillation is observedhia return
transition. The large in-maneuver oscillation oscbecause the
scheme seeks the time-optimal solution. The resuftiput is
such that the system is driven hard to move quigldy at the
end of the motion the energy of the excited oddailfa is
released to achieve zero residual vibration. F@r thason, it
can be expected that, if the time optimality reguient is
relaxed and meanwhile the energy optimal solutsdught,
the resulting robust input will be much smoother. ndw
optimization problem is formulated as

J =min lUTU
u 2
(@) ®U =x, _Akxo (19)
subject to< (b) actuator limit (5)

(c) tracking constraint (4) if applicab

where constraint (a) is applied in order to satibfy set-point
requirement and achieve zero residual vibratiog. Fishows a

series of 1st-order robust outputs obtained byiedathe time
optimality to different extentk. is the number of steps of the

return maneuver. With the new formulation, we cadé¢ off
between the response speed and transition smosthnes

10 . ; ; . =
------ kr=18
—-— kr=20
8r — — k=22
£
3 6t .
c B
S =
? e
& 4r . .
,/ o
2, . ~ .
i - 4
o’ . ; . N e
0 0.002 0004 0008 0008 0.01 0.012
Time (s)

Fig.7. TLorder robust output with return transition optiatinn

CLOSED-LOOP IMPLEMENTATION
Although the time-optimal command is an open-loop
signal, it can be easily incorporated into a cleeag
framework together with the hysteresis compensatias
illustrated in Fig. 8.
y
+ y

> Gy 50— C >0 H™ | plant >

Ug - T Uy u

Fig. 8. Closed-loop implementation framework

The feedback controller is designed using poleetant
technique to eliminate creep nonlinearity of thelTPattuator
and provide additional robustness for unmodeledadyos,
hysteresis cancellation error, disturbances, amdpotational
delay in digital implementation. Fig. 9 shows tlesult of the
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Fig. 9. Closed-loop simulation of the combinedursiinput
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closed-loop simulation. The frequency perturbatisnset to
10%, and the hysteresis cancellation error is ®.18ote that
the large tracking error occurs in the transitiegions, which
we don't care. The tracking error in the activenstiag region
is 0.07um.

CONCLUSION

Based on the sufficient condition of input robussan the
frequency domain, this paper introduces a robust-tptimal
command shaping technique for piezoelectric actugpplica-
tion in scanning tunneling microscopy to improves thcan
speed. This method is general to any system wittigigk-body
mode. With the proposed continuous numerical inwars
algorithm (CNIA), the hysteretic nonlinearity isegtly reduced.
In the specific case of a STM where velocity tragkiis
demanded, an iterative search procedure for the-dptimal
solution is proposed. A time-energy-optimal forntiga is
presented in order to reduce the in-maneuver asoitl. Both
open-loop and closed-loop simulations show thatpiftegposed
command shaping method generates robust inputsSTu
scanning.
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