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ABSTRACT 
A scanning tunneling microscope (STM) uses a piezo-

electric actuator to perform constant-velocity scanning motion. 
Many feedback strategies have been proposed, but their 
achievable scan rate is substantially limited by the turnaround 
transients in the scan path. Therefore, a robust time-optimal 
command shaping technique with an iterative search procedure 
is introduced in this paper to improve the scan speed of 
piezoactuators, and is applicable to a general class of systems 
without rigid-body mode. Furthermore, a time-energy-optimal 
formulation is presented to reduce the in-maneuver oscillation. 
The hysteresis nonlinearity of piezoactuators is compensated 
using the proposed continuous numerical inversion algorithm. 
Finally, the closed-loop simulation shows the performance 
robustness in the presence of hysteresis cancellation error and 
natural frequency perturbation. 

 
INTRODUCTION 

Compared to traditional actuators, piezoelectric actuators 
(or PZT actuators for short) offer enormous advantages, such as 
high bandwidth, theoretically unlimited resolution, and no 
friction or wear. Therefore, they have found wide applications 
in atomic force microscopes, optical fiber aligners, hard disks, 
and microelectronics.  This paper focuses on the application of 
PZT actuators to STM (Scanning Tunneling Microscopy) which 
is a tool to manipulate materials at the atomic level. A typical 
scanning trajectory of STM consists of a constant-velocity-scan 
region and a return transition region [1]. Because the 
probe/actuator system of a STM is inherently flexible, the 
induced vibration is the major limiting factor in achievable 
scanning precision and speed. 

Many feedback strategies have been proposed to achieve 
precision scanning maneuvers. Salapaka et al. [2][3] have 
developed a higher-order controller based on H-infinity 
m: https://proceedings.asmedigitalcollection.asme.org on 06/29/2019 Terms of Use: 
techniques for the x-y motion of a piezo stack actuator. Tan and 
Baras [4] developed a robust control framework for smart 
actuators by combining inverse control with the l1 robust 
control theory. Li et al. [5] presented a learning self-tuning 
regulator (LSTR) which improves the tracking performance of 
PZT actuators. Daniele et al. [6] designed a controller using 
loop shaping technique. 

Though the use of feedback control improves linearity, the 
maximum scan rate is substantially limited by the turnaround 
transients due to velocity changes in the scan path [7]. 
Therefore, a feedforward approach is considered here to 
address the speed problem of STM. Devasia and his co-workers 
[1][7][8] proposed a feedforward approach that integrates 
standard optimal control techniques with the model-based 
inversion method to solve the optimal scanning problem. Xu 
and Meckl [15] developed a time-optimal command shaping 
scheme based on a constrained least-square method that pushes 
the scanning rate beyond the first resonant frequency. 

Other major concerns in STM application are hysteresis 
and creep nonlinearities inherent to the piezoelectric actuator. 
Since creep (or drift) changes very slowly, it can be easily 
corrected using a feedback controller. On the other hand, 
hysteresis is more significant and needs to be explicitly modeled 
and compensated. There are many ways to model hysteresis, 
e.g., polynomial models, neural networks, and Maxwell’s 
model. In the past few years, the classical Preisach model and 
its derivatives [9][10] has emerged as the preferred model for 
engineering applications because of its generality and 
practicality [11]. 

Many hysteresis inversion methods have been proposed. 
Hughes and Wen [12] utilized the monotonic nature of the first-
order reversal curves to invert the hysteresis function. 
Venkataraman and Krishnaprasad [13] proposed an inversion 
algorithm based on the contraction mapping principle by 
exploiting the properties of Lipschitz continuity and increment-
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Down
ally strict increase of the Preisach operator under some mild 
assumptions. Tan et al. [14] developed the Closest Match 
Algorithm for the inversion directly based on a discretized 
hysteresis model. In an earlier paper of the authors, Xu and 
Meckl [15] proposed a continuous numerical inversion 
algorithm (CNIA) that searches for the numerical approxima-
tion of the inverse hysteresis.  

By compensating hysteresis using the abovemention 
CNIA, this paper introduces a robust command shapig 
technique based on the linear dynamics of the PZT actuator. In 
particular, robustness to natural frequency errors is desired. An 
iterative search method is used to obtain the time-optimal 
solution for velocity tracking, and a time-energy-optimal formu-
lation is presented to reduce in-maneuver oscillation. Finally, 
the feedforward design is simulated in a closed-loop structure. 

 
MODELING 

A PZT actuator can be modeled as the composition o a 
hysteresis component H and a linear dynamic component G as 
shown in Fig. 1. Tao and Kokotovic [16] showed that accurate 
position control is achievable if an inverse operator 1H − can be 
found such that H and 1H −  “cancel” each other, thus allowing
the controller to be designed based on the linear dynamics.  

 
The linear component G of the PZT actuator model used in

this paper is a 4th-order transfer function adopted from [1]. The
system parameters are given in Table I. 
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HYSTERESIS COMPENSATION 

A continuous numerical inversion algorithm (CNIA) based 
on the classical Preisach Model was proposed in the authors’ 
earlier paper [15]. Instead of trying to find the exact inversion 
operator, the CNIA searches for the numerical approximation of 
the inverse hysteresis, thus dramatically reducing the mathema-
tical complexity of the inversion problem. 

 The CNIA yields a control input *u  such that 

 
TABLE I 

PARAMETERS OF PZT ACTUATOR MODEL 

 ζ  ( )Hzf  

NMP zero 0.70 1643 
First mode 0.008 242 

Second mode 0.39 777 

K 97000 

 

 

 

H 
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ur 
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Fig. 1.  A PZT actuator model 
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where Γ̂  is the Preisach operator of the identified hysteresis 

model, ψ  is the input history, 
d

f  is the desired hysteresis 

output  and 0ε >  is the allowed approximation error. 
As each reversal curve (either ascending or descending) of 

the hysteresis is monotonic, the proposed search algorithm is 
guaranteed to converge. The number of iterations needed 
depends on the choice of the stopping threshold ε .  

The simulation result of open-loop hysteresis compensation 
is shown in Fig. 2. The notation of ur, uc in the figures is defined 
in Fig. 1. The threshold ε is set to 0.2% of the input range in 
this example. The figure shows that the original hysteresis is 
almost linearized. 

 
 

ROBUST TIME-OPTIMAL COMMAND SHAPING 

A. Optimization scheme 

The proposed robust time-optimal command shaping is 
based on the constrained least-square method proposed by 
Reynolds and Meckl [17]. Given a discrete-time system 
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subject to the tracking constraint and actuator limit 

( ) ( ) ( )
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y k y k e k− ≤                  (4) 

max( )u k F≤            (5) 

By incorporating the constraints (4)(5) at each point on the 
trajectory in a least-square programming scheme, a time-
optimal input profile can be obtained by increasing k until a 
solution satisfying the constraints results. The optimization 
problem is formulated as 

( ) ( ){ }1/ 2

min ( ) ( )

( )   subject to (4), (5)

T

d dk k

k

− −x x x x

U
               (6) 

Many standard packages are available for solving linear 
least-square programming problems, including MATLAB. 

 
Fig. 2. Linearization of the hysteresis nonlinearity 
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B. Robust command shaping for velocity tracking 

Pao and Singhose [18] showed that the robust time-optimal 
shaper design is equivalent to the traditional time-optimal 
control problem on an augmented system where the vibrational 
modes of the original model are purposely repeated. By locating 
multiple zeros at (or near) the system poles, the input is made 
less sensitive to model uncertainties. 

Input robustness from the zero-placing technique has been 
mathematically proved by Bhat and Miu [19] from the perspec-
tive of frequency domain. Assume an n-dimensional single-
input system has been put into the Jordan canonical form as 
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correspond to a pole ip  with multiplicity im . Bhat and Miu 

showed the sufficient condition for robustness of a time-
bounded input as 
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However, for velocity tracking, the input after time T (when 
the system reaches the desired scanning speed) increases at a 
constant rate ssw  to maintain the constant velocity output and

therefore is not time-bounded, as illustrated in Fig. 3. In order 
to derive the sufficient condition of input robustness for 
velocity tracking, the input profile in Fig. 3 is divided into two 
sections: the input history before time T is denoted as ( )Tu t , 

and the part after time T as ( )u t∞ . The Laplace transform of the 

input is: 
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Since ( )Tu t  is a time bounded signal, the sufficient condition 

(8) can be directly applied to it. Therefore we have 
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Substituting (12) into the above equation, we obtain the 
sufficient condition in the frequency domain for the robustness 
of a velocity-tracking input: 
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In the rest of this paper, we call a robust input obtained 
using the augmented system with multiplicity 1m +  for a mode 
as “m-th order robust” with respect to that mode. 

Suppose a 2nd-order input robustness for the i-th mode is 
desired. The Jordan block corresponding to this mode is 
augmented to 3im = as: 
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The corresponding block in the output matrix is augmented as 

0 0 0 0i i ic c∗ =  C           (14.2) 

Here we only discuss for the pole p . The case for the other 

pole p∗  can be easily developed in the same manner. Assuming 

zero initial conditions in (13), we have: 
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u(t) 

v(t) 

T 

T 

( )Tu T  
ssw  

( )Tu t  ( )u t∞  

dv  

 
Fig. 3. Input feature of velocity tracking. 
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The results in (a)-(c) can be summarized into the following 
general conclusion: for 2nd-order robustification, we set 
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Similarly, for 1st-order robustification, we set 
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The last two equations imply that the choice of the final 
states ( )i Tq  depends on ( )Tu T  which is supposed to be the 

result of the optimization. Apparently, the robust command 
shaping for velocity tracking has two intertwined parts whose 
solutions depend on each other. 

For the PZT actuator model, when substituting (16) into the 
output matrix of the augmented system, we have 

( ) (0) ( ) , ( )
(0)

y
T d dy T G u T v v T v

G

β
= + =   (18) 

where yβ  is a constant. The equation (18) indicates that, with 

the augmented states set as (16), the system will reach the 
desired speed at the position ( )y T  whose value is a function of 

( )Tu T . Since ( )Tu T  is unknown, it means that the system can 

reach the desired speed at many possible positions. However, 
we do know that there must be one and only one value of ( )y T  

that gives a minimum-time maneuver. 
Therefore, the solution we propose is to iteratively search 

for the optimal ( )Tu T  (or equivalently, ( )y T ) that gives the 

minimum-time maneuver. For each possible value of ( )y T , the 
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robust command shaping is performed and the maneuver time 
associated with this ( )y T  is obtained. By comparing the 

maneuver times over a range of ( )y T , the one with the fastest 

operation is chosen, and the associated input is time-optimal in 
a robust sense. 

In simulation, the scan distance is set to 6 µm , the desired 

speed 310  µm/sdv = , and the velocity tracking tolerance is 

0.1 µm/s. The sampling time is 0.2 ms. To test robustness, 

+10% frequency perturbation is used. Fig. 4 shows the search 
for the time-optimal solution of the 1st-order robust command 
shaping, and Fig. 5 shows the input/output profile. In the figure, 

me  represents the maximum tracking error due to the plant 

perturbation, and re  is the maximum residual vibration due to 

the plant perturbation. For short, we call me  the perturbed 

tracking error, and re  the perturbed residual vibration. 

 

 
To further reduce the perturbed errors me  and re , 2nd-order 

robust command shaping can be performed. However, 
increasing the order of robustness slows down the maneuver. 

 
Fig. 5.  1st-order robust input/output of the PZT actuator 

  

 

 
Fig. 4.  Time-optimality search for the 1st-order robustness 
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Realizing that for the 1st-order robust input, me  is good whereas 

re  is relatively large, we can adopt a combined-robust input 

profile to reduce re  only – the tracking section uses 1st-order 

robustness, and the return section uses 2nd-order robustness, as 
shown in Fig. 6. The performances of different inputs are 
compared in Table II. 

C. In-maneuver oscillation reduction by energy optimization 

In Fig. 5, a remarkable oscillation is observed in the return 
transition. The large in-maneuver oscillation occurs because the 
scheme seeks the time-optimal solution. The resulting input is 
such that the system is driven hard to move quickly, yet at the 
end of the motion the energy of the excited oscillation is 
released to achieve zero residual vibration. For this reason, it 
can be expected that, if the time optimality requirement is 
relaxed and meanwhile the energy optimal solution is sought, 
the resulting robust input will be much smoother. A new 
optimization problem is formulated as 

0

1
min   

2

(a) 

subject to (b) actuator limit (5)

(c) tracking constraint (4) if applicable 

T

k
d

J =

 = −





U U

ΦU x A x

U

 (19) 

where constraint (a) is applied in order to satisfy the set-point 
requirement and achieve zero residual vibration. Fig. 7 shows a 

 
Fig. 6.  Combined-robust input/output of the PZT actuator 

 

TABLE II 
PERFORMANCE COMPARISON OF DIFFERENT INPUTS 

Input 
Cycle time 

(ms) 
 (µm)me   (µm)re  

Non-robust 8.4 0.18 1.37 
1st-order robust 10.4 0.025 0.25 
2nd-order robust 14.8 0.006 0.04 

Combined-robust 13.4 0.025 0.04 
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series of 1st-order robust outputs obtained by relaxing the time 
optimality to different extent. rk  is the number of steps of the 

return maneuver. With the new formulation, we can trade off 
between the response speed and transition smoothness. 

  
CLOSED-LOOP IMPLEMENTATION 

Although the time-optimal command is an open-loop 
signal, it can be easily incorporated into a closed-loop 
framework together with the hysteresis compensation, as 
illustrated in Fig. 8.  

 
The feedback controller is designed using pole-placement 

technique to eliminate creep nonlinearity of the PZT actuator 
and provide additional robustness for unmodeled dynamics, 
hysteresis cancellation error, disturbances, and computational 
delay in digital implementation. Fig. 9 shows the result of the 

Fig. 8. Closed-loop implementation framework 

G0 C + 
u 

+ 
+ 

− ud 

y 
plant 1H −  

ur 

 

 
Fig.7.  1st-order robust output with return transition optimization 

  

 
Fig. 9.  Closed-loop simulation of the combined-robust input 
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closed-loop simulation. The frequency perturbation is set to 
10%, and the hysteresis cancellation error is 0.15 V. Note that 
the large tracking error occurs in the transition regions, which 
we don’t care. The tracking error in the active scanning region 
is 0.07µm . 

 
CONCLUSION 

Based on the sufficient condition of input robustness in the 
frequency domain, this paper introduces a robust time-optimal 
command shaping technique for piezoelectric actuator applica-
tion in scanning tunneling microscopy to improve the scan 
speed. This method is general to any system without rigid-body 
mode. With the proposed continuous numerical inversion 
algorithm (CNIA), the hysteretic nonlinearity is greatly reduced. 
In the specific case of a STM where velocity tracking is 
demanded, an iterative search procedure for the time-optimal 
solution is proposed. A time-energy-optimal formulation is 
presented in order to reduce the in-maneuver oscillation. Both 
open-loop and closed-loop simulations show that the proposed 
command shaping method generates robust inputs for STM 
scanning. 
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