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Up to date, many biological pathways related to cancer have been extensively applied thanks to outputs of burgeoning biomedical
research.This leads to a new technical challenge of exploring and validating biological pathways that can characterize transcriptomic
mechanisms across different disease subtypes. In pursuit of accommodating multiple studies, the joint Gaussian graphical model
was previously proposed to incorporate nonzero edge effects. However, this model is inevitably dependent on post hoc analysis
in order to confirm biological significance. To circumvent this drawback, we attempt not only to combine transcriptomic data but
also to embed pathway information, well-ascertained biological evidence as such, into the model. To this end, we propose a novel
statistical framework for fitting joint Gaussian graphical model simultaneously with informative pathways consistently expressed
across multiple studies. In theory, structured nodes can be prespecified with multiple genes. The optimization rule employs the
structured input-output lasso model, in order to estimate a sparse precision matrix constructed by simultaneous effects of multiple
studies and structured nodes. With an application to breast cancer data sets, we found that the proposed model is superior in
efficiently capturing structures of biological evidence (e.g., pathways). An R software package nsiGGM is publicly available at
author’s webpage.

1. Introduction

Genomic data have been extensively applied to analyze
disease mechanism on the basis of predictive signatures
from DNA alterations (e.g., genotyping and mutation), RNA
transcription (e.g., gene or isoform expression and fusion
transcripts), and gene regulation by epigenetic changes (e.g.,
methylation, protein-DNA interaction, and miRNA expres-
sion). In particular, gene regulation is a complicated system
that builds on tens of thousands of cellular components’ inter-
actions and diverse activities acrossmultiple layers. Biological
networks are the most popularly used data resource to sketch
this interconnectivity of gene regulations. High-throughput

genomic technologies are paving the way toward systemati-
cally characterizing diverse types of biological networks and
suggestive of underlying gene regulation mechanisms. And
yet a complete inference of network’s complexity has been a
long concern in the field of systems biology.

To circumvent the shortcoming of single feature-based
analysis, the activity of a gene or of a whole biological process
in a disease can be assessed by sets of genes (a.k.a. gene
set enrichment analysis or pathway analysis). In doing so, a
bulk of pathways have been identified through many cancer-
related researches [1]. Pathway information demonstrates
cellular functions and biological processes or represents a
unique signature of deregulation of a given gene [2]. For
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example, the pathway or signature associatedwith the activity
of a given oncogene is defined as the set composed of those
genes most differentially expressed by perturbation of onco-
genes [3–5]. Importantly, the usage of pathway information
is increasingly prevalent in biomedicine. For instance, target
drug associated with potential pathway is taken as a practical
solution to overcome the traditional drug discovery that usu-
ally adopts the one-drug-one-target approach. This strategy
takes into account the fact that the disease occurrence is
usually the result of complex interactions ofmolecular events.

In recent years, large-scale genomic data generated
from relevant biological experiments or clinical hypotheses
have increasingly soared, as high-throughput experiment
technologies have markedly advanced [6]. Such increasing
genomic data has been publicly available in data reposito-
ries (e.g., Gene Expression Omnibus and Sequence Read
Archive). This abundance of biological experiments poses
a new challenge of multiple data in regard to exploring
and validating biological signatures and pathways. More
precisely, a question of network analysis often relates to
how to characterize underlying transcriptomic patterns or
molecular mechanisms across disease subtypes or between
case-control groups, because it is commonplace that bio-
logical signals are not coherently present across studies.
Generally a single network [7–9] is found to accurately
estimate underlying dependency with an adjustment of gene
perturbation effects (e.g., polymorphic genotype alteration
[10, 11]). Nonetheless, thesemethods hardly discover network
patterns of subtle signals and dynamic features in themidst of
coupled networks under diverse conditions. Moreover, single
networks potentially generate many potential false positive
signals (edges) attributed to experimental biases and errors.
To address this challenge, the recent trend of data analysis has
been in the spotlight to data integration allowing for multiple
data to achieve a more accurate network inference. To this
end, many have proposed methods to combine multiple
networks based on unified model [12–14]. This approach
is also known as integrative analysis and is analogue to
traditional meta-analysis.

The joint Gaussian graphical model (JGGM; Danaher et
al. [12]) focuses on incorporating nonzero edge effects (i.e.,
off-diagonal entries of precision matrix) to combine multiple
studies in view of integrative analysis. This model, however,
inevitably is dependent on post hoc analysis when validating
biological significance. Therefore it is interesting to combine
not only DNA and/or transcriptomic changes but also path-
way information as suchwell-ascertained biological evidence.
Normally we perform post hoc analysis to see if the estimated
gene networks are enriched for any pathways. Contrary to
this, it is also sensible to estimate gene networks, with an
adjustment of pathway information. It is common that we
hardly combine pathway information in spite of its biological
significance. To the best of our knowledge, no method has
been proposed that can accommodate overlapping node
structures, mainly due to overlapped gene annotations of
pathway gene sets. To tackle this problem, we propose a new
graphical model called “node-structured integrative Gaus-
sian graphical model (nsiGGM)” jointly leveraging a priori
knowledge of pathway information. This method allows for

overlapping group lasso problems, making it possible to
integrate overlapped genes of pathways. It is worthwhile for
biological pathways to intervene the network estimation to
reveal true gene regulatory network. The nsiGGM builds on
prespecified structured nodes withmultiple genes as building
blocks in the stage of estimating a precision matrix. The
implementation rule employs 𝑙1/𝑙2 lasso penalty of structured
input-output lasso model [15], in order to estimate sparse
precision matrix that accounts for simultaneous effects of
multiple studies and structured nodes. With an application
to simulated and breast cancer genomic data, the proposed
model is found to be superior in efficiently capturing
transcriptional modules predefined by pathway database. A
software package (nsiGGM) is publicly available at author’s
webpage (https://sites.google.com/site/sunghwanshome/).

This paper is outlined as follows. In Section 2, we review
background knowledge of the standard and joint Gaus-
sian graphical models. In addition, we propose the node-
structured integrative Gaussian graphical model (nsiGGM).
In Section 3, we describe an implementation strategy that
is primarily based on the input-output lasso. In Section 4,
we compare performance of our proposed methods with
other methods using real breast cancer data (TCGA) and
simulated data. In Section 5, conclusions and further studies
are discussed.

2. Method

In this section, we briefly discuss methodological back-
grounds on the Gaussian graphical models (GGM) aiming
at constructing gene networks. In what follows, we propose
the node-structured integrative Gaussian graphical model
(nsiGGM) that can accommodate a priori biological knowl-
edge (e.g., pathway data or targeted predictive genes of
miRNA).

2.1. Gaussian Graphical Models for Gene Networks. A Gaus-
sian graphical model demonstrates the conditional depen-
dency of multiple random variables, 𝑌1, . . . , 𝑌𝑝, with a graph𝐺 = (𝑉, 𝐸), where 𝑉 = {1, . . . , 𝑝} is a set of nodes
and 𝐸 is a set of edges indicating that nodes are linked
and conditionally dependent. Let 𝑌 follow the multivariate
Gaussian distribution 𝑁𝑝(0, Σ), where Σ is a 𝑝 × 𝑝 covari-
ance matrix. Let Σ−1 = Θ denote the inverse covariance
matrix (also known as a precision matrix). More precisely,
each nonzero off-diagonal element 𝜃𝑖𝑗 implies conditional
dependency between the 𝑖th and 𝑗th nodes given all the other
variables, 𝑖, 𝑗 = 1, . . . , 𝑝, whereas the covariance Σ presents
marginal dependencies without considering other variables.
This model is also called a GGM [16]. The graphical lasso [9,
17] produces a sparse Gaussian graphical model constructed
in nonpenalized edges in Θ. The graphical lasso minimizes
the negative log-likelihood with the 𝐿1 lasso penalty:

argmin
Θ

− log detΘ + tr (𝑆Θ) + 𝜆 ‖Θ‖1 , (1)

where tr(𝐴) is the trace ofmatrix𝐴, 𝑆 is the sample covariance
matrix, and ‖Θ‖1 = ∑𝑖∑𝑗 |𝜃𝑖𝑗| is the regularization parameter
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adjusting the degree of sparsity. The optimal value for 𝜆 can
be chosen by cross-validation or the Bayesian information
criterion (BIC; Schwarz [18]; Yuan and Lin [8]).

2.2. Joint Gaussian Graphical Models for Combining Multiple
Studies. In this section, we revisit the joint Gaussian graphi-
cal models (JGGM) proposed by Danaher et al. [12]. Simply
put, the JGGM combines multiple studies and constructs
multiple networks in a unified model. Let 𝐾 denote the
number of studies in our data and {Σ−1} = (Σ−11 , . . . , Σ−1𝐾 ) the
true precision matrices. Consider genomic data of𝐾 studies,𝑌(1), . . . , 𝑌(𝐾), each of which consists of 𝑛𝑘 samples with 𝑝
common features, where 𝐾 ≥ 2. We assume that ∑𝐾𝑘=1 𝑛𝑘
observations are independent and that those of each data
set follow the multivariate normal distribution as 𝑌(𝑘) ∼𝑁𝑝(𝜇𝑘, Σ𝑘) for 1 ≤ 𝑘 ≤ 𝐾. It is well known in meta-
analysis that multiple data sets are of common associations
and genomic characteristics among features (e.g., genetic
association intensity). It, therefore, is worth estimating preci-
sionmatrices across𝐾 studies in parallel rather than separate
estimation. To this end, we assume that the features within
each data set are centered and take the form of a penalized
log-likelihood with the group sparsity-inducing 𝐿2 penalty
that maximizes (2) with respect to {Θ}:

𝐾∑
𝑘=1

𝑛𝑘 [log {det (Θ(𝑘))} − tr (𝑆(𝑘)Θ(𝑘))]

+ 𝜆1 𝐾∑
𝑘=1

∑
𝑖 ̸=𝑗

𝜃(𝑘)𝑖𝑗  + 𝜆2∑
𝑖 ̸=𝑗

( 𝐾∑
𝑘=1

𝜃(𝑘)𝑖𝑗 2)
1/2

(2)

subject to {Θ} = (Θ(1), . . . , Θ(𝐾)) being positive definite,
where 𝑆(𝑘) = (1/𝑛𝑘)(𝑌(𝑘))𝑇𝑌(𝑘) is the sample covariance
matrix of 𝑌(𝑘) and 𝜆1, 𝜆2 are nonnegative tuning parameters.
It is interesting to note that the 𝐿2-penalty captures similarity
across the 𝐾 precision matrices. Due to this property, the
penalty terms of (2) are also referred to as the joint graphical
lasso (JGL). Moreover, the 𝐿1 penalty induces estimated
precision matrices to be sparse.

2.3. Node-Structured Integrative Gaussian Graphical Model.
In this section, we propose an integrative graphical model
that can accommodate a priori known structure of genomic
features. Learning gene networks, the sparseness of precision
matrix can be guided to some extent by known feature mod-
ules (e.g., pathway information). Typically data integration
allows picturing the interplay of underlying biological factors.
In this regard, it is worthwhile accommodating known feature
module information ascertained in previous experiments.
In doing so, we seek to integrate a priori feature module
information to be embedded across multiple networks via an

additional 𝐿2 group penalty.The following objective function
is taken to minimize

𝐾∑
𝑘=1

𝑛𝑘 [log {det (Θ(𝑘))} − tr (𝑆(𝑘)Θ(𝑘))]

+ 𝜆1 𝐾∑
𝑘=1

∑
𝑖 ̸=𝑗

𝜃(𝑘)𝑖𝑗  + 𝜆2∑
𝑖 ̸=𝑗

( 𝐾∑
𝑘=1

𝜃(𝑘)𝑖𝑗 2)
1/2

+ 𝜆3 𝐾∑
𝑘=1

∑
g𝑚∈𝐺

Θ(𝑘)g𝑚 2 ,

(3)

where g𝑚 is a subset of off-diagonal entry indices ofΘ for 0 ≤𝑚 ≤ 𝑀,𝐺 = {g1, . . . , g𝑀},𝑀 is the number of a priori feature
modules, and ‖Θ(𝑘)g𝑚 ‖2 = (∑(𝑖,𝑗)∈g𝑚 𝜃(𝑘)𝑖𝑗 2)1/2. Importantly, it is
noted that elements of g𝑚 can be overlapped (e.g., duplicated
genes of two different pathways). The third penalty, ‖Θ(𝑘)g𝑚 ‖2
adjusted by 𝜆3 ≥ 0 pertains to structured feature modules
(i.e., structured node in networks) on the basis of a priori
known information. Here, unbiased regularization to each
feature should be taken into consideration, in the sense that
the feature overlapping inevitably comes into play.

In what follows, we present a toy example to demonstrate
how a priori information constructs feature modules in Θ(𝑘)g𝑚 .
In Figure S1, in Supplementary Material available online
at https://doi.org/10.1155/2017/8520480, we take an example
of networks consisting of 5 common nodes (e.g., genomic
features) across three studies. In Figure S1A, the second
penalty with 𝜆2 captures matched up common edges (e.g.,𝜃(1)14 , 𝜃(2)14 , 𝜃(3)14 ) identical to the joint graphical lasso. Besides,
the third group lasso penalty with 𝜆3 accommodates the
six edges of the three features in a predefined module Θ(𝑘)g1
so that feature regulatory effects can be further modeled in
the context of data integration (see Figure S1B). Importantly
note that this module structure (e.g., pathway) is priorly
known knowledge. It is interesting that this approach is
in line with the integrative cluster [19] that allows for cis-
regulatory effects and target gene prediction for miRNAs.
In the case of multiple modules in network, suppose that
we are given a set of five genes {𝑋𝑖} and a precision matrix{𝜃𝑖𝑗} for 1 ≤ 𝑖, 𝑗 ≤ 5. Let a priori information generate
two feature modules defined as Module 1, {𝑋1, 𝑋2, 𝑋3, 𝑋4},
and Module 2, {𝑋3, 𝑋4, 𝑋5}, and then we can enumerate
precision matrix’s index (𝑖, 𝑗) of each module for all 𝑖, 𝑗,
say, g1 = {(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)} and g2 ={(3, 4), (3, 5), (4, 5)}. Of note, the component (3, 4) is simul-
taneously present in both g1 and g2, implicating that a
suitable implementation is required for regularization to the
overlapped component (3, 4). To estimate solutions to (3),
we apply the structured input-output lasso [15] that can
handle overlapped features, making it possible to learn a
model allowing for both single-node effects across studies
and predefined node structures (e.g., pathway modules).
Inspired by integrative nature of this method, we call this
graphical model the node-structured integrative Gaussian
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graphical model (nsiGGM). When it comes to tuning the
penalty parameters (𝜆1, 𝜆2, and 𝜆3), the BIC is applied to
determine the optimal sparseness of networks’ edges.

3. Implementation Strategy

3.1. Structured Alternating Directions Method of Multipliers
Algorithm. In this section, we delineate the implementa-
tion strategy for the nsiGGM. We solve problem (3) by

using structured alternating directions method of multipliers
algorithm (sADMM). The alternating directions method of
multipliers algorithm (ADMM) was previously introduced
to tackle the problem of the JGL [12]. Similar to the JGL,
the sADMM proposed in spirit of the ADMM is designed
to adopt the structured input-output lasso in order to embed
node structures into the model. We first reformulate (3) with𝑃(Θ) and 𝑍 as

maximize
Θ,𝑍

(− 𝐾∑
𝑘=1

𝑛𝑘 [log {det (Θ(𝑘))} − tr (𝑆(𝑘)Θ(𝑘))] + 𝑃 ({𝑍})) , (4)

where 𝑃({𝑍}) = 𝜆1∑𝐾𝑘=1∑𝑖 ̸=𝑗 |𝑍(𝑘)𝑖𝑗 | + 𝜆2∑𝑖 ̸=𝑗(∑𝐾𝑘=1 𝑍(𝑘)𝑖𝑗 2)1/2 +𝜆3∑𝐾𝑘=1∑g𝑚∈𝐺 ‖𝑍(𝑘)g𝑚 ‖2; 𝑍(𝑘) = Θ(𝑘) for 1 ≤ 𝑘 ≤ 𝐾 and
{𝑍} = (𝑍(1), . . . , 𝑍(𝐾)) that satisfies positive definiteness. Boyd
et al. [20] proposed the scaled augmented Lagrangian to solve
problem (4) by

𝐿 ({Θ} , {𝑍} , {𝑈})
= − 𝐾∑
𝑘=1

𝑛𝑘 [log {det (Θ(𝑘))} − tr (𝑆(𝑘)Θ(𝑘))]

+ 𝑃 ({𝑍}) + 12
𝐾∑
𝑘=1

Θ(𝑘) − 𝑍(𝑘) + 𝑈(𝑘)2𝐹
− 12
𝐾∑
𝑘=1

𝑈(𝑘)2𝐹 ,

(5)

where {𝑈} = (𝑈(1), . . . , 𝑈(𝐾)) are dual variables and ‖𝐴‖𝐹
denotes the Frobenius norm of matrix 𝐴 (i.e., ‖𝐴‖𝐹 =
√∑𝑖∑𝑗 𝐴2𝑖𝑗). The sADMM algorithm repeatedly solves the
three-step optimization with respect to Θ(𝑖), 𝑍(𝑖), and 𝑈(𝑖),
starting with initial values of the related parameters:Θ(𝑘) = 𝐼,𝑈(𝑘) = 0, and𝑍(𝑘) = 0 for 1 ≤ 𝑘 ≤ 𝐾.The iteration is repeated
until convergence as follows: InΘ-step for 1 ≤ 𝑘 ≤ 𝐾, updateΘ(𝑘) that minimizes

− 𝐾∑
𝑘=1

𝑛𝑘 [log {det (Θ(𝑘))} − tr (𝑆(𝑘)Θ(𝑘))]

+ 12
𝐾∑
𝑘=1

Θ(𝑘) − 𝑍(𝑘)(𝑖−1) + 𝑈(𝑘)(𝑖−1)2𝐹 .
(6)

In 𝑍-step, for 𝑘 = 1, . . . , 𝐾, update 𝑍(𝑘) that minimizes

12
𝐾∑
𝑘=1

𝑍(𝑘) − 𝐴(𝑘)(𝑖) 2𝐹 + 𝜆1 𝐾∑
𝑘=1

∑
𝑖 ̸=𝑗

𝑍(𝑘)𝑖𝑗 

+ 𝜆2∑
𝑖 ̸=𝑗

( 𝐾∑
𝑘=1

𝑍(𝑘)𝑖𝑗 2)
1/2

+ 𝜆3 𝐾∑
𝑘=1

∑
g𝑚∈𝐺

𝑍(𝑘)g𝑚 2 ,
(7)

where𝐴(𝑘)
(𝑖)

= Θ(𝑘)
(𝑖)

+𝑈(𝑘)
(𝑖−1)

. To find the optimal solution of (7),
we directly apply the structured input-output lasso [15] to (7)
using both coordinate descent algorithm andKKT conditions
considered to boost up the computational speed. For more
details, see [15]. In 𝑈-step, for 𝑘 = 1, . . . , 𝐾, update 𝑈(𝑘) as𝑈(𝑘)
(𝑖−1)

+ Θ(𝑘)
(𝑖)

− 𝑍(𝑘)
(𝑖)
. Update repeatedly the three parameters

until convergence by a stopping rule below:

∑𝑘 Θ(𝑘)(𝑖) − Θ(𝑘)
(𝑖−1)

1∑𝑘 Θ(𝑘)(𝑖−1)1 < 10−3. (8)

Putting together, Algorithm 1 encapsulates the structured
alternating directions method of multipliers algorithm.

4. Numerical Studies

4.1. Simulated Data. In this section, we carry out experimen-
tal studies to assess performance of the nsiGGM. In brief,
the following describes how we generate simulated data.The
experimental scheme is largely motivated by Chun et al. [14].
Let 𝐾 be the total number of studies, each containing true
signal genes 𝑝 = 40 for a priori module (e.g., pathway genes)
and sample size 𝑛(𝑘) = 100, where 1 ≤ 𝑘 ≤ 𝐾 (=3). Starting
off with edges of signal genes, we first generate network
edges of 100 nodes subject to the scale-free network struc-
tures, the most commonly observed structures in biology,
being simulated by applying the Barabasi Albert algorithm
[21]. Subsequent to this, we randomly added four edges to
impose random effects. Constructing network structures, we
simulate the precision matrices by setting values of the off-
diagonals sampled from Unif(−0.1, 0.1) and by setting the
diagonal elements with ∑𝑗 ̸=𝑖 |𝜃(𝑘)𝑖,𝑗 |. The process is repeated
until Θ(𝑘) becomes a positive definite matrix. For simulating𝑌(𝑘), we first consider a scenario such that no covariate incurs
dependency among genes. Thus, this is an ideal experiment
scenario in that any conditional dependency is not taken into
consideration to the model. We simulated 𝑌(𝑘), where each𝑖th row of 𝑌(𝑘) was randomly sampled from 𝑁𝑝(0, Θ(𝑘)−1).
Simulations were repeated and average values are presented
in Tables 1 and 2. To examine performance of the nsiGGM,
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(1) Initialize Θ(𝑘) = 𝐼, 𝑈(𝑘) = 0 and 𝑍(𝑘) = 0 for 𝑘 = 1, . . . , 𝐾.
(2) Update Θ(𝑘), 𝑍(𝑘) and 𝑈(𝑘) until convergence for 𝑘 = 1, . . . , 𝐾:

(i) Θ-step
Update Θ(𝑘) that minimizes

− 𝐾∑
𝑘=1

𝑛𝑘 [log {det (Θ(𝑘))} − tr (𝑆(𝑘)Θ(𝑘))] + 12
𝐾∑
𝑘=1

Θ(𝑘) − 𝑍(𝑘)(𝑖−1) + 𝑈(𝑘)(𝑖−1)2𝐹
(ii) 𝑍-step
For 𝑘 = 1, . . . , 𝐾, update 𝑍(𝑘) that minimizes
12
𝐾∑
𝑘=1

𝑍(𝑘) − 𝐴(𝑘)(𝑖) 2𝐹 + 𝜆1 𝐾∑
𝑘=1

∑
𝑖 ̸=𝑗

𝑍(𝑘)𝑖𝑗  + 𝜆2∑
𝑖 ̸=𝑗

( 𝐾∑
𝑘=1

𝑍(𝑘)𝑖𝑗 2)
1/2

+ 𝜆3 𝐾∑
𝑘=1

∑
g𝑚∈𝐺

𝑍(𝑘)g𝑚2,
where 𝐴(𝑘)

(𝑖)
= Θ(𝑘)
(𝑖)

+ 𝑈(𝑘)
(𝑖−1)

.
(iii) 𝑈-step
For 𝑘 = 1, . . . , 𝐾, update 𝑈(𝑘) as 𝑈(𝑘)

(𝑖−1)
+ Θ(𝑘)
(𝑖)

− 𝑍(𝑘)
(𝑖)
.

(3) Output Θ̂ = (Θ̂(1), Θ̂(2), . . . , Θ̂(𝐾)).
Algorithm 1: The structured alternating directions method of multipliers algorithm.

Table 1: Performance comparisons of the nsiGGM with the JGGM and GGM using data simulated along with predefined module genes.

Methods # of noise genes Sensitivity (s.e.) Specificity (s.e.) Youden (s.e.)

nsiGGM
30 0.2217 (0.0253) 0.9433 (0.0036) 0.1650 (0.0257)
40 0.2125 (0.0133) 0.9472 (0.0053) 0.1598 (0.0117)
50 0.2034 (0.019) 0.9481 (0.0035) 0.1515 (0.0175)

JGGM
30 0.2433 (0.04) 0.8685 (0.0273) 0.1118 (0.0161)
40 0.2815 (0.0418) 0.8321 (0.0309) 0.1136 (0.0146)
50 0.1920 (0.0425) 0.8733 (0.0318) 0.0653 (0.0124)

GGM
30 0.2593 (0.0264) 0.8325 (0.0214) 0.0918 (0.0094)
40 0.2752 (0.029) 0.8050 (0.0257) 0.0802 (0.0074)
50 0.2177 (0.0303) 0.8431 (0.0268) 0.0608 (0.0085)

Table 2: Shown are the brief descriptions of the three data information pieces used in real genomic application.

Study Data type # of samples # of matched genes Reference
Breast cancer mRNA 319 10,676 The Cancer Genome Atlas (TCGA)
Breast cancer mRNA 134 10,676 GSE7390
Breast cancer mRNA 209 10,676 GSE2034

sensitivity, specificity, and Youden index were benchmarked
by comparing the JGGM [12] and GGM [16]. Youden index
is defined as Sensitivity + Specificity − 1, ranging from −1 to
1. In principle, the higher the Youden index, the higher the
prediction accuracy.

In Table 1, Youden index of the nsiGGM appears to be
clearly declining as noise edges increase in number and yet
is consistently larger than that shown in the JGGM and
GGM. This is mainly due to the fact that the JGGM suffers
low specificity (0.8685–0.8733) compared to the nsiGGM
(0.9433–0.9481). In contrast, the JGGM slightly outperforms,
when 30 and 40 noises are augmented, the nsiGGM for

sensitivity at the expense of poor specificity. Taken together,
it is clear to say that the nsiGGM is superior to the JGGM and
GGM in detecting the true underlying pathway sets.

4.2. Application to Genomic Data. In this section, we
demonstrate applications to three mRNA expression profiles
for breast cancer. We collected two microarray profiles from
Desmedt et al. [22], Wang et al. [23], and TCGA cancers data
from TCGA’s web portal (https://cancergenome.nih.gov/),
where we retrieved mRNA data of breast carcinoma (BRCA).
We matched up features across all studies and filtered out
probes by the rank sum of mean and standard deviation

https://cancergenome.nih.gov/
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(a) (b)

(c)

Figure 1: Three gene networks estimated by the nsiGGM.The detection rate of pathway genes is 0.573.

(SD < 0.99; Wang et al. [24]), which selected 106 genes.
Table 2 delineates detailed information of miRNA expression
data. In what follows, we examine if the nsiGGM is suited to
improve accuracy for detecting pathway genes. We collected
gene sets from exploring the Molecular Signatures Database

(MSigDB) v2.5 gene set collections [25], consisting of at least
11 genes of 106 genes, of which 53 distinct genes belong to the
11 pathways presented in Table 3. To evaluate a detection rate
of pathway genes, we define an evaluation benchmark, 𝑅(⋅)
as follows:

𝑅 (Φ𝑗) = ∑𝑖∈Φ𝑗 𝐼 (𝑖th gene of 𝑗th network’s node belongs to any of given pathways)
# of total selected nodes

, (9)
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(a) (b)

(c)

Figure 2: Three gene networks estimated by the JGGM.The detection rate of pathway genes is 0.521.

where Φ𝑗 is a set of gene indices, whose genes form 𝑗th
network and 𝐼(⋅) is an indicator function. Comparing the
JGGM, we examine whether the nsiGGM effectively captures
the existing pathway structures better than the JGGM in
context of connectivity and proportions of identified pathway
genes. To first appearances, the nsiGGMeffectively represents
modules well enriched with pathway genes in Figure 1, as
compared to those of the JGGM in Figure 2. In support of this
notion, given that we observed ∑𝑗 𝑅(Φ𝑗) of nsiGGM = 0.573
and ∑𝑗 𝑅(Φ𝑗) of JGGM = 0.521, where 1 ≤ 𝑗 ≤ 3, it is not

surprising to say that the nsiGGM can facilitate constructing
gene networks biologically more enriched for pathway gene
sets than the JGGM. Table 3 enumerates the pathway genes
discovered by the nsiGGM, each being highlighted by bold
and underlined characters (note: asterisks represent pathway
genes identified by only the nsiGGM not by JGGM). Inter-
estingly, there are many pathways genes monitored by the
nsiGGM, but not by the JGGM. Focusing on the cell signaling
pathway, we particularly notice that EREG [26], SLC1A1 [27],
STC2 [28], GAD1 [29], and TRH [30] are genes not selected
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Table 3: The pathway sets from the Molecular Signatures Database (MSigDB) analyzed in the nsiGGM. (Note: asterisks represent pathway
genes identified by only the nsiGGM not by JGGM.)

Pathway 1: extracellular region (11 genes)
SERPINA5∗, MMP13, EREG∗, HAPLN1∗, CP∗, S100A7, CRISP3, SCGB1D2, COL11A1, TFPI2∗, MSMB∗

Pathway 2: membrane part (11 genes)
EREG∗, PTPRN2, CLCA2, NPY1R, TRPA1, TNFRSF17, AGTR1, CEACAM6, SLC1A1∗, PROM1,HSD17B2∗

Pathway 3: membrane (14 genes)
EREG∗, PTPRN2, STEAP4∗, GRIA2, CLCA2, NPY1R, TRPA1, TNFRSF17, AGTR1, SERPINA5∗, CEACAM6,

SLC1A1∗, PROM1,HSD17B2∗

Pathway 4: cytoplasm (13 genes)
OGN, CA2, MYBPC1, NLRP2,MAOB, UGT2B28, S100A7, CRISP3, PEG10, S100P, FABP4, CLGN,HSD17B2∗

Pathway 5: plasma membrane (12 genes)
AGTR1, CEACAM6, EREG∗, PTPRN2, SLC1A1∗, STEAP4∗, PROM1, GRIA2, CLCA2, NPY1R, TRPA1, TNFRSF17

Pathway 6: system development (12 genes)
EREG∗, TFAP2B, CALML5, KRT15, KRT14,DLX2∗, BMPR1B, MSTN, S100A7, NKX2-2, COL11A1, COL2A1∗

Pathway 7: signal transduction (15 genes)
EREG∗, CALML5 , GRIA2, TRH∗, PGR, NPY1R, CGA∗, CRABP1∗, TNFRSF17, AGTR1, CEACAM6, PEG10,

GRB14∗, STC2∗, NMU∗

Pathway 8: multicellular organismal development (15 genes)
EREG∗, TFAP2B, CALML5, KRT15, KRT14, DLX2, BMPR1B, MSTN, S100A7, NKX2-2, COL11A1, EHF,

COL2A1∗, CRABP1∗, TNFRSF17
Pathway 9: cell signaling (11 genes)

PGR, CEACAM6, EREG∗, PCSK1∗, CXCL13, SLC1A1∗, CGA∗, STC2∗, GAD1∗, GRIA2, TRH∗
Pathway 10: anatomical structure development (13 genes)

EREG∗, TFAP2B, CALML5, KRT15, KRT14,DLX2∗, BMPR1B, MSTN, S100A7, NKX2-2, COL11A1∗, COL2A1, EHF
Pathway 11: organ development (11 genes)

MSTN, EREG∗, CALML5, S100A7, KRT15, KRT14, NKX2-2,DLX2∗, COL11A1, COL2A1∗, BMPR1B

by the JGGM but nonetheless previously were monitored
in signaling pathways. Importantly, Hou et al. [28] showed
that STC2 inhibited tumorigenesis and metastasis of breast
cancer cells, indicating that STC2 may inhibit epithelial-
mesenchymal transition (EMT) at least partially through the
PKC/Claudin-1-mediated signaling in human breast cancer
cells. Therefore, STC2 can be taken into consideration as a
potential biomarker for metastasis and targeted therapy in
human breast cancer. Besides, signaling through glutamate
receptors in regard to SLC1A1 has been reported in human
cancers [31]. In support of this evidence, it is also well known
that increases in SLC1A1 expression subject to hypoxia-
inducible factors (HIFs) possibly contributes to increased
efflux of glutamate, by which glutamate transporters and
receptors are regulated to activate key signal transduction
pathways that promote cancer progression [27]. Therefore,
it is clear to say that the nsiGGM is superior in detecting
genes capable of implicating the functional process of human
cancers in essence.

5. Conclusion and Discussion

In this article, we propose a new graphicalmodel called node-
structured integrative Gaussian graphical model (nsiGGM)

jointly learning Gaussian graphical models with an emphasis
of prior knowledge of pathway information. It is highlighted
that this method allows us to handle overlapping group lasso
problems, making it possible to integrate overlapped pathway
gene sets.With applications to experimental and real data, we
verified outstanding numerical performance of the nsiGGM
and analytical capability of inducing biological significance
related to breast cancer. And yet it might be controversial
whether prior knowledge too excessively determines the
network structures. Despite apprehension to overly guided
network structures, a priori known information can be still
acceptable in that the nsiGGM selects tuning parameters on
the basis of the likelihood-based BIC.

The proposed nsiGGM is highly subject to computational
complexity in nature, mainly due to the coordinate decent
algorithm to tackle the sparse overlapping group lasso.
Since the sparse overlapping group lasso applied here deals
with both study-specific effects and prior knowledge, the
optimization becomes inevitably complicated. Our current
package is implemented in R and the routine flows can be
further expedited via C/C++ in the future. Currently, the
prior knowledge of regulatory structure is accommodated
to an unidirectional graphical model. It is also interesting
that we impose the prior knowledge to directional networks
instead, so that the presence or absence of directional edges
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amid multiple features can be explicitly modeled. We leave
these tasks for future research.
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