
A Dynamic End-to-End Security for Coordinating
Multiple Protections within a Linux Desktop

Jeremy Briffaut
ENSI de Bourges - LIFO

88 Boulevard Lahitolle
18020 BOURGES CEDEX, FRANCE
Email: jeremy.briffaut@ensi-bourges.fr

Martin Peres
ENSI de Bourges

Email: martin.peres@ensi-bourges.fr
Contact: http://mupuf.org/contact/

Christian Toinard
ENSI de Bourges - LIFO

88 Boulevard Lahitolle
18020 BOURGES CEDEX, FRANCE

Email: christian.toinard@ensi-bourges.fr

Index Terms—end-to-end security, multi-domains, protection
mechanisms, coordination, Linux.

Abstract—Currently, application protection models are mostly
static and independent. It means that the applications cannot
handle multiple domains to manage accordingly the permissions
for a given user request. Managing multiple domains is becoming
a more and more common issue as desktop applications are
growing in complexity to provide better-designed user interfaces.
Today, protection systems are almost everywhere. Multiple sys-
tems of protection are available from the Linux kernel such
as SELinux or PIGA-Protect to get a Mandatory Protection.
Those systems provide a per-syscall validation process. Network
protections are also available such as the IPtables firewalling
mechanism. Protections for languages or frameworks also exist
such as for Java or .NET. But, solutions are missing for
coordinating the various mechanisms that protect different levels
of the global information system. The purpose is to reuse and
coordinate efficiently those different levels of protection in order
to provide a end-to-end protection that manages dynamically
multiple domains. Thus, the same host can support multiple
domains for the user requests while providing a transparent end-
to-end security that protects against complex scenarios of attack.
This paper describes an attempt to deliver such a system for
controlling efficiently the user requests.

I. INTRODUCTION

Nowadays, protection models [7] [9] [8] [5] are mostly
based on several security components like firewalls, discre-
tionary access control, mandatory access control or security
plugins. Each of them has its own protection policy. [2]
considers dynamic MAC policies whereas [6] and [4] deal
with how to manage multi-level models or information flows
at a single level of an information system. [1] deals with the
deployment of security policies across an organisation.

However, all those protection mechanisms are configured
separately, there is no way to ”glue” them all together con-
sistently in order to adjust the various protection policies
according to the activities. For example, it is almost impossible
to coordinate those protection policies in order to confine an
activity such as a bank transfer or the payment of taxes carried
out from an ordinary Web Browser. This means this user is
granted the same amount of rights when watching a movie or
when paying his/her taxes on the Internet.

For instance, a firewall is agnostic to a browser events. That
is to say it cannot open and close ports according to the URL

a user is visiting. Also, a SELinux-based MAC policy is not
changing to fit the application’s current needs. Instead, a MAC
policy is designed to fit every single need the application could
have.

This is a direct violation of the principle of least privilege.
To overcome this limitation, several sets of permissions

(domains) are needed for a computer, according to the different
activities its user may have on it.

A domain is defined by the minimum amount of permissions
to allow a user to carry out an activity. There should be as
many domains as there are activities.

For instance, when a user wants to buy something on
the Internet, he/she will automatically transit to the domain
eshopping. In this domain, he/she will be able to browse
shopping websites, read mails from this website, read his/her
bank account number and send mails to this website.

A domain should be configured in order to apply the
principle of least privilege. The purpose is to offer a end-
to-end protection going from the lower layers of the kernel to
the user-interface including network interactions.

A domain transition occurs when a user changes his/her
activity. The change of activity can be easily detected by
watching the mail or the URL the user is visiting. For
instance, if the user leaves http://www.ebay.com/ to go to
http://www.cnn.com/, we can assume he/she is not shopping
anymore. Thus, we can switch from the eshopping domain
to the web one.

A dynamic domain-based end-to-end protection can be rep-
resented as a finite-state machine where states would represent
domains and where transitions would be possible application
requests. Our architecture captures those requests in order to
install dynamically the required protection policies for the
various levels of the information system.

II. ARCHITECTURE

In order to achieve an application-level protection, one
needs a system which receives application transition requests
and matches them with the finite-state machine. If a request
matches a transition rule, then the system should set its domain
to the one matched by the request. Otherwise, the application
which has sent the request shouldn’t perform the concerned
operation.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357570648?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


This system should be composed of a privileged daemon,
capable of switching from a domain to another, and of a mean
of communication between the daemon and the applications
which require a dynamic protection model.

It is a form of mandatory access control which can also
grant privileges.

1) Userspace communication:
a) Registration: To interact with the daemon, an ap-

plication first has to register itself. The registration request
is composed of a name (must be unique) and of a PID.
The daemon checks the PID of the application and retrieves
the path of the binary associated on the file system. Given
this, the daemon looks into its configuration file and tells
whether the application is known and allowed to register. If
the application’s request is denied, it will not be allowed for
the application to communicate with the daemon.

Fig. 1. Example of a registration process between Firefox and Contextd

b) Context change: Whenever an application wants to
switch to a new context of execution - ie. wants to do
something else, this application should do a synchronous IPC
request to the daemon.

The request is made of the name of the process, its PID (ac-
cessed using the IPC system) and application-defined relevant
variables. For instance, a web-browser willing to reach http:
//www.google.com would send a request with these variables:
protocol=http; host=www.google.com; port=80; path=/.

The request will then be matched to the finite-state machine
by the daemon and will either be accepted or rejected. When a
request is rejected, the application must not change its internal
context or should go to a trash context that could explain the
user why the action he/she started failed.

Fig. 2. Example of a request of Firefox for visiting google.com

c) Integration: The daemon may also force applications
to change their inner context. Whenever the daemon switches
from one domain to another, it broadcasts the name of the
domain to registered applications. These should then test if
their current context is compatible with the daemon’s domain
and either go to a trash context or keep doing the same thing.

For instance, let’s say Firefox is browsing http://www.
ebay.com while the system is in the eshopping domain.
Firefox now receives a message from the daemon telling a
domain switch has occurred from the eshopping domain
to the web one. Firefox now asks the daemon whether the
http://www.ebay.com is acceptable in the web domain. The
daemon answers it is not, Firefox has to shut this page down
and inform its user the web page has been hidden because it
was infringing the current domain’s rules.

To achieve such a behaviour, applications need some modi-
fications. These can be achieved either by using plugins or by
directly modifying their source code. The latter is of course
the most secured but plugins don’t really hurt the security as
long as they are mandatory for the application to execute and
as long as they are owned by a privileged user(read-only).

2) Contextd: The privileged daemon: Its goal is to process
the incoming application request, apply them to the finite-state
machine and decide what to do. If the request corresponds to
an acceptable application context – ie matches a transition
in the finite-state machine, Contextd changes the domain
accordingly. Either way, the application which has sent the
request is warned whether its transition is allowed or not.

It is important that the protection model is changed before
returning to the application. Otherwise, the application may
not be able to access resources needed by its new domain.

The domain switching is made by changing the parameters
of several security components, may they be firewalls, manda-
tory access control systems or logging systems. The daemon
is statically-linked-plugin based and is designed around a noti-
fication API to ease the addition of new security components.

Contextd should have one plugin per security component.
These plugins are notified (of domain changes, errors, debug
messages and so on) using the notification API. They may
also need a configuration file, which they are responsible for
handling separately.

III. IMPLEMENTATION

A. Language

Most of the communication languages used in user-space by
Contextd are associated with configuration files or messages
using XML-based structures. XML’s tree-based structure al-
lows a great distinction between application-data and contextd-
data which should avoid any injection problems.

Also, XML parsers are common nowadays and program-
mers are used to them.

The main configuration file can be found at /etc/con-
text.d/transitions.xml.

1) Creating domains: Domains are represented by a name,
a display name and an icon. The display name and the icon
are meant for the user interface.

Converted to the XML syntax, this gives:

<domain name="mail" display_name="E-Mail"
icon="/usr/share/icons/evolution.png"/>
<domain name="taxes" display_name="Taxes"
icon="/usr/share/icons/money_coin.png"/>



2) Applications authentication: To allow an application to
send data to the daemon, Contextd first needs to authenticate
it. Here is the syntax to do so:

<program name="firefox"
display_name="Firefox" icon=""
full_path="/usr/bin/firefox"/>

full path: is the path of the executable to be considered
as being name. In this example, the only authorised executable
to be called firefox will be /usr/bin/firefox.

3) Adding transitions: The transition defination is splitted
in two parts: The transition attributes and the application-
defined variables that will start the transition.

The transition attributes are relative to the state machine
(transit from, transit to), the application that can initiate the
transition (app name) and to the user interface (prompt and
notify).

The application-defined variables are the conditions to make
the transition effective. They are matched using regular expres-
sions. The names of these variables try to be as normalised as
possible but you can define your own variables if you need it.

<rule app_name="firefox"
transit_from="mail" transit_to="taxes"
prompt="false" notify="false">

<host>www\.impots\.gouv\.fr</host>
<path>.*</path>
<protocol>(http|https)</protocol>

</rule>

This transition rule’s definition should be read this way: “if
Firefox asks to visit the http(s)://www.impots.gouv.fr/.* URI,
and if the system is in the mail domain, then, it will transit
to the taxes domain.”

transit form: a regular expression which should match
the current domain name.

transit to: the transition destination. This domain should
be declared higher in the configuration file.

prompt: should be set to true if you want the user to be
prompted to accept or deny the transition. This behaviour is
close to Microsoft’s UAC.

notify: attributes defines whether the user should be
warned of this transition or if it should be a silent one.

To be matched, this rules needs firefox to send at least
the variables host=“www.impots.gouv.fr”, path=“.*” and
protocol=“(http—https)“. This means, if firefox wants to
visit http://www.impots.gouv.fr/index.php and the system in
currently in the domain mail, then we will transit to the
domain taxes.

B. Interaction between the security components and the ap-
plications

1) Security components:
IPTables: is the most common firewall on Linux desktops

and servers. It is available for the 2.4 and the 2.6 Linux kernels
and has been around for a while. This is a simple and well-
known stateful firewall. It can be administrated using a simple
command line utility called iptables.

SELinux: allow to define a fine-grained MAC policy
down to the syscall. By using it, it is possible to deny a direct
access to a particular resource but you could fool it by using
an intermediate operation or process (see [2]). Administration
can be done using modules. Modules can be hot-pluggled and
unplugged using a simple command line.

PIGA: [2] sits on-top of SELinux and can guarantee
a large range of confidentiality and integrity properties. In
contrast with SELinux, SELinux+PIGA can guarantee an
application will never have access to a resource, even if
using intermediate operations or processes. Some of the PIGA
policies can be updated on the fly.

Syslog-NG: is a common logging system on Linux. It
allows to log application data, to sort them by urgency and
category and to write them to different files.

2) User applications:
Firefox: is the second-most used web browser nowadays.

It features a powerful and flexible plugin system. To implement
Contextd support, one needs to first create a binary XPCOM
component to interact with the daemon and a javascript part
to get events from the browser.

Claws Mail: is a simple yet powerful GTK email client.
It supports binary plugins and expose all its internals to its
plugins. To achieve the contextd support, claws-mail’s core
first needs some modifications. When this is done, a simple
plugin is sufficient. Claws-mail patches have been proposed
for inclusion mainstream.

Open Office: is the most-used FLOSS office suite. It
supports plugins but but just does not expose enough of its
internals to allow Contextd support via a plugin. Thus, the
source code should be modified directly.

Fig. 3. The global architecture

3) Interactions: When receiving a request, the daemon
checks whether it should change the domain. If it is the
case, it warns all its plugins to update the configuration of
their respective security component. Finally, the daemon sends
a signal to registered applications, warning that the current
domain has changed. These applications should now check if



their current context is compatible with the new domain. If it
is not, the application should go to a trash context explaining
why the content of the application has changed.

IV. EXPERIMENTATION

This section presents the implementation of a secure desktop
for Internet users. This Operating System is part of the
Security Challenge (SEC&SI) funded by the French Research
Agency (ANR). The goal is to provide a secure system that
allows a user to surf, to read/send mail, to make purchase and
to pay his taxes on the Internet.

A. Secure desktop for Internet users

This Operating System is based on GNU/Linux and pro-
vides a desktop interface with 2 kind of applications : a web
browser (mozilla firefox) and an email client (clawsmail).

1) Domain: The figure 4 represents the domains and the
domain transition rules. Each node corresponds to a domain
(domain name on left part) and it describes the activities
allowed in this domain (right part). Each arrow corresponds
to a domain transition and it indicates the condition of the
transition. The domain filled in gray color are considered as
untrusted domains, the other domains are used in order to
confine the user when he want to buy something or he want
to pay his taxes. This implementation considers 6 domains :

• Default : when the system boot, the user enters to the
default domain waiting for an activity that requires a
transition. The user can do nothing in this domain, he has
no access to the Web and he cannot read/send emails.

• Email : this domain allows the user to read/send email.
He can access to all emails excepting emails from other
contexts. This domain is considered as untrusted and the
user can use it in order to consult or send personal or not
confidential emails. For example, he cannot read emails
coming from taxes services or eshopping sites.

• Web : this domain allows the user to navigate on the Web.
This domain is considered as untrusted and the user can
use it in order to navigate on the Web. He can consult
each page that begins with http:// excepting URLs
that match other domains.

• Taxes : if the user enters an URL that match
http[s]://.*.impots.gouv.fr, he enters in the
trusted domain that allows it to declare his taxes. He have
access to his personal certificate used for the authentica-
tion on the taxes site. When he has finish his declaration,
he is redirected on his bank site, in order to pay his taxes,
and the system transits to the Epayment domain.

• Eshopping : this domain allows the user to navigate on
eshopping site and secure signed site. He can consult
a white list of eshopping site and buy something on the
Web. This domain is considered has trusted and when
the user want to pay his purchase, he transits to the
Epayment domain.

• Epayment : this domain is the only one authorised to
consult secure bank sites in order to confirm a payment.

2) Domain Transitions: The domain transition rules are
entry-point of a new domain. In the figure 4, the user can only
enter in a new domain that is more sensible that the preceding.
When a transition occurs, each application is reconfigured in
order to lose information about the preceding. For example,
the firefox cache, history and copy/cut cache are cleaned. In
the case of the application environment cannot be cleaned, the
contextd daemon can stop and then restart the application in
the new domain.

If a user, in domain A, performs an activity that match the
rules of a domain B :

• If a transition between A and B exists, he can transit to
the domain B;

• If he refuses the transition, the request is denied and a
error page is showed;

• If no transition exist, the request is denied and a error
page is showed;

If the user want to return to the default domain, he must
close is session. It is actually the only solution that cleans up
totally the user process environment (Xorg server).

The figure 4 represents the following transitions :
• default to email : the user opens clawsmail and he reads

or sends a not confidential email;
• default to web : the user opens firefox and he enters an

untrusted URL;
• default to taxes : the user enters an URL or read/send

an email relative to the taxes web site;
• web to eshopping : the user enters an URL or read/send

an email relative to an eshopping web site (in the white
list);

• eshopping to epayment : the user is redirected to a
secure bank site;

• taxes to epayment : the user is redirected to a secure
bank site;

B. Security Mechanism Details

1) Applications control:
a) Web Browser: An extension is installed in the web

browser in order to intercept the URL entered by the user.
The contextd daemon controls this URL and decides if this
URL is valid, allowed or required a transition. If the URL
is denied or the user refuses the transition, an error page is
showed. When a domain transition occurs, all open tab, that
not respect the new domain rules, are closed.

b) Email client: An other extension is installed in the
email client in order to control the read and the send of email.
When the user wants to read a message, he can open it only
if the mail header (from, to, ...) match the rules of the current
domain and does not match the rules of other domain. In order
to control the send or the forward of email, the user can only
send mail from the mail readable from the current domain
to sender allowed in this domain. When a domain transition
occurs, all popup (send or forward message popup) are closed
and the current message could be hidden if this message does
not respect the current rules.



default no web 
 no email no activities

email no web 
 email=.*

mail read/send

web web=http://.* 
 no email

web open http://.*

taxes email=taxes 
 web=taxes

mail=.*@impots.gouv.fr 
 web=http[s]://.*.impots.gouv.fr

eshopping web=http[s]://eshopping 
 email=eshopping

mail=@eshopping
web=http://eshopping.*

epayment web=https://bank 
 no email

web=https://bank.*

web=https://bank.*

Fig. 4. Domains and Domain transition rules

For example, in the Mail domain, an user can read his
personal mail and forward it to an other user excepting taxes
or eshopping contacts. In the Taxes domain, he can only
read/send/forward mail from/to taxes services.

2) Mandatory Access Control:
a) Firewall: The firewall controls dynamically the flows

between the user environment and the Internet. When the user
opens an URL and if this URL is allowed, the contextd daemon
allows the IPs of the web site in the firewall. If the user open
a new URL or a domain transition occurs, the last set of IPs
is removed from the firewall and the news are allowed.

When the user opens the mail client, the connection between
the mail client and the mail server is opening during the re-
covering of the emails. If the user sends a mail, the connection
is opening during the send.

Moreover, the firewall is used with SELinux packet marking
capabilities in order to control flow between the applications
and the Internet. For example, firefox is the only application
allowed opening a connection on the port http and https (80
and 443), only the mail client can connect to a mail server on
the imaps/pops ports.

b) SELinux: Contextd allows loading dynamically
SELinux modules in order to modify the mandatory access
control rules. This capability allows changing the access

control rules and the rights of applications. For each domain,
contextd load two new SELinux modules for clawsmail and
firefox. Each module restricts the privileges of these appli-
cations. For example, in the Web and Mail domains, these
applications cannot read files containing sensible data like
files containing private keys or files in the home directory.
When the user is in the Taxes domain, firefox is able to read
the file containing the user certificate in order to perform the
authentication. Moreover, when the user is able to create a file
in a domain (save a mail, save a web page), this file is labeled
with a identifier of this domain. When the user transits to an
other domain, he is not able to read this file. So, file saved in
the Taxes domain are only readable in this domain.

c) PIGA: As described in [3], current access control
mechanism can only control direct interactions. For example,
SELinux can only control that an user cannot read a file. But
indirect access, like information flow cannot be controlled. For
example, an user reads information from a file and sends it to
a user that cannot directly read it. PIGA allows controlling this
kind of activities. Moreover, PIGA is based on the definition of
security properties, written in the Security Property Language,
and it prevents against the apparition of activities (directs or
indirects) that violate these security properties.

The following security properties have been defined for this



Operating System :
• an user cannot violate the integrity of the applications;
• an user cannot violate the integrity of the system files;
• an application cannot read its configuration after its

execution. This property prevents against the divulgation
of information (as login or password) contained in the
configuration files of firefox and clawsmail;

• an user cannot write and then execute a file. This property
prevents against the download followed by the execution
of a file.

• an user cannot write a file and then execute it with an
interpreter. This property prevents against the download
followed by the execution of a script.

• an user can only execute a set of trusted application.
This property is an implementation of a Trusted Path
Execution (TPE).

• each application has is proper TPE in order to specify its
specific dependencies (libraries, ...);

• an user can only access indirectly (information flow) to
data that he can access directly. For example, if a user
access to a more privileged account by using su or sudo,
he cannot access to more information.

Moreover some properties are dynamically changed in order
to apply supplementary confinement depending of the domain.
For example, in the untrusted domains, the user cannot vio-
lated the confidentiality of trusted files like files containing
certificates, secret keys or sensitive data.

V. CONCLUSION

Our end-to-end security approach has been successfully
integrated within an lightweight Linux Desktop, called PIGA-
OS, in the context of the Security Challenge (SEC&SI) funded
by the French Research National Agency (ANR). Currently,
PIGA-OS has won the first round of that challenge. The other
approaches deal with Virtualizated Systems. That challenge
shows that the cooperation between the different protection
mechanisms provides even a more advanced protection than
multiple virtualized systems that are coordinated together.

REFERENCES

[1] Samiha AYED, Nora CUPPENS, and Frederic CUPPENS. Deploying
security policy in intra and inter workflows management systems. In
ARES 2009 : Third International Conference on Availability, Reliability
and Security, 16-19 March, Fukuoka, Japan. LUSSI - DÃ c©pt. Logique
des Usages, Sciences Sociales et de l’Information (Institut TELECOM ;
TELECOM Bretagne), 2009.

[2] M. Blanc, J. Briffaut, J.-F. Lalande, and C. Toinard. Enforcement of
security properties for dynamic mac policies. In IARIA, editor, Third
International Conference on Emerging Security Information, Systems and
Technologies, pages 114–120, Athens/Vouliagmeni, Greece, June 2009.
IEEE Computer Society Press.

[3] J. Briffaut, J. Rouzaud-Cornabas, C. Toinard, and Y. Zemali. A new
approach to enforce the security properties of a clustered high-interaction
honeypot. In Ratan Kumar Guha and Luca Spalazzi, editors, Workshop
on Security and High Performance Computing Systems, pages 184–192,
Leipzig, Germany, June 2009. IEEE Computer Society.

[4] Riccardo Focardi and Sabina Rossi. Information flow security in dynamic
contexts. Computer Security Foundations Workshop, IEEE, 0:307, 2002.

[5] Stefan Frei, Thomas Duebendorfer, and Bernhard Plattner. Firefox (in)
security update dynamics exposed. SIGCOMM Comput. Commun. Rev.,
39(1):16–22, 2009.

[6] J. Goguen and J. Meseguer. Security policies and security models. In
Proc. 1982 IEEE symp. Security and Privacy, pages 11–20, Oakland, CA,
1982. IEEE.

[7] Abdelkader Lahmadi and Olivier Festor. SecSip: A Stateful Firewall
for SIP-based Networks. In 11th IFIP/IEEE International Symposium
on Integrated Network Management - IM 2009, Long Island États-
Unis d’Amérique, 2009. D.: Software, K.: Computing Milieux, K.:
Computing Milieux/K.6: MANAGEMENT OF COMPUTING AND IN-
FORMATION SYSTEMS/K.6.5: Security and Protection.

[8] Ninghui Li, Ziqing Mao, and Hong Chen. Usable mandatory integrity
protection for operating systems. In Security and Privacy, 2007. SP ’07.
IEEE Symposium on, pages 164–178, May 2007.

[9] Ziqing Mao, Ninghui Li, Hong Chen, and Xuxian Jiang. Trojan horse
resistant discretionary access control. In SACMAT ’09: Proceedings of
the 14th ACM symposium on Access control models and technologies,
pages 237–246, New York, NY, USA, 2009. ACM.


