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Abstract: Noise artifacts are one of the key obstacles in applying continuous monitoring and conrputer-assisted analysis of 

lung sounds. Traditional adaptive noise cancellation (ANC) methodologies work reasonably well when signal and noise are 

stationary and independent. Clinical lung sound auscultation encounters an acoustic environment in which breath sounds are not 

stationary and often correlate with noise. Consequently, capability of ANC becomes significantly compromised. This paper 

introduces a new methodology for extracting authentic lung sounds from noise-corrupted measurements. Unlike traditional noise 

cancellation methods that rely on either frequency band separation or sig3M/noise independence to achieve noise reduction, this 

methodology combines the traditional noise canceling n{ethods with the unique feature of time-split stages in breathing sounds. By 

employing a multi-sensor system, the method first employs a high-pass filter to elhninate the off-hand noise, and then performs 

time-shared blind identification and noise cancellation with recursion from breathing cycle to cycle. Since no frequency separation or 

signal/noise independence is required, this method potentially has a robust and reliable capability of noise reduction, complementing 

the traditional methods. 
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1 I n t r o d u c t i o n  

Continuous monitoring of  lung sounds is of  essential 

importance in the medical diagnosis for patients with lung 

diseases and in the detection o f  critical conditions in 

operating rooms. To obtain quantitative and reliable 

diagnosis and detection, it is critically important that 

respiratory auscultation retain sounds o f  high clarity. Clinical 

acoustic environment poses great challenges for lung sound 

acquisition. Unlike acoustic labs in which noise levels can 

be artificially controlled and reduced, and lung sounds can 

be processed off-line, operating rooms are very noisy due to 

surgical devices, ventilation machines, conversations, alarms, 

etc. The unpredictable and broadband natures o f  such noises 

provide operating rooms with a very difficult acoustic 

environment.  Since the lung sound cannot be directly 

controlled and noises come from many sources and cannot 

be measured at source, separating lung sounds from noises is 

a blind source extraction problem. 

Techniques for canceling noises that are off signal bands 

(frequency separation) or independent o f  signals (statistical 

separation) are quite effective. The fomler can be 

attenuated by designing appropriate band-pass filters, and the 

latter by adaptive noise cancellation ( A N C ) .  However ,  in 

practice, when noises overlap with the lung sound signal 

frequency band,  direct filtering can no longer eliminate the 

noises. Also,  when noises correlate with lung sounds, they 

introduce a fundamental identification bias on the channel 

model  that cannot be easily removed.  Consequently,  this 

model bias causes quality decrease o f  noise cancellation, 

rendering traditional adaptive noise canceling techniques 

ineffective. 

In this paper,  we introduce a new noise reduction 

methodology that is uniquely designed to reduce the effect 

o f  signal/noise correlation. This method is derived on the 

basis o f  the unique nature o f  breathing sounds: 1) 

Breathing sounds are not stationary, and usually have three 

stages ( inhale,  exhale, and transitional pause) .  2)  Sounds in 

inhale and exhale stages contain rich information about lung 

functions and can be processed for diagnosis. 3) During 
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transitional pause, lung sounds are very low and noises are 

dominant. Our  noise canceling approach combines this 

unique method with the regular filtering technique. W e  first 

use a high-pass filter to eliminate the off-band noises (for 

example, sensors rubbing with skin or chest movement ,  

etc. ) .  After-filtering signals are then used in conducting 

blind channel identification during pause interval in 

breathing cycles, and noise cancellation during inhale and 

exhale. Upon  establishing a reliable model o f  noise 

transmission channels, noise cancellation can be achieved 

even when signal and noise are highly correlated during 

inhale and exhale. 

Our  sound acquisition system consists o f  several lung 

sound sensors (that can be special microphones, electronic 

stethoscopes, or small accelerometers) on auscultation sites 

such as tracheal and bronchial, and one or more noise 

reference sensors. Sound waves acquired by the sensors will 

then be processed. In order to obtain noise measurements 

that represent the lumped impact o f  distributed and 

multi-source noises on the lung sensors, noise reference 

sensors are placed in vicinity of  the lung sound sensors. 

Sound waves acquired by the sensors are fed into an 

analog/digital data acquisition module,  manufactured by the 

National Instrument, Inc. , for signal input, scaling, samqling 

rate synchronization, and other signal conditioning. 

Lung-sound signals and noise reference are then inputted to 

the following consecutive modules: a high-pass filter 

module,  a noise cancellation module,  a pattern recognition 

and diagnosis module,  and a display module.  The main 

blocks of  the system are depicted in Fig. 1. 

Lung sound sensors 

~ ]  Signal [ Noise 
" I caneellati_.__ n [ ~  

Display and@m Medical ~ttttt ] Pattern [ ~  
storage diagnosis [ recognition I 

Fig. 1 A multi-sensor lung sound processing system. 

This paper establishes the essential theoretical foundation 

of  this methodology, while using both simulated and real 

data of  breathing sounds to validate its efficacy. To  

understand the fundamental impact o f  signal/noise 

correlation on quality of  channel identification, we first 

derive convergence and convergence rates o f  the traditional 

A N C  in Section 3. The impact o f  signal/noise correlation is 

analyzed in Section 4. W e  show that correlation introduces 

identification bias and reduces convergence rates, by using 

large deviations principles. The main idea o f  the time-shared 

channel identification and noise cancellation is explained in 

Section 5. The basic cycle-to-cycle iteration algorithm is 

introduced. To  validate the utility of  this method,  several 

typical cases of  medical diagnosis applications are employed. 

Improvement of  decision and diagnosis accuracy due to 

noise reduction is discussed. 

The problems o f  blind separation or blind extraction of  

source signals from noisy environment have received wide 

attention in various fields such as biomedical signal analysis 

and processing, geographical data processing, speech and 

image recognition and wireless communications [ 1 -  8 ] .  

Although their underlying principles and approaches are 

different, many of  the techniques are based on the classic 

principles of  adaptive noise canceling. The A N C  approach 

usually reduces the noise based on reference signals, which 

give information about the noise interference acting on the 

observed data [ 9 , 1 0 ] .  Since A N C  does not require 

frequency-band separation as most classical frequency 

filtering methods rely on,  it provides an efficient noise 

cancellation method when signal/noise have overlapping 

frequency bands but independent statistically. In other 

words, it is efficient in canceling the in-band noise, which 

would be impossible to obtain by using direct noise 

filtering. However ,  the basis of  the A N C  method is on the 

constraint that the noise signals be statistically independent 

with the source signals. In practice, this condition may not 

be satisfied. The method introduced in this paper 

complements the traditional filtering and A N C  for 

applications in which time-varying statistical features allow 

us to perform channel identification more accurately than 

A N C ,  leading to significantly improved quality of  noise 

cancellation. 

The key ideas o f  this paper were first reported in 

[ 1 1 , 1 2 ] .  They were further detailed with experimental 

results in [ 13] .  Some related identification algorithms with 

applications to anesthesia monitoring were discussed in 

[14]. 

2 Adaptive noise cancellation in lung 
sound monitoring 

2 . 1  Of f -band  n o i s e  f i l t er ing  

Consider the sensor system shown in Fig. 1. The  noise 
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reference sensor, which is placed in vicinity to the lung 

sensors, receives most environment noises from all the 

sources,just like the lung sensors, but does not receive 

many lung sounds. It was noticed that when sensors are 

placed on skin, they may produce some skin-scraping noises 

that vary from sensor to sensor. Also, lung sensors may catch 

some chest movement noises while reference sensors may 

not.  These phenomena make the noise reference sensor 

incapable o f  representing noises received by the lung 

sensors. Fortunately, these noises are usually in a low 

frequency band off lung sounds and can be ehnfinated with 

regular filtering. As a result, we use a high-pass filter to 

remove the off-band noise before the noise canceling 

module. After this step, the noise reference can be readily 

used in channel identification and noise cancellation 

modules. 

2 . 2  V i r t u a l  n o i s e  c o n f i g t m a f i o n  

The location proximity between the lung and reference 

sensors allows us to represent noises from many sources 

approximately by a lumped noise near the reference sensor, 

such as d in Fig. 2. 

Noise-tree 
dung sound:y Signals from 

Sound source: r ~ [ Primary sensor I ~ ~ _ . -- I ~MY ~ primary 

Correlation Primary sensor ] | 

Environment ] I noise channel: C2 ] 

noise: d [ _] Secondary sensor'~__~ Signals from 

--'1 noise channel: C3] secondary sensor: Y2 

Fig.2 Sound channels. 

I f  we view the measurement Y2 from the reference sensor 

as a virtual noise source, we basically replace distributed 

noise sources d (which are impossible to describe accurately 

and separately) in a lumped noise source Y2, as shown in 

Fig. 3. The problem of  noise cancellation is now reduced to 

identification o f  the virtual noise channel G (in terms of  the 

system in Fig. 2,  G is the inverse o f  C3 followed by C2). 

Indeed, if we can estimate the noise channel G, then the 

noise-free lung sound y can be approximately extracted as 

Y = Y l -  ~Y2" 
Noise-free 

Sound source: r _ I Primary sensor I lung s o u p y  Signals from 
-1 sound channel: C1[ ~ J  ~- primary sensor: Yl 

| Signals from ~l Virtual noise [ 
secondary sensor: Y2 ~1 channel: G I 

Fig. 3 VimJal noise formulation. 

2 . 3  Channel identification and adaptive noise 

cancellation 
For identification o f  G, the system yt = Y + Gy2 can be 

viewed as an input-output system x = Gu + d in which x 

= yl is the output , u = y2is  the input, a n d d  = y i s  a 

disturbance (although it is actually the useful signal we are 

seeking). Since G is stable, it can be modeled by its impulse 

response g = { g 0 , g l , " "  t �9 Consequently, the above 

input/output  relationship can be represented in a regression 

where ~Tk = [ Uk,"" , uk-,,+l ] is the principal regression 

vector, 0 = [ g o , ' " ,  g , - l  ]T is the parameter vector o f  the 

modeled part o f  G,~Tk = [ u k _ , 2 , " ' ]  a n d ~  = [ g , , ' " ]  

represent unmodeled dynamics. In this paper, we will 

concentrate on the uncertainty from noises. The issue o f  

unmodeled dynamics and its impact on identification 

accuracy was discussed in detail in [ 15] .  

The standard adaptive noise cancellation is based on the 

following basic procedures. 

1 ) Identification: The standard least-squares estimation 

leads to an estimate o f  the parameter 0 o f  G, on the basis o f  

N data points, as 

k = l  k = l  
M 

1 2 ~  T is non-singular. The corresponding when X =l 

estimation error is 

( T)'['9, 1 ] 
1 + X eN = Nk=l  k = l  k = l  

2)  Noise Cancellation: The reconstructed signal dN at 

time N will be 

This process can be easily recursified to reduce 

computational burden at each time instant, leading to a 

recursive least-squares algorithm: 

PN-1 ~N-I 
KN = 1 + ~TN_IPN_I~N_ 1 ' 

(1) 
PN = ( I -  KN_I~T,_I)PN_1, 

ON : ON-1 + KN( YN - ~TSN-1)- 
2 . 4  C o n v e r g e n c e  o f  A N C  

Assume that the underlying probability space is { ~ ,  F ,  

P } .  A N C  works well under certain conditions as discussed 

below. Consider the following terms in the estimation 

e l T O I S  

N 
1 : 

k = l  
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N 
1 qN = ~ k ~  T0 ,  

N 
1 

rN = ~ ~ ~/, dk. 
k=l 

Typically, the following assumptions are made on uk and dk 

in ANC.  

A s s u m p t i o n  A1 1 ) No unmodeled dynamics, that 

is, 0 = 0. This requires a complex model structure to 

capture all channel dynamics. 

2) t u/, t is a stationary ergodic sequence satisfying Euk  = 

0. uk is bounded by fl uniformly in k and in co E f2. 
N 

3) ~ ~k~T/N is nonsingnlar for any N /> n + 1 with 
k=l 

probability one (w .  p. 1 ) .  

4)  { dk t is a sequence of  i. i. d. random variables with 

Edk  = O , E d  2 = cr 2 > 0,  and {dk} is independent o f  

tuf t .  

Under Assumption A1, ANC provides appealing 

properties as indicated in Theorem 1. 

T h e o r e m  1 Under Assumption A1, with probability 

o n e ( w . p .  1) ,as N ~" 
N 

1 
k=l 

~ ~k~T ) - 1  M - l ,  ( (2) , N 
N 

r N = ~ = ~ k d / , ~ 0 ,  

where M and M- l  are positive definite. 

P r o o f  Since {u~} is stationary and mixing, [16,  

Remark 5 . 3 ,  p. 488] imphes that it is strongly ergodic. By 

virtue of  [ 16, Part (f)  of  Theorem 5 . 6 ,  p. 487] ,  the strong 

ergodicity, in turn, yields that for any function h ( - ) ,  
N 

1 ~, h( ul,, uk+l, "") --" Eh( ul, u2, "") w.p. 1. 
N k=l 

(3) 
Thus (3)  together with the Cr6mer-Wold device [17,  

p. 48 ] leads to 

lim 1 
k=l 

and the limit M is positive definite owing to A1. Thus we 

also have 

1 ~ ]  ~kcT)-I  = M_l 
( N k = l  w . p . 1 ,  

and M-1 is positive definite. 

By the independence of  { uk t and { dk t ,  E [ ~kdk I Fk_, ] 

= 0, so {~kdkl is a martingale difference sequence with 

respect to the a-algebra Fk = { uj, d j : j  ~< k l. Moreover,  

k = II  kdk II 2 E[C~k]E[d~] < 
k=l k=l 

N 

By virtue of  [ 18,Theorem 2.203, ~ ~k d k / N  --" 0 w.p .  1. 
K=l 

[] 

Despite these appearing features, ANC encounters 

significant challenges when the signal and noise are not 

independent or the underlying processes are not stationary. 

We will explore these issues in the next section. 

3 S i g n a l / n o i s e  corre la t ion  and qual i ty  o f  

channe l  ident i f i ca t ion  

3.1 Correlation and accuracy of channel estima- 
tion 

Assumption A1, however, is often violated in this 

application. First, for channel identification, breathing 

sounds are viewed as noises. It is easily understood by 

observing typical waveforms of  breathing sounds that they 

are not stationary. Fig. 4 is a typical respiratory sound. For 

signal processing, a ventilation or breathing cycle is divided 

into three stages (see Fig.4)  : Inhale ( T i )  , exhale ( T ~ ) ,  

and transitional pause ( T - T i - Te).  They are identified 

1) by ventilator variables, e . g . ,  airway pressure cycles 

(positive-negative-neutral) in ventilated patients; or 2) by 

smoothed breathing wave profiles in natural breath. 

Apparently the power during inhale is much larger than that 

in the pause phase. Accordingly, for signal processing, lung 

sounds may be considered as consisting of  three stochastic 

processes: Inhale, exhale, pause. Each will have different 

properties and they are interlaced by switching from one 

1 
0.5 

0 
0.5 
-1  

0 1 

• 10 -3 3 
2 

1 
0 

2 3 4 5 6 7 8 9 
t / s  

PSD (welch) 

= Total power in exhale 

i i 
500 1000 

i- r~ Frequency/Hz 
o PSe-90 ~ power spread in exhale 

Fig. 4 Main lung sound characteristics. 
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process to another during a breath cycle, repeatedly from 

cycle to cycle. This formulation is consistent with the utility 

of  lung sounds in diagnosis, and is essential in our 

methodology development. This formulation will be further 

detailed later. 

Secondly, the independence between uk and dk is not 

always a valid assumption (there are at present no 

established results that verify sound/noise independence in 

this application). When  uk and dk are statistically correlated, 

accuracy of  channel identification under A N C  will be 

significantly compromised. To  understand the impact o f  

signal/noise correlation on estimation accuracy, hence 

quality of  noise cancellation, we will investigate behavior o f  

the estimates when uk and dk are correlated. 

Consider a simplified system (without unmodeled 

dynamics) 

~ = ~ 0 + d ~ .  

Assume that uk and dk are stationary, zero mean,  and are 

unifonnly bounded (this is merely for simplicity o f  analysis 

so that all the moments o f  these signals exist). Define r m = 

Eukuk+ m (auto-correlations o f  u~) and c,~ = Eukdk+m 

(correlations between u~ and d~ ).  Let 

ro rl ' ' '  rn_l [ CO 

i: R~ = : : ... = . (4)  

rn- I rn-2 ... ro .a C _1 
A s s u m p t i o n  A2 Assume Assumption A1 with 2) and 

4) replaced by: The pair o f  processes { uk ,  dk t is stationary 

and ergodic such that u~ is bounded by fl uniformly in k 

and in co C ~ and Euk = O, that Edk = O, E d  ] = ty 2 > 

O. 

T h e o r e m  2 Under Assumption A2, with probability 

o n e ( w . p .  1) ,  as N---~ 

r l  N 

1 ~k -~ R~ ~ , (5) 
k = l  

N 
1 

k = l  

where R~ and R :  1 are positive definite, and 

ON---~O = 0 + R[~IB. 

P r o o f  Similar to the proof  of  Theorem 1, by 

ergodicity the sample means of  the terms converge w . p .  1 

to their corresponding means 

N 

= = 

(7) 

1 \ ~  ~kdk ~ E~kdk = B .  

The limiting equation 0 = 0 + R ~ IB follows immediately. 
[] 

As a result o f  Theorem 2,  accuracy o f  channel estimation 

depends critically on correlations between uk and dk. Fig. 5 

shows deterioration o f  noise cancellation efficiency in lung 

sound analysis when correlations exist. The estimated sounds 

are obtained by A N C .  A remedy for this problem is 

introduced in the next section. 
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Fig. 5 Impact of correlation on noise cancellation. 

T i m e - s h a r e d  c h a n n e l  i d e n t i f i c a t i o n  a n d  

m o d i f i e d  a d a p t i v e  n o i s e  c a n c e l l a t i o n  

Return to the typical breathing pattern in Fig. 4.  During 

the time from the end o f  exhale and the beginning o f  

inhale, there is a pause interval in which lung sounds are 

very small. In other words, in that interval the lung sound y 

is nearly zero. While the overall breathing sounds are not 

stationary processes, signals that are confined in each stage 
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are approximately stationary. Mathematically, if  one extracts 

all inhale segments o f  a breathing sound and concatenate 

them into a single waveform, then this waveform i s  

approximately stationary. We  shall denote such signal 

segments as y i for inhale sounds, y e for exhale sounds, and 

y P for pause sounds. 

From Theorem 2, it is clear that to reduce estimation 

errors on channel dynamics, it is highly desirable to reduce 

B that consists of  correlations Cm between uk and dk. It is 

observed that due to diminishing lung sounds during the 

pause interval, the vector B p (corresponding to the 

correlation between y p process and d )  in the pause interval 

is much smaller than B i and B ~ for inhale and exhale 

processes, leading to our time-shared adaptive noise 

cancellation algorithm. 

4 .1  T ime-shared  ident i f i ca t ion  and  no i se  cance l -  

la t ion  

The measured Y l during the pause stage is essentially the 

output o f  the noise channel G in that interval. As a result, 

we can use input /output  pair (y2 and Yl ) to identify G in 

this interval. This will not require any assumption on 

independence of  y and Y2- This idea leads to the following 

lung sound/noise separation algorithms. 

1 ) Initial channel identification: 

During a pause stage, the measured Y2 (virtual input) 

and Yl (output)  are used to identify the noise channel 

G ( 0 ) ,  using a recursive algorithm. The estimated model 

will be denoted by G (00) .  

S t e p  1 Inhale and exhale stages. 

At the k-th breathing cycle ( k  = 0, 1 ,2 ,  "'" ) ,  during 

the Ti (inhale) and Te (exhale) stages, the estimated noise 

channel model G(0k)  is used to extract the original lung 

sound via y = Yl - G(0/~)y2. 

S t e p  2 Transitional pause stage. 

During the pause stage of  the k-th breathing cycle, the 

estimated noise channel model is updated by using the new 

data from measured Y2 (virtual input) and Yl (ou tpu t ) .  The 

channel model G(0k)  is used as the initial condition and 

the model is updated b y  a recursive algorithm (the RLS 

estimation in this paper) ,  leading to an updated model 

G(0k+l ) .  

2) Recursive steps: 

In the ( k + 1 ) - th breathing cycle, go to Stepl with the 

newly updated channel model G(0k+~).  These steps are 

then repeated from cycle to cycle. 

This cycle-to-cycle recursion will be computationally 

very efficient since models are updated by using only new 

measurements and no past data need to be remembered.  

Also, by gradually discarding old data via, say, exponential 

discarding data windows, one can in fact track time-varying 

channel characteristics, that can be used in continuous 

monitoring and diagnosis o f  breath sounds. 

4 . 2  C o n v e r g e n c e  a n a l y s i s  

In this subsection, we provide an analysis on convergence 

rates of  the estimates. It wq_ll be shown that not only 

correlations result in estimation bias as evidenced by (6)  

they also reduce convergence rates significantly. Again in 

this aspect, it becomes favorable to choose an interval o f  

smaller correlation for system identification since it entails a 

faster convergence rate. 

To  understand this, we start with the case o f  uncorrelated 

uk and dk. In this case, the large deviation theorems show 

that exponential convergence rates are guaranteed. 

(D Uncorrelated lung sound and noise. 

Concentrating on a special case with the following 

assumptions: Suppose that uk and dk satisfy Assumption A1 

and in addition uk are i. i. d. N o w ,  consider the error term 
N 

rN = ( ~ a  "]'l, d k ) / N .  A typical component  o f t  N is 
k=l  

N 
1 

= uk+ mdk. 
k=l  

Define, for an r] > 0,  

r e ( r / )  = infe-~E{e~(U,  dl) / .  
z~0 

The large deviations principles [ 1 9 , 2 0 ]  ensure that: For 

anyr]  > 0 ,  
N 

1 q}~< ( m (  )N. P{ I> (8) 
k=l  

For any 0 < x < m (r / )  and for sufficiendy large N 

P ~ u k + , f l k  >I r/ >I ( m ( r ] )  - Jc) N. (9)  
k=l  

Indeed, under the hypothesis, uk and d k are independent. 

As a result, ul~+mdk is zero mean and i . i . d .  The 

inequalities (8)  and (9)  follow from the well-known large 

deviations theorems [ 20 ] .  

R e m a r k  1 Inequality (8)  shows that the estimation 

error due to noise converges to zero exponentially. Inequal- 

ity (9)  indicates how tight the exponential bounds can be.  

The moment  generating function E{eZ(Uldl ) } depends on 

the actual distributions of  Ul and d l .  If  u I d 1 is normally 

distributed,then m ( r ] )  = e x p ( -  r / 2 / ( 2 a 2 ) ) .  It follows 

that in this case 

(e-2a2 - K )  N ~< P { I  ~ uk+zdk I~>  7]t ~< e - 2 a  2 . 
k= l  

(10)  
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Furthermore, by the central limit theorem, r N is 

asymptotically normally distributed. As a result, for 

sufficiently large N ,  the convergence rates in (10)  provide 

a good approximation even when the underlying 

distributions are not normal. 

These results show that if  signal and noise are 

independent, A N C  is a very good identification scheme 

since the probability of  large estimation errors is 

exponentially small. 

(~  Correlated lung sounds and noises. 

When  uk and d k are correlated, a typical tern1 
N 

lk~=l U k+mdk--~" C m w ' p ' I ' =  

Define wk = u~.+,ilk - % .  Then wk satisfies Ewk = O. 

N o w  f o r l  # 0, 

?'z = Ewkwk + l = E ( uk +,ndk - c,,,) ( uk + m + ldk + l - Cm ) 

may not be zero. Hence,  in general wk is not uncorrelated. 

However ,  if  the correlation is o f  short memory ,  namely, ?'l 

is small in a certain sense, then convergence rates can be 

established. 

A s s u m p t i o n  A3 1 ) Assumption A2 is valid; 2) u 

satisfies 
n 

b = l i m ~ _ ] T l ( 1 -  I 1 I / n )  < ~ .  

N 
Define S u = ~_~ w j N .  Assume the existence of  the 

k = l  

following moment  generating functions and their limits 

HN(A) = : logE[eaS~] ,  P ( a )  = lim I U N ( N A ) .  

(11) 
Let JV ~ ( x ) be the Fenchel-Legendre transform o f / "  ( A ) 

F ' * ( x )  = sup[Xx - / " ( 2 ) ] .  
a6~r 

Theorem 3 Under Assumption A3 and existence o f  

the fimction in ( 11 ) ,  

1 r} 2 
l i m s u p ~ l o g P {  II sNI[ I> q} ~ - - - .  

N ~  2b 

Proof Under the hypothesis, by [19,  Exercise 

2 . 3 . 2 3 , p . 5 2 ]  f '~ ( x )  = x 2 / ( 2 b )  and it is a good rate 

function. Furthermore, by the Garmer-Ellis Theorem [ 19, 

Theorem 2 . 3 . 6 ,  p.  44 ] 

1 
lira s u p ~ l o g P {  [[ SN [[ I> qt 

- i n f H  ~ ( x )  = - - - .  
Ixl>v 2b 

From Theorem 3, it is clear that the probability of  large 

estimation errors will be exponentially small with respect to 

N ,  namely 

~72N 

P t II SwIJ I> 7]} < xe -2~ - .  

Obviorsly, the smaller the value b ,  the smaller the error 

probability since r]2/2b defines the time constant o f  the 

exponential function. N o w ,  from the expression w k = 

Uk+md k - Euk+md k , the magnitude I wk I is proportional 

to the magnitude fl o f  l uk I ~ /9. In turn b is proportional 

to/92. As a result, selecting a time interval in which /9  is 

small will result in a faster convergence rate. This entails a 

motivation for our time-shared channel identification and 

modified adaptive noise cancellation. 

4.3  Error bounds of the t ime-shared ANC 

Theorems 2 and 3 provide a foundation for analyzing the 

benefits o f  the time-shared A N C .  Consider the three signal 

processes y i ,  y e ,  yp defined in the previous section, and the 

noise process d .  Correspondingly, measured lung sounds are 

x i = yi  + G u , x  e = ye + G u , x P =  )~' + Gu.  A N C  relies 

on the same signal process for both identification and noise 

cancellation. For concreteness, assume the signal process is 

yi .  The time-shared A N C  utilizes TP for identification and 

yi for noise cancellation. In both cases, the inputs are the 

measured virtual noise u.  

Under Assumption A2, denote the correlation matrices in 

(4)  by: B i for correlation between u and y i ,  and B p for 

correlation between u and y P. The auto-correlation matrix 

Ru varies slightly between the inhale phase and pause phase, 

and will be denoted by R / and R p, respectively. The  

channel estimate from A N C  is 

O~ = 0 + ( R I , ) - ' B  i = 0 + riN, 

and the estimate from the time-shared A N C  is 

OPN = 0 + ( R ~ ) - ' B  p = 0 + fiN. 

To be consistent with typical notation in identification, we 

still use the symbol d (which is equal to the authentic 

lung sound y )  in identification, but change it to y during 

noise cancellation to indicate signal extraction. 

Applying these estimates to noise cancellation on the 

process y i ,  we have 
CT& 

= 

for A N C ;  and 

for the time-shared A N C .  Consequently, the errors in signal 
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extractions are 
' T i  e ~  ~ = y ~ - 2 ~ " ~  = ~krN, for AN(; 

and 
et~anc . y~  -- y t  . . . .  

= ~ T ~ ,  for the t ime-shared ANC. 

Define It B ~ 112 -- d ,  II B p II : - ~ " , ~ ( R ~ ) - '  = y,  
( R p ) -  ~ = /9 P, where o" is the largest singular value o f  a 

matrix. 

T h e o r e m  4 1 ) The sample means of  i ~,~2 ~e~ j and 
etS anc ) 2 ( /, converge, w . p . 1 ,  to (B i )T (R iu ) - IB  i and 

( , p  )T(R{)  - l , p ,  respectively. 

2) The limits are bounded by 
( B i ) S ( R i ) - l g i  <~ ~( i)2, 

( ,~ )~ (R~) -~B ~ ~< 5 ~ ( ~ )  2. 

PrOOf 1 ) After N observations, the sample means of  

the errors are 
N 

/2a~ pc = E ( e]"':) 2 / N ,  
k=l 

iV 
[A% ant E / t sanc '~2/~r  = k e  k / ~ i v .  

k=l 

These are exactly the sample mean square errors. By 

ergodicity and Theorem 2, they converge, w.  p.  1, to 
~,~,,,-+ ( , i ) T ( R D - I B i  ' 

,ut~"---~ ( Bp)T( RP)-I B p" 

2) S i n c e j B T ( R ~ )  - JB  is the (R=)  -1 weighted l 2 norm 

of  B ,  we have 

(Bp)T(RPu)-IBP <~ ~P(aP)  2. 
[] 

Theorem 4 states that the time-shared A N C  can reduce 

signal reconstruction errors, in terms of  mean square errors, 

by a factor o f  at least 7] = /9 i(ai)2/flP(aP)2. In the 

special case of/gP = f l i ,  the factor becomes r] = (a i /aP)  2. 

5 A p p l i c a t i o n s  to s o u n d  p a t t e r n  a n a l y s i s  

This section presents some examples that demonstrate the 

utility o f  the method introduced in this paper. The data was 

col lec ted  through a sophisticated human patient simulator 

( H P S ) ,  manufactured by METI ,  Inc. The lIPS allows us to 

create difficult medical scenarios to evaluate and improve 

our system. The HPS imitates breath sounds under different 

medical conditions, such as age, gender, lung functions, etc. 

Three electronic stethoscopes are used simultaneously to 

measure lung sounds (left and right lungs) and reference 

noise (on  one shoulder). Noises are generated by 

conversations, music, and instrumentation. Noise levels are 

controlled by music volumes and conversation loudness. To  

further evaluate noise impact, a variety o f  noises with 

different noise characteristics (such as waveforms, frequency 

centers, and bandwidths) are added to measured signals 

before signal processing. These noises are either collected 

from operating rooms or generated by computer.  

Noise sources pass through different transmission channels 

to influence both the lung-sound sensor and reference 

sensor. The structure and parameter values o f  these channels 

are not known to the identification algorithms. Since the 

noise reference sensor is placed in vicinity to the lung 

sensor, sound coupling may occur during data acquisition, 

leading to more severe signal/noise correlation. The system 

identification takes a black-box approach in which a 

discretized channel model with the regression representation 

(1)  is used. These simulation studies include variations in 

noise types, frequency shifting, waveforms, and magnitudes. 

5 .1  N o i s e  impact  on  sound  characteris t ics  

We shall start with an illustration of  noise impact on lung 

sound patterns. F ig .6 (a )  is a typical normal breathing 

sound and Fig. 6 ( b )  an expirational wheeze. These are 

measured from the HPS,  under the following scenarios: 

1) The normal breathing sound is from a healthy 50-year 

old track driver; 2) The wheeze is from a 50-year old 

smoker with lung disease. In both cases, patients are 

ventilated. To  obtain typical sound patterns with minimum 

noise corruption, the environment noise was set as low as 

possible during data collection. 

The top figures in Fig.6 are the raw data measured 

directly from the HPS. Due to low-frequency noises from 

sensor contact surfaces, as pointed out in Section 2 . 1 ,  the 

breathing patterns are not obvious. A high-pass filter is used 

to eliminate the noise under 200 Hz.  After filtering, the 

difference between normal and wheeze lung sounds can be 

clearly seen from their time domain waveforms. In 

frequency domain analysis, the wheeze can be further 

characterized by a substantial narrowing o f  the spectrum, 

shifting o f  the center frequency (towards low pitch in this 

example) ,  etc. For this example, sounds are obviously very 

clean with minimum noise corruption. 

Sound patterns are significantly altered when noise 

artifacts are present. Fig. 6 ( c )  shows the corrupted wheeze 

signal, both in its t ime-domain waveform a n d  

fi'equency-domain spectrum. It is apparent that in a noisy 

environment,  the t ime-domain waveforms of  a wheeze are 

distorted to the point that it is no longer possible to 

recognize sound patterns. 
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Normal lung sound Wheeze lung sound Noise corrupted wheeze lung sound 
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(c) Noise impact on wheeze. 

Fig. 6 

5 . 2  I d e n t i f i c a t i o n  errors  a n d  c o n v e r g e n c e  r a t e s  

It has been shown in Section 4 that not only estimation 

errors are highly dependent on the correlation between the 

input signal uk and disturbance dk, but also the 

convergence rates are effected significantly. In order to 

better understand this analysis, simulations were performed 

on identification errors o f  the recursive least-squares 

algorithm. Three cases were compared: 1 ) the input signal 

uk is uncorrelated with the disturbance signal dk; 2) uk is 

correlated with k o f  a moderate level; 3)  the correlation 

between tz k and d k is more severe than the second case. 

Fig. 7 illustrates the trajectories o f  identification errors. 
Recursive least square method:C-0.0012515;Q =0.20459;C2 =0.41111 

1.4 
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._q 0.8 
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8 0.4 

0.2 

06 200 400 600 800 1000 1200 1400 1600 1800 2000 
Data steps 

Fig. 7 Rehtionship between signal/noise correlations 

and identification errors. 

A normal sound and a wheeze, and noise impact on sound patter*as. 

The results clearly demonstrate that higher correlations 

between uk and dk lead to larger estimation errors and 

slower convergence rates. This simulation explains why 

our time-shared A N C  method is more accurate and 

efficient. 

5 . 3  C h a n n e l  i d e n t i f i c a t i o n  

Here, we programmed a scenario on the HPS o f  a 

ventilated patient who is a 20-year old male soldier with 

wheezing breath sounds. Besides the background noise 

such as talking, alarming, and music, we also added some 

simulated noises to represent more severe frequency 

shifting and signal/noise correlation. 

Noise transmission channels were identified by using 

both the traditional A N C  and our time-shared 

identification methods. Their typical simulation results are 

presented in Fig.8 (a)  and ( b ) ,  respectively. The lung 

sounds are measured directly from the l IPS.  These signals 

are corrupted by different noises with the resulting signals 

shown by the top plots in (a)  and ( b ) .  The environment 

noises are, after passing through unknown transmission 

channels, measured by the reference sensor (the 2nd plots 

in (a)  and ( b ) ) .  In order to eliminate the off-band low 

frequency noises, both the measured lung signal and the 

reference signal pass through a designed high-pass filter. 

The after-filtering lung sound signals are shown by the 3rd 
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plots in (a) and ( b ) .  The breathing sound stages o f  

inhale, exhale, and pause can be distinguished by the 

averaged magnitude profiles from the 3rd plots in (a)  and 

( b ) .  Hence, switching between identification and noise 

cancellation will be derived from the filtered lung sound 

signals. 

In application o f  A N C ,  a 30-th order moving average 

regression model is used in identification o f  the virtual 

channel. A recursive least-squares identification algorithm 

is used to update the parameters. The bottom plot in 

F ig .8(a)  is the estimated lung sound. Comparing with 

the typical wheeze plot in Fig. 6 ( b ) ,  the estimated sound 

does not recover the original sound well. 

In time-shared blind identification, we use the same 

regression model structure to identify the channel. While 

the lung sound is significantly corrupted by the noise, its 

envelope profile after filtering still retains an indication o f  

Time-domain waveforms 

its inhale, exhale, and pause stages. This profile information 

is used to divide each breathing cycle into the phases for 

identification or noise cancellation. During the 

identification phase (pause stage), a recursive least-squares 

identification algorithm is used to update the parameters in 

the regression model. During the noise-cancellation phase 

(inhale or exhale stages), the estimated regression model is 

used to derive noise estimates, which are then subtracted 

from the signal measured by the lung sensor. The process 

is then repeated in the next breathing cycle. The bottom 

plot in Fig. 8 ( b )  is the estimated lung sound. The result is 

much better than the A N C  method. We  want to 

conunent that there are some studies on time-domain lung 

sound patterns [ 2 1 -  231. The noise corruption in lung 

sounds alters the sound waveforms significantly so that the 

time-domain wave patterns o f  the original lung sound are 

no longer apparent. 

Time-domain waveforms 
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Fig. 8 Time domain comparison of the ANC and time-shared ANC methods. 

A better understanding of  the effectiveness o f  our power spectrum of  the original lung sound. The bot tom 

method is depicted in the frequency-domain comparison plots o f ( a )  and (b )  show effectiveness o f  noise reduction 

in Fig. 9. The noise spectrum overlaps with the lung with the A N C  and 6me-shared A N C  methods. The results 

sound spectrum. The estimated lung sound restores the for A N C  compare the spectra o f  the measured lung 
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sound, estimated lung sound and original lung sound (the 

top plot of  Fig. 9 ( a ) ) .  ANC can only reduce noises that 

are not correlated with the lung sound in spectra, as 

shown in the bottom plot of  Fig.9 (a ) .  Time-shared 

ANC provides a more effective noise reduction in spectra, 

as shown in Fig.9 (b ) .  It can cancel most noises no 

matter if they are correlated with lung sounds or not. 
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Fig. 9 Frequency domain comparison o f  A N C  and time-shared A N C .  

6 Concluding remarks 

This paper introduces a new noise cancellation method 

for extracting authentic lung sounds from noisy 

auscultation environments. The method is unique in its 

utility of  the breathing pause period for system 

identification and inhale/exhale phases for noise 

cancellation. As such it resolves a daunting challenge in 

this blind identification problem: noises may not be 

statistically independent of  the lung sounds. This approach 

opens the opportunity of  extending computer-aided lung 

sound analysis from acoustic lab settings to real clinical 

applications. This method complements the traditional 

faltering and ANC methods for noise reduction. As we 

have shown in this paper, combining this method with the 

traditional approach produces a more powerful tool than 

the individual utility of each method. 

There are many open issues that can be studied in this 

direction. These include the effectiveness of  the method in 

nonlinear noise transmission channels, sensor location 

selections, sensor configuration, impact of  modeling 

distributed noises by lumped noises, etc. Also, the 

combination of  this method with whitening (removing 

independent noises) can be further studied. However, the 

key foundation of  this method seems to be sound in this 

application. 
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