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INTRODUCTION

Assessing Which Sources of Hazard Uncertainty Matter
The Uniform California Earthquake Rupture Forecast 2
(UCERF2) is a fully time-dependent earthquake rupture fore-
cast developed with sponsorship of the California Earthquake
Authority (Working Group on California Earthquake Prob-
abilities [WGCEP], 2007; Field et al., 2009). UCERF2 con-
tains 480 logic-tree branches reflecting choices among nine
modeling uncertainties in the earthquake rate model shown
in Figure 1. For seismic hazard analysis, it is also necessary to
choose a ground-motion-prediction equation (GMPE) and set
its parameters. Choosing among four next-generation attenua-
tion (NGA) relationships results in a total of 1920 hazard cal-
culations per site. The present work is motivated by a desire to
reduce the computational effort involved in a hazard analysis
without understating uncertainty. We set out to assess which
branching points of the UCERF2 logic tree contribute most to
overall uncertainty, and which might be safely ignored (set to
only one branch) without significantly biasing results or affect-
ing some useful measure of uncertainty. The trimmed logic tree
will have all of the original choices from the branching points
that contribute significantly to uncertainty, but only one arbi-
trarily selected choice from the branching points that do not.

Risk analyses that use the trimmed tree should produce
approximately the same results as those that use the full tree.
Risk, as used here, refers to the relationship between some un-
desirable outcome and its likelihood of occurrence, typically
from some particular decision-maker’s perspective. Risk can
be measured in terms of an uncertain quantity of loss, such
as the relationship between future earthquake-related repair
costs to a particular asset or group of assets and the probability
of exceeding that cost, or in terms of a scalar measure of that
relationship, such as the expected annualized value of that re-
pair cost. Risk professionals commonly use both continuous
and point measures. Insurers, for instance, commonly make
reinsurance purchasing decisions using loss exceedance curves
(which relate insured loss to exceedance frequency), and set
insurance premiums based on a point value related to the
curve, especially the expected annualized loss (EAL).

Risk information is typically a prerequisite for risk man-
agement—for making decisions to reduce or transfer the risk.
The particular risk-management decision in question helps to
determine which risk metrics should be estimated. UCERF2
affects a variety of risk-management decisions, such as engi-
neering design requirements, insurance pricing and reinsurance
purchases, and public policy about life safety and economics at
a variety of geographic levels. This work examines UCERF2

from a statewide perspective, considering its economic impli-
cations, while acknowledging that other perspectives are also
worth exploring.

For the reader unfamiliar withUCERF2, we briefly review
the meaning of each branching point (often called epistemic
uncertainty).
• Fault models specify the geometry of larger, more active

faults.
• Deformation models refer to assigning a slip rate, an aseis-

mic slip factor, and their uncertainties, to each fault
section.

• Magnitude–area relationships give the average magni-
tude for a given rupture area.

• Segmentation for type-A faults imposes rupture bound-
aries, but might be a bad approximation; for this reason, an
alternative, unsegmented approach is also considered.

• Fault-slip rates within the segmented model on type-A
faults. The alternatives comprise an a-priori (consensus)
rate model and a version to match observed long-term slip
rates.

• Type-B earthquake rate models: connect more type-B
faults? This refers to modeling nearby type-B faults as
capable of producing larger earthquakes.

• Type-B fault b-values. The slope of the Gutenberg-
Richter component of the magnitude–frequency relation-
ship for type-B faults can take on the values 0.0 and 0.8.

• Recurrence models and aperiodicity. The alternatives are
a Poisson model, an empirical model that accounts for
earthquake rate changes over the last 150 years, and a
Brownian passage time (BPT) model with uncertain aper-
iodicity to reflect elastic rebound.

• Ground-motion-prediction equation. Though not an ele-
ment of UCERF2, GMPEs are required for a probabilistic
seismic hazard analysis. Figure 2 illustrates the difference
between two GMPEs for a particular set of parameter
values.

Each uncertainty has scientific relevance and scientific
value in its resolution. There are also practical values to consider.
For example, to an insurer, greater uncertainty in risk means
higher losses are more likely. Insurers buy reinsurance based
on large, rare events, often the loss with 1=250 chance of occur-
rence per year. Greater uncertainty means greater reinsurance
cost. Figure 3 illustrates two loss-exceedance curves for the same
portfolio with differing uncertainty. The EALmay be the same,
but the 250-year losses are not. Thus, there can be a strong
financial incentive to reduce uncertainty as cost-effectively as
possible.
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Propagating each uncertainty through hazard and risk
analyses also carries a computational cost, and can be prohibi-
tively time-consuming for large portfolios or maps. We
acknowledge but do not address here the relative scientific
importance of resolving UCERF2’s epistemic uncertainties.
Instead, we explore the relative practical importance of the
epistemic uncertainties by testing the sensitivity of a particular
risk metric to each branching point.

There is a wide variety of potentially useful metrics of
sensitivity, and substantial literature on the general topic. We
will summarize only a few prior works. Cornell and Vanmarcke
(1969) examined the sensitivity of the PGA hazard curve to
event magnitude. Youngs and Coppersmith (1985) examined
the sensitivity of the full seismic hazard curves at selected sites
to variations in recurrence models and parameters that incor-
porate fault slip rates. Rabinowitz et al. (1998) explored the
sensitivity of PGA at a single site to the epistemic uncertainties
in the hazard logic tree. Akinci et al. (2009) examined the sen-
sitivity of hazard maps of the Central Apennines of Italy to
the choice of rupture probability models and aperiodicity para-
meter for a BPT model.

We could examine the uncertainties’ effect on uniform
seismic hazard maps such as those underlying the American
Society of Civil Engineers’ (ASCE) seven maximum consid-
ered earthquake (MCE) maps, which are of 5%-damped spec-
tral acceleration response at various periods (0, 0.2 sec, 1 sec,
etc.) with 2% exceedance probability in 50 years (ASCE, 2005).

Alternatively, we could examine the effect on the maps of risk-
targeted maximum considered earthquake (MCER) ground
motions that produce nominally uniform collapse risk (ASCE,
2010). One challenge is whether, and how, to decide which
locations matter.

Grossi (2000) examines how EAL and a “worst-case loss”
for Oakland, California, vary when one changes any of several
model parameters, namely the earthquake rupture forecast
(USGS versus a proprietary model), the GMPE (two choices
are considered), soil (the choice is a single uniform National
Earthquake Hazards Reduction Program (NEHRP) site class
or varying soil by location), and the fragility model.

Like Grossi (2000), we use a risk metric, focusing on the
sensitivity of societal risk to individual uncertainties in the
hazard logic tree. Two downsides to this approach are that re-
sults may differ between portfolios, and that new uncertainties,
especially vulnerability, are introduced. We considered several
risk metrics, and like Grossi (2000) chose EAL, which here
means the average ground-up repair costs, per year, to the port-
folio in question. We examine a portfolio of the estimated
quantity of single-family woodframe dwellings in California,
partly for convenience and partly because of its relevance
to UCERF2’s principal sponsor, the California Earthquake
Authority. The portfolio was developed from the HAZUS-MH
estimated inventory of California construction. Next we detail
the tornado-diagram analysis, the development of the portfolio,
and the method for calculating EAL.

▴ Figure 1. Branches of the UCERF2 logic tree (after WGCEP, 2007). Dotted lines (…) indicate that the tree continues parallel to the
branches that are shown, but that these branches are omitted from the figure for clarity. Black numbers below branches are the branch
weights.
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TORNADO DIAGRAMS

Earthquake engineers sometimes employ this graphical techni-
que from the field of decision analysis to test the sensitivity of
seismic risk to major uncertain variables (e.g., Porter et al.,
2002; Multihazard Mitigation Council [MMC], 2005). The
technique is useful for examining the sensitivity of a scalar de-
terministic function of uncertain input variables. It depicts
the effect on the function by varying each uncertain input in-
dividually, while keeping the other parameter values fixed at
some best-estimate or baseline value.

That is, one is interested in some function Y � f �X�,
where Y is an uncertain scalar variable, X is a vector of
one or more scalar uncertain input variables, and f is a deter-
ministic function. To explore which component of X strongly
affects Y , one evaluates a series of Y i � f �Xi�, where Xi de-
notes a sample vector of X (i.e., given values of each compo-
nent of X ). In the following, n denotes the number of
components or elements of X , X �i� denotes the ith component
of X�1 ≤ i ≤ n�, E�X � denotes the expected value of X , that is
the vector of X where every component is set to its average or
baseline value, E�X �i�� is the baseline value of component i of
the vector X , X �i�

LB denotes a lower-bound value of X
�i� (can be

either qualitatively defined or, optionally, a specified percentile,

such as the 10th), X �i�
UB denotes an upper-bound value of X �i�

(likewise, either a qualitative value or a specified upper percen-

tile), and {•} denotes a vector composed of the elements inside
the brackets. Then one evaluates Y 0; Y 1;…Y 2n as follows:

Y 0 � f �E�X ��
Y 1 � �fX �1�

LB ; E�X �2��;…E�X �n��gT �
Y i � f �fE�X �1��;…X �i�

LR ;…E�X �n��gT � 1 < i < n

Yn � f �fE�X �1��; E�X �2��;…X �n�
LB gT �

Y 1�n � f �fX �1�
UB; E�X �2��;…E�X �n��gT �

Y i�n � f �fE�X �1��;…X �i�
UB;…E�X �n��gT � 1 < i < n

Y 2n � f �fE�X �1��; E�X �2��;…X �n�
UBgT �: (1)

The sensitivity of Y to component X �i� is indicated by the
difference (or “swing”):

Swing � jY i − Y i�nj: (2)

To create the diagram, one sorts the X components in
decreasing swing, and creates a horizontal bar chart where
the horizontal axis measures Y , and each horizontal bar cor-
responds to one of the X components. The ends of the top-
most bar are placed at Y i and Y i�n for the component with the
largest swing, the next higher bar shows Y j and Y j�n for the
component j with the next-largest swing, etc. A vertical line is
drawn intersecting the horizontal axis at Y 0. The diagram re-
sembles a tornado in profile, and shows which input variables
probably matter most to the uncertainty in Y and which might
be ignored.
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▴ Figure 2. NGA relationships can significantly differ. For exam-
ple, Abrahamson and Silva (2008) tends to produce higher median
1-sec, 5%-damped spectral acceleration response than does
Chiou and Youngs (2008) for distances greater than about 10 km,
given anM 7 event, 5 km to top of rupture, V S30 of 330 m= sec, and
500 m depth to 1 km= sec shearwave velocity.
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▴ Figure 3. More uncertainty in risk translates to higher loss at
low exceedance probabilities which, for an insurance company,
demands more reinsurance and more expense. (Portfolio value is
uncertain, hence “mean” in the x-axis label.)
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A sample is shown in Figure 4. It shows that the variable
called damage factor is most sensitive to uncertainty in a vari-
able called assembly capacity. With all other input variables (Sa,
ground motion record, etc.) set to their baseline value, uncer-
tainty in assembly capacity can make the damage factor as low
as 0.07 or as high as 0.94. Assembly capacity and Sa seem to
dominate uncertainty in damage factor, implying that uncer-
tainty in the other variables might be ignored for purposes of
estimating damage factor.

ANALYSIS

Estimating the Portfolio of Interest
No actual enumeration of the California building stock exists,
there being no authority responsible for compiling one. The
HAZUS-MH portfolio instead is based on population and
employment statistics (see National Institute of Building
Sciences [NIBS] and Federal Emergency Management Agency
[FEMA], 2009, for details). To summarize (and oversimplify),
the HAZUS-MH model encodes statistics or engineers’ judg-
ment of the square footage required for each resident or
worker, along with the per-square-foot value and building-type
distribution by economic sector and several categories of resi-
dential construction. Thus, the HAZUS-MH model estimates
the replacement cost of buildings for a given structure type and
census block as follows:

V �
X
o
P�o� · A�o� · T�o� · R; (3)

where o is an index of occupancy category, P denotes the num-
ber of people in the census block in occupancy category o, A
denotes the estimated average square footage per person in that
occupancy category, T is the fraction of building area of the
given occupancy category constructed of the structure type of

interest, and R is the estimated replacement cost per square
foot for that structure type.

The HAZUS-MH (2009) software provides these param-
eter values in a database; we compiled the quantities for single-
family dwellings and woodframe buildings of less than
5000 square feet. The total estimated replacement cost of these
California buildings is $1.6 trillion. The statewide total for all
residential buildings is $2.1 trillion; for buildings of all classes it
is $2.7 trillion. The portfolio considered here represents 60%
of all California buildings by replacement cost.

Evaluating the Expected Annualized Loss
We developed software called the Portfolio EAL Calculator to
estimate this risk metric as part of the OpenRisk effort de-
scribed by Porter and Scawthorn (2007, 2009). The calculator
is part of a suite of software that extends OpenSHA (Field et
al., 2003; www.opensha.org) by adding loss-estimation capabil-
ities. The calculator evaluates the following equation:

EAL �
Xk
j�1

EALj EALj �
Z

∝

s�0
Vy�s�jG0�s�jds; (4)

where EAL denotes the expected annualized loss to the port-
folio, j is an index to assets, EALj is the EAL for asset j, V is the
replacement cost of a given asset, y�s� is the expected value of
loss (normalized by value) to asset j subjected to shaking s, G�s�
denotes the mean frequency (events per year) with which shak-
ing s is exceeded at the location of asset j, and G0�s� is its first
derivative with respect to s. Equation (4) can be carried out
numerically:

EALj � V
Xn
i�1

�
yi−1Gi−1�1 − exp�miΔsi��

−
Δyi
Δsi

Gi−1

�
exp�miΔsi�

�
Δsi −

1
mi

�
� 1

mi

��

× V
Xn
i�1

�yi−1ai − Δyibi�; (5)

which is exact for a piecewise linear vulnerability function and
piecewise loglinear hazard curve (Porter et al., 2006). In equa-
tion (5), yi more briefly denotes y�si�, Gi denotes G�si�, and

Δsi � si − si−1
Δyi � yi − yi−1
mi � ln�Gi=Gi−1�=Δsi for i � 1; 2;…n

ai � Gi−1�1 − exp�miΔsi��

bi �
Gi−1

Δsi

�
exp�miΔsi�

�
Δsi −

1
mi

�
� 1

mi

�
:

Vulnerability
One can estimate seismic vulnerability of a given structure
type, denoted above by y�s�, various ways. Alternatives can
be grouped as empirical (resulting from regression analysis
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▴ Figure 4. Sample tornado diagram (Porter et al., 2002). In the
figure, “assembly capacity” refers to the demand at which a build-
ing assembly enters a specified damage state. Sa denotes the
maximum experienced value of 5%-damped elastic spectral ac-
celeration response at the building’s estimated small-amplitude
fundamental period of vibration. “F–d multiplier” refers to uncer-
tainty in the X and Y values of the force-deformation relationship
of structural components. “O&P” refers to contractor overhead
and profit, a factor applied to the contractor’s direct cost that re-
lates the owner’s costs to the contractor’s.
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of earthquake experience data), analytical (from the application
of engineering principles), or expert opinion. Steinbrugge
(1982) and Wesson et al. (2004) are examples offering empiri-
cal vulnerability functions. ATC-13 is probably the U.S.’s lead-
ing example of seismic vulnerability functions drawn from
expert opinion (Applied Technology Council [ATC], 1985).
Some important milestones in the development of analytical
seismic vulnerability functions include Czarnecki (1973),
Kustu et al. (1982), Kircher et al. (1997), and various works
recently establishing 2nd-generation performance-based earth-
quake engineering, for example, Beck et al. (1999), Porter et al.
(2001), and Applied Technology Council (2012). We use
three of these: one analytical, taken from FEMA’s HAZUS-
MH software (Porter, 2009), one empirical (Wesson et al.,
2004), and one based on expert opinion (ATC, 1985).

Portfolio EAL Calculator
HAZUS-MH could be used to calculate the desired EAL
quantities, but it would involve substantial effort to generate
shakemaps for each branch, import them, export results, and
run the software for a large number of separate EAL calcula-
tions. To reduce this effort, the Portfolio EAL Calculator,
rather than HAZUS-MH, was used to estimate EAL resulting
from each branch of UCERF2. The calculator takes as input
the portfolio data in a comma-separated-value text file with a

header line and an arbitrary number of data lines. The header
line is as follows:

AssetGroupName,AssetID,AssetName,BaseHt,Ded,
LimitLiab,Share,SiteName,Elev,Lat,Lon,Soil,ValHi,
ValLo,Value,VulnModel,V S30

Subsequent data lines contain information about all build-
ings of the same type in the same location (here, census tract),
organized in comma-separated columns below the header.
Contents are detailed in Table 1.

The user selects UCERF2 parameter values and a GMPE,
either via graphical user interface (Figure 5) or, as is the case
here, via an XML file, the path to which is specified in another
XML file. In the present application, the program calculates
EAL for every allowable combination of UCERF2 parameter
value and a specified GMPE. For average shearwave velocity in
the upper 30 m of soil (V S30), we used Wills and Clahan’s
(2006) map and that of Wald and Allen (2007). The intensity
measures to be calculated are inferred from the vulnerability
models, which specify how they measure s.

The calculator employs preexisting OpenSHA object
classes to calculate site hazard for the selected parameter values
and the first asset in the portfolio. It carries out the EAL cal-
culations shown in equations (4) and (5) for that asset and
sums over assets to estimate the portfolio EAL.

Table 1
Portfolio Contents

Field Meaning Type Comment
AssetGroupName Group name Text Non-unique name for group to which asset belongs,

for example, “Houses”
AssetID Asset identifier Integer A unique ID, for example, 1
AssetName Asset name Text A label for the asset, for example, “House 1”
BaseHt Reserved Double Reserved for later use
Ded Ditto Double Ditto
LimitLiab Ditto Double Ditto
Share Ditto Double Ditto
SiteName Site name Text A label for the site, for example, “769 N Michigan Ave,

Pasadena CA 91104”
Elev Double Reserved for later use
Lat Latitude Double Decimal degrees N, within ±90.00
Lon Longitude Double Decimal degrees E, within ±180.00
Soil NEHRP soil class Text NEHRP site soil classification, in {A, B, C, D, E, F}
ValHi Upper bound of value at risk Double Value is uncertain or varies over time. Upper bound

here is 97th percentile, ≥ value
ValLo Lower bound value at risk Double Lower bound is 3rd percentile, ≤ Value
Value Value at risk Double Best est. of value at risk, monetary or number or

people, ≥ 0:00.
VulnModel Vulnerability function Text Name of the vulnerability function to use for this asset,

for example, “CUREE
small house as-is,” restricted to a list of available models

V S30 Shearwave vel, m/sec Double Mean shearwave velocity in top 30 m of soil, m= sec, > 0:00
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Calculations for each asset are independent, conditioned
on the model parameters, so the calculation is suited to parallel
processing. The command-line Portfolio EAL Calculator takes
advantage of this to distribute the calculations over a number
of processors.

The calculations described here were performed at the
High-Performance Computing Center of the University of
Southern California (USC). The Center’s Linux Computing
Resource consists of 785 dual-core/dual-processor nodes and
5 × 16 processor, 64 GB, large memory servers, interconnected
with Ethernet and 2GB Myrinet backbone, and a 1990 quad-
core or hex-core/dual processor nodes cluster with Ethernet
and a 10 GB Myrinet backbone. As of June 2012, USC’s
high-performance computing center ranks number 120 among
the world’s 500 fastest supercomputers (http://top500.org/list/
2012/06/200).

With this hardware, the EAL calculations for 480
branches of the UCERF2 logic tree were performed in 24
batch jobs, each job handling 20 branches. Typically 5–10 jobs
run concurrently. The job starts with the first branch. Each job
has 40 processors available to it, distributed among five com-

pute nodes, each with eight processors. The job distributes as-
sets among processors. Individual processors compute EALs for
their assets; these are summed to produce the portfolio EAL.
The job then moves on to the 2nd branch and does the same
thing until it has calculated portfolio EAL for its 20 branches.

Distributing the job this way, the calculation of EAL for a
portfolio of 13,200 assets took approximately 30 min. These
calculations reflect mapped faults only. Calculations of EAL
from background sources were performed separately and added
back in, because they do not vary by branch, but only by
GMPE. Finally, results are reported via a text file. The file lists
on each line the UCERF2 parameter values and the corre-
sponding portfolio EAL, one record for each branch of the
logic tree. Additional documentation of the Portfolio EAL
Calculator can be found at www.opensha.org.

Construction of the tornado diagram required modifying
the methodology described earlier. Most of the branches are
uncertain nominal values, which have no associated order,
let alone 10th or 90th percentile values. We can assign prob-
abilities to them in the Bayesian sense (probability as degree of
belief ), but not order; only ordinal and cardinal numbers have

▴ Figure 5. Graphical user interface for the Portfolio EAL Calculator. The GUI allows one to specify parameter values for the earthquake
rupture forecast, GMPE, timespan, and portfolio file. A command-line version was employed in the present study to loop over all branches
of the UCERF2 logic tree.
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that property. So the baseline values are selected from the
branch that produces the 960th largest value of EAL, among
all 1920 samples.

RESULTS

The Portfolio EAL Calculator estimated EAL for 1920
branches: each of the 480 branches of theUCERF2 earthquake
rate model, and each of four NGA equations (Chiou and
Youngs, 2008; Campbell and Bozorgnia, 2008; Boore and
Atkinson, 2008; Abrahamson and Silva, 2008). Branches are
sorted in increasing order of EAL. The baseline branch is se-
lected as the 960th in the sorted list. Results are not especially
sensitive to which particular values of the uncertainties appear
on the baseline branch. Note that, conditioned on a single
branch of the logic tree, EAL has a single deterministic value,
the integral of loss and the absolute value of the first derivative
of exceedance frequency. Let us refer to this value as the con-
ditional EAL. When viewed from the perspective of the full
UCERF2 logic tree, the conditional EAL is uncertain, and
has a probability distribution.

Using the HAZUS-MH vulnerability models from Porter
(2009) and theWills and Clahan (2006) V S30 model, the mini-

mum EAL value among 1920 branches was $0.64 billion; the
value exceeded by 50% of branches (median in terms of order)
was $1.22 billion; the maximum was $2.05 billion. The mini-
mum, baseline, and maximum values represent $0.40, $0.76,
and $1.27 per $1000 of exposed value (a common way to nor-
malize losses against exposed value). The median or baseline
branch is illustrated in Figure 6; parameter values producing
low, median, and high values are shown in Table 2.

The weighted-average of the conditional EAL of all
1920 branches—weights from Figure 1—is $1.21 billion,
which almost equals the baseline EAL of $1.22 billion. The
standard deviation is $0.30 billion, indicating a coefficient
of variation of 0.25, and that the extrema are approximately
−1:9 and �2:7 standard deviations from the baseline, equiva-
lent to approximately 3% and 99.7% bounds for a Gaussian
distribution, which seems reasonable.

The tornado diagram’s parameter values are shown in
Table 3. The diagram is shown in Figure 7. It reflects 19
branches including the baseline, and has only slightly narrower
EAL extrema than all 1920 branches, an important point dis-
cussed later.

Figure 7 suggests that the choice of recurrence model,
aperiodicity in the BPT recurrence model, and GMPE are

▴ Figure 6. Baseline branch of the logic tree shown in bold. Baseline GMPE is Chiou and Youngs (2008).

Table 2
Parameter Values Producing Low, Baseline (Median in Terms of Order), and High EAL Values

Order Def mod Mag–area A-Fault Solution Rates
Connect More

B Faults? b Recurrence Aperiodicity GMPE EAL, $B
Min D2.4 Hanks-Bakun Segmented Mo-rate bal Yes 0.0 Empirical CY08 $0.64
Med D2.4 Hanks-Bakun Segmented Mo-rate bal Yes 0.8 BPT 0.7 CY08 $1.22
Max D2.2 Hanks-Bakun Segmented Mo-rate bal No 0.8 BPT 0.3 AS08 $2.05
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the leading sources of uncertainty in the estimate of EAL
among California woodframe single-family dwellings, followed
by the choice of which magnitude–area relationships to use.
Less important to this metric are the method for estimating
type-A fault rupture rates (a-priori or moment-balanced mod-
els), the question of whether to connect more Type-B faults,
the choice of deformation model, the question of whether
to enforce segmentation on Type-A faults, and the choice
of b-value to Type-B faults.

The trimmed logic tree is shown in Figure 8. Considering
only its 40 branches, the expected value and coefficient of
variation (COV) of the conditional EAL are $1.17B and
0.25 respectively, almost the same as the full 1920-branch tree.
By contrast, if one fixes the recurrence model, aperiodicity,
magnitude–area relationship, and GMPE at their baseline
values, the expected value and COV of EAL are $1.23B
and 0.024 respectively; the COV considering all uncertainties
except the key ones is 1=10th that of the full 1920-branch set.
Table 4 recapitulates these figures.

That the trimmed tree produces approximately the same
probability distribution as the full tree is illustrated in Figure 9,
which shows that the two EAL distributions pass a Kolmogor-
ov–Smirnov goodness-of-fit test at the 5% significance level.
This suggests that one can accept the hypothesis that the
two distributions are drawn from the same population. It seems
reasonable to conclude, therefore, that the tornado diagram ac-
curately identifies the branches that matter.

We tested the sensitivity of the tornado-diagram results to
the choice of baseline values by performing the analysis again
using the values in the 963rd record as the baseline instead of
the values in the 960th. The two baselines differ in their
ground-motion-prediction equation, deformation model, mag-
nitude–area relationship, aperiodicity, B-fault b-value, and in
whether to connect more B-faults. Figure 10 compares the
two tornado diagrams. Although the 2nd and 3rd most-impor-
tant variables switch order, both diagrams pick out the same
key uncertainties (the ones that matter most to the uncertainty
in EAL), which is the central objective of the tornado-diagram
analysis.

DISCUSSION

Why Does Figure 7 Look Different From Figure 4?
The bars in Figure 7 end at the baseline rather than crossing it,
as in Figure 4, because Figure 4 tests the sensitivity of loss
mostly to scalar continuous random variables, each of which
has a median value. The baseline in Figure 4 runs through those
median values. The variables in Figure 7 are mostly nominal,
meaning they can only take on a few discrete values and those
values have no order. For example, there are only two possible
magnitude–area relationships, Ellsworth-B or Hanks and Ba-
kun (2008), and no order or median value per se. The baseline
in Figure 7 has therefore been taken as the EAL from the
branch that produces the 960th largest of 1920 EAL values,
not the EAL produced by taking the median values for each
variable.

What About Interaction Between Variables?
There is some interaction between variables, but it is not
strong. The minimum and maximum EAL values considering

Table 3
Results Used to Create Tornado Diagram

Parameter Parameter Value Associated with Expected Annualized Loss ($B)
Low EAL High EAL Low EAL High EAL Swing

Recurrence model Empirical BPT (0.5) 0.76 1.33 0.57
Ground-motion-prediction equation CB2008 AS2008 1.21 1.51 0.30
Fault-slip rates Mo-rate balance A priori 1.20 1.22 0.02
Magnitude-area Ellsworth-B Hanks-Bakun 1.02 1.22 0.20
Connect more B-faults? TRUE FALSE 1.22 1.27 0.05
Def model D2.6 D2.2 1.22 1.25 0.03
A-Fault solution Unsegmented Segmented 1.11 1.22 0.11
B-fault b-value 0 0.8 1.21 1.22 0.01
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▴ Figure 7. Effect of UCERF2 and ground-motion-prediction equa-
tion (GMPE) branches on EAL. Note that the line labeled
“weighted average of 1920 branches” uses the weights in Figure 1,
the EAL values calculated for each branch, and is so close to the
baseline EAL that it is indistinguishable in this figure.
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all 1920 branches are close to the extrema of the bars in the
tornado diagram. The variables can combine to produce EALs
that are more extreme, but not much more extreme.

What About Other Variables, Such As Vulnerability,
V S30, and the Portfolio?
Results are not strongly sensitive to the choices of vulnerability
model or V S30. We performed the analysis using Wald and
Allen’s V S30 map, and then again with the ATC-13 vulnerabil-
ity function, and finally with that of Wesson et al. (2004),
both with Wills and Clahan’s (2006) V S30 values. We also
analyzed a portfolio comprising almost all of the California
building stock.

The results are shown in Figure 11. Though the baseline
values vary modestly ($1.09, $1.28, and $1.07 billion for ATC-
13, Wesson, and Wald–Allen respectively, versus $1.22 billion
for HAZUS-based vulnerability functions), the diagrams show
essentially the same results: the probability model, magnitude–
area relationship, and GMPE dominate the uncertainty; the
order of the variables in the diagram is generally the same,
and the branches that produce the minima and maxima are

largely unchanged. The baseline for the statewide portfolio is
$1.50 billion, reflecting the larger exposed value. The weighted-
average EAL from all 1920 branches for the ATC-13,Wesson,
Wald–Allen, and all-building models are $1.07, $1.31, $1.05,
and $1.47 billion, close to the baseline figures of $1.09, $1.28,
$1.07, and $1.50 billion respectively. Overall coefficients of
variation in the four cases are 0.26, 0.30, 0.26, and 0.27, respec-
tively, all approximately the same as using the HAZUS-
MH-based vulnerability functions and Wills and Clahan
(2006) V S30 map.

One can perform some modest validation of these results
by comparing the EAL figures with values produced using dif-
ferent models. The normalized figure of $0.76 per $1000 com-
pares well with FEMA 366’s estimate of $3.5 billion EAL,
which divided by $4.4 trillion total exposed value (building
and contents), equals $0.79 per $1000 (Federal Emergency
Management Agency [FEMA], 2008). The California Earth-
quake Authority (2011) estimates its own EAL as of December
2010 to be $217 million on exposure of $274 billion, equiva-
lent to $0.76 per $1000 (after deductibles and limits). One
can also estimate California’s actual loss history in the years

▴ Figure 8. Trimmed UCERF2 logic tree. It has 10 branches, including the ones that lead from the Hanks & Bakun magnitude–
area relationship. Not shown are the four ground-motion-prediction equations which, when combined with the 10 UCERF2 branches,
make 40.

Table 4
Mean and Standard Deviation of Conditional EAL for Full Original Tree, Trimmed Tree, and the Branches Eliminated by the

Trimming Process. The Last of These Uses the Baseline Values for Recurrence Model, Aperiodicity, Magnitude-area
Relationship, and Ground-Motion-Prediction Equation, and Allow All Other Uncertainties to Vary

Full tree Trimmed tree Eliminated branches
Mean $ 1.21 $ 1.17 $ 1.23

Coefficient of variation 0.25 0.25 0.02
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1965–2005 by dividing the $58.5 billion in total estimated
losses during that period (Rowshandel et al., 2003; year-
2000 dollars) by 40 years and an average total exposed building
value of say $2.0 trillion (the present estimate of building value
reduced to account for population growth), yielding an approx-
imate EAL of $0.73 per $1000. That the recurrence model is a
key uncertainty, is also supported by Field et al. (2009), who
examined the sensitivity of the UCERF2 model to its various
branches. Considering the rate at which events of M ≥6:7 oc-
cur, they found that “The empirical versus BPT/Poisson prob-
ability-model branch is by far the most influential in our
logic tree.”

We can also check our findings considering sample sites.
Statewide risk is probably heavily influenced by the Los Angeles

and San Francisco Bay areas. As representative and interesting
sites, we chose the Southern California Earthquake Center
(SCEC) at the University of Southern California, and the
Oakland address of the Earthquake Engineering Research
Institute (EERI). With geolocations from Google Earth, V S30
fromWills and Clahan (2006), and depth to bedrock from the
SCEC Community Velocity Model, parameter values are:

USC: 34.023N 118.286W; V S30 ≈ 280 m=sec;
depth to 1:0 km=sec � 0:5 km; to 2:5 km=sec �
3:5 km
EERI: 37.804N 122.273W; V S30 ≈ 302 m=sec;
depth to 1:0 km=sec � 0:13 km; to 2:5 km=sec �
0:87 km

Hazard curves for each site are calculated using the Open-
SHA Hazard Curve Calculator (local, version 1.2.3). Hazard is
measured here in terms of Sa(0.3 sec, 5%). It is calculated under
baseline conditions, and varying them from baseline one at a
time, high or low aperiodicity (0.7 and 0.3), empirical or BPT
(aperiodicity � 0:5) probability models, extreme GMPEs, and
indicated fault-slip-rate alternatives (see Fig. 12). We focus on
shaking with 2% exceedance probability in 1 year (“50-year
shaking”), in the recurrence frequency range that tends to dom-
inate EAL. Sensitivity of 50-year shaking at the two sites to the
various uncertainties tends to mirror that of the portfolio as a
whole: recurrence model and GMPE making a big difference,
moment-area and fault slip rate models making much less
difference.

We also examined losses more closely for 10 sample
California sites in the portfolio. Sites were selected at random
in a stratified sample, where each stratum had equal cumulative
value (10% of the total), and each site within a stratum had
equal likelihood of being selected. The sample is shown in
Table 5. Each site represents all construction of the specified
type in the specified census tract. Mean loss was calculated for
each site given mean shaking for each of approximately 12,000
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▴ Figure 9. Kolmogorov–Smirnov test suggests that 40-branch
trimmed logic tree and full 1920-branch logic tree draw from the
same population.
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▴ Figure 10. Results are not very sensitive to baseline values: (a) shows the tornado diagram based on the 960th record in the sorted list
of EAL; (b) shows the diagram based on the 963rd, which differs in baseline ground-motion-prediction equation, deformation model,
magnitude–area relationship, aperiodicity, B-fault b-value, and in whether to connect more B-faults.
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▴ Figure 11. UCERF2 tornado diagrams using (a) ATC-13 (b) Wesson et al. vulnerability models (c) Wald and Allen (2007) V S30 and (d) a
statewide inventory of all buildings.
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ruptures, using the OpenSHA event-set calculator (www.
opensha.org).

Weighting by contribution to the portfolio EAL, the
weighted-average V S30 of the sites is 330 m=sec, the Joyner-
Boore distance is 27 km, and the magnitude is 7.05. Referring
to Figure 2, these parameters suggest 20%–30% uniformly
higher mean shaking under AS2008 than CY2008, i.e., 0.25 g
versus 0.20 g. At these shaking intensities, mean repair cost,
assuming AS2008, is approximately 75% higher than under
CY2008, because of nonlinearity in the vulnerability functions.
This is more than enough to account for the 50% greater port-
folio EAL under AS2008 than CY2008.

The data presented here show that the other epistemic
uncertainties contribute little to uncertainty in statewide EAL,
but they do not explain why. We can hypothesize (though this
study stops short of testing the hypotheses): it seems reasonable
that parameters associated with Type-B faults should not
strongly influence EAL because, almost by definition, most
are smaller and less active than Type-A faults and therefore
contribute less to hazard at the statewide level. That the defor-
mation model does not strongly affect statewide hazard also
seems reasonable, since the differences between the models
have to do with allocating the same slip between two faults.
Reductions in the contribution to EAL resulting from lower
slip rates on one fault would be offset by increases resulting
from higher slip rates on the other.

Several questions remain. UCERF2 will be replaced with
version 3, currently under development; we do not know how
the findings will change. UCERF3 aims to include multi-fault
ruptures and spatiotemporal clustering. The NGA relation-
ships are also undergoing an update and, again, we do not
know how this will affect the findings. We do not know
how the tornado diagram might differ if, instead of EAL,
we examined a large rare loss (such as the loss with 0.4% ex-
ceedance probability in a year, often referred to as probable
maximum loss, or PML), or loss measured in terms of casualties
rather than repair costs. We do not know the extent to which
an examination of insurance loss (which includes deductibles
and limits) might produce different results. We have only par-
tially examined why the epistemic uncertainties in UCERF2

have the relative impact suggested here. We have not examined
how the findings might differ if one examined a portfolio from
a small region, such as a city in southern California. We do not
know the extent to which taking weighted averages of certain
branches, such as the GMPEs, might underestimate uncer-
tainty. And we offer no opinion on the relative scientific im-
portance of resolving any of the uncertainties.

CONCLUSIONS

There are many ways to explore the relative importance of the
various modeling uncertainties of the UCERF2 earthquake
rupture forecast (WGCEP, 2007) for the state of California.
We set out to better understand which uncertainties matter
most to societal economic risk, and performed a tornado-
diagram analysis of the sensitivity of EAL experienced by
an estimated statewide portfolio of woodframe single-family
dwellings. Here, EAL refers to expected value of repair cost
for the buildings alone.

We estimated EAL for 1920 combinations of UCERF2
modeling choice (480 branches) and four NGA relationships,
using a program we created called the Portfolio EAL Calcula-
tor, an extension of the OpenSHA software. The tornado-
diagram analysis shows that the uncertainty in the EAL among
all California woodframe single-family dwellings is dominated
by the choice of recurrence model; the aperiodicity parameter
value; the choice of ground-motion-prediction equation, and
the choice of magnitude–area relationship. They represent
40 of the 1920 branches when one fixes all the others at a value
arbitrarily selected from the available options.

Treating EAL as a random variable that varies with
UCERF2 modeling choices and GMPE, two probability dis-
tributions of EAL were calculated: one considering all 1920
branches and another where only the key uncertainties vary.
The two distributions have the same mean and coefficient of
variation, and pass a Kolmogorov–Smirnov goodness-of-fit
test, which suggests they come from the same underlying
distribution. The remaining epistemic uncertainties, while
scientifically important and potentially material to local
seismic hazard, local seismic risk, and perhaps low-probability,

Table 5
Sample Portfolio for Deaggregating Loss and Testing Effect of GMPE

Lat N Lon E V S30 (m= sec) Replacement Cost ($000) Structure Type
34.0469 −118.2617 280 $ 603 W1-m-RES1-DF
33.8781 −118.1600 280 $ 16,044 W1-h-RES1-DF
36.8444 −119.7923 387 $ 22,602 W1-h-RES1-DF
34.2455 −118.4176 280 $ 33,369 W1-h-RES1-DF
37.8455 −122.2836 280 $ 35,306 W1-h-RES1-DF
34.0557 −118.3706 280 $ 35,881 W1-h-RES1-DF
34.8860 −120.4251 349 $ 139,017 W1-h-RES1-DF
33.6094 −117.6852 390 $ 150,521 W1-h-RES1-DF
33.8808 −118.4073 387 $ 219,850 W1-m-RES1-DF
37.5482 −121.9499 280 $ 351,695 W1-m-RES1-DF
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high-loss events, only modestly affect statewide EAL experi-
enced by single-family woodframe dwellings or by the statewide
building stock as a whole.

One implication is that, if one is examining statewide EAL
and wishes to save computational time, the top three epistemic
uncertainties alone sufficiently represent uncertainty in hazard.
Considering them alone would reduce the complexity of the
logic tree by 50 times, from 1,920 to 40 branches. The 40
branches comprise five combinations of recurrence model
and aperiodicity (counting “empirical” only once among recur-
rence models), four ground-motion-prediction equations, and
two magnitude–area relationships. The reduction in model
complexity and computation effort is not accompanied by a
loss in uncertainty or a bias in expectation, compared with
a model that considers all 1,920 branches.

Another implication is that, for a user of risk information
concerned with statewide EAL, gathering more knowledge of
any of the key epistemic uncertainties could be more effective
in reducing uncertainty than exploring the other sources of
uncertainty. These conclusions are unchanged if one uses either
the leading expert-opinion-based alternative vulnerability mod-
el (ATC-13) or a recent empirical one (Wesson et al., 2004), or
if one uses an alternative model of V S30, namely Wald and Al-
len (2007), or if one uses a statewide portfolio representing all
buildings rather than just woodframe single-family dwellings.

A number of questions remain, such as how these findings
might differ under UCERF3, or using PML, casualties, or in-
surance EAL instead of ground-up EAL as the risk metric.
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