
Addres

Downloaded From: htt
INTERACTIVE IMAGE PROCESSING AND MANIPULATION

Stephen S. Nestinger, Graduate Research Assistant
Harry H. Cheng, Professor, ASME Fellow∗

Integration Engineering Laboratory
Dept. of Mechanical and Aeronautical Engineering

University of California, Davis
Davis, California 95616

Email: hhcheng@ucdavis.edu

Proceedings of the ASME 2007 International Design Engineering Technical Conferences & Computers and
Information in Engineering Conference

IDETC/CIE 2007
September 4-7, 2007, Las Vegas, Nevada, USA

DETC2007-35741
ABSTRACT
Electronic imaging informatics spans a diverse range of ap-

plications. These applications would benefit from an interpretive
imaging platform, which allows dynamic manipulation and pro-
cessing of electronic images. Ch is an embeddable C/C++ in-
terpreter that provides an interpretive platform for C/C++ based
scripts and programs. Combining Ch with ImageMagick pro-
vides the functionality for rapid development of user defined im-
age manipulation and processing applications and scripts. The
presented Ch ImageMagick package provides users with the abil-
ity to interpretively execute C code based on the ImageMagick C
library. This article describes the integration of ImageMagick
and Ch. The use of ImageMagick utilities in Ch scripts for rapid
prototyping is illustrated. A Web-based example demonstrates
the use of Ch and ImageMagick in C based CGI scripting to
facilitate the development of Web-based applications involving
image manipulation and processing.

1 Introduction
Electronic imaging informatics plays a significant role in to-

day’s information era. Imaging applications span a diverse range
of fields including industrial visual inspection systems, medical
imaging for diagnostics and prognosis, and astrophysics for the-
ory verification. The wide spread use of imaging informatics
requires the use of tools to modify and process specific image

∗
 s all correspondence to this author.
1

ps://proceedings.asmedigitalcollection.asme.org on 06/28/2019 Terms of U
information. Such tools have been created for medical imag-
ing [1–3], biology [4,5], computer vision [6,7], teaching [8–11],
and custom image processing systems [12]. Some tools utilize
the Internet as a front-end for image manipulation and process-
ing [13–17].

Imaging technologies typically produce large image sets,
which are then processed or manipulated before final delivery or
storage. Normally, image processing and manipulation are done
through an imaging application with a graphical user interface
(GUI) such as Adobe Photoshop or the GNU Image Manipula-
tion Program (GIMP). If done through a GUI-based application,
manipulating a large set of images requires a cumbersome pro-
cess of loading and manipulating each image individually. If the
manipulation procedures for an entire image set are the same,
it is easier to utilize a script to automatically iterate the pro-
cedure on individual images. Some GUI-based image manip-
ulation applications provide limited built-in scripting capabili-
ties. Users and developers not familiar with the specific built-
in scripting language may stagnate due to the required learning
curve. In addition, end-user needs are highly dynamic and re-
quire rapid changes to imaging operations. This requires con-
tinuous modification of the application specific internal scripts,
which consumes developer time and effort. The use of a script-
ing environment based on a widely known popular language that
supports image processing and manipulation operations would
greatly reduce the time consumed during the development phase
and in maintenance. This is especially true for developers in
Copyright c© 2007 by ASME

se: http://www.asme.org/about-asme/terms-of-use

Down
non-computer science and engineering disciplines who are not
used to developing applications in a large number of different
scripting languages. The best scripting environment would be
a C based interpretive platform. C is a standard programming
language used in all fields of science and engineering.

There are a few available image manipulation and process-
ing application programming interfaces (APIs) based on C/C++.
VXL [18] provides a collection of modular libraries for image
manipulation and processing, one of which is the VIL C++ core
library for loading, saving, and manipulating images in many
common file formats. The Microsoft Vision SDK [19] is a library
for writing programs to perform image manipulation and analy-
sis on computers running Microsoft Windows operating systems.
DIPlib [20] is a scientific image-processing C library that con-
tains a large number of functions for image manipulation and
processing. Gandalf [21] is a C based computer vision and nu-
merical library with an image package that provides low-level
image manipulation routines. LEADTOOLS [22], by Aurora
Co., provides a set of commercial packages like the Raster Imag-
ing Pro SDK, which contains a low level API, C++ Class Library
and .NET Class libraries for image manipulation and process-
ing. The Ch OpenCV package [7], a Ch binding to the popular
OpenCV [23] library, was created to supply developers with in-
teractive open architecture computer vision. Paintlib [24] is a
portable C++ class library for image loading, saving and manip-
ulation. However, these libraries and packages do not provide
a set of utilities for rapid image application prototyping. Some
of the packages are platform specific, which restricts develop-
ers, while others are relatively complicated and require a steep
learning curve. An optimum image manipulation and processing
library is one that not only provides robust utilities that can be
quickly used in scripts, but also a C/C++ backend with the same
functionalities as the utilities for application development.

ImageMagick is a widely used set of image manipulation
utilities that also provides a C/C++ API backend [25]. Im-
ageMagick provides a robust collection of tools and libraries for
writing, reading, and manipulating images. It incorporates many
different image formats including the popular JPEG, PNG, PDF,
SVG, TIFF and others. Utilizing the ImageMagick API in a C
based scripting environment provides users with the dynamic im-
age functionality they require and is useful for applications deal-
ing with a large set of images.

In lieu of the desired functionality of an open environment
image manipulation platform, the Ch ImageMagick package has
been developed [26]. Ch is an embeddable C/C++ cross-platform
interpreter. Use of Ch ImageMagick enhances the portability of
the ImageMagick API. Typically, the use of ImageMagick API
based applications on heterogeneous platforms requires recom-
piling the applications for each platform. Since Ch is platform
independent, use of Ch ImageMagick makes user code truly
portable across different platforms and readily to run without
compilation. Ch also provides powerful numerical features that
2

loaded From: https://proceedings.asmedigitalcollection.asme.org on 06/28/2019 Terms of U
further enhance image manipulation and processing applications.
These features are comparable to those in MATLAB [27] and
Mathematica [28], which also provide image processing and ma-
nipulation toolkits. However, Ch provides these features in the
framework of C, which makes C based vector and matrix opera-
tions more concise.

This article describes the use of the ImageMagick utilities
in Ch and the creation of the Ch ImageMagick package. Two
examples of using ImageMagick in Ch are given. The first ex-
ample uses Ch’s plotting capabilities, GTK, and ImageMagick to
produce a GUI-based interactive plotting application. Users can
modify the plotting algorithm and display an updated plot. The
second example utilizes the Ch CGI toolkit with the ImageMag-
ick utilities. The example demonstrates the ability to create a
Web-based user interface for the dynamic modification of im-
ages. Users can upload a file and choose which modification and
processing operations to apply. The resulting image is then dis-
played in a dynamically generated Web page.

2 Using the ImageMagick Utilities in Ch Scripts
Ch is an open architecture embeddable C/C++ interpreter

originally developed by Cheng [29] for cross platform scripting
[30], and numerical and embedded computing [31, 32]. Ch is an
extension and enhancement of the most popular Unix/Windows
C computing environment. Being platform independent, a Ch
program developed on one platform can be easily executed on a
different platform without the need of recompiling and linking.

Many features first implemented in Ch have been added
to the latest C standard called C99 [33]. These features in-
clude, complex numbers, variable-length array (VLA), binary
constants, and function name func . Ch also supports com-
putational arrays as first-class objects as in Fortran 90 and MAT-
LAB for linear algebra and matrix computations. Furthermore,
Ch supports all features of the ISO C90 standard ratified in 1990
[34]. Computational arrays simplify the implementation of in-
tensive computational image manipulation algorithms. Ch is es-
pecially suitable for Web-based client/server computing. Ch pro-
grams can be used through a common gateway interface (CGI)
in a Web server and as dynamic applets executed through a Web
browser.

As a scripting environment, Ch is a high-level software de-
velopment language based on the standard C language that al-
lows for quick and easy development and maintenance of trivial
tools. Using Ch as a scripting language allows for the gluing to-
gether of individual modules for rapid application prototyping.
Ch users can directly invoke system utilities that would require
many lines of code in order to be implemented otherwise. Once
the rapid prototyping phase has been completed, the commands
and utilities in a Ch script can be replaced with equivalent C
code. The code can then be run interpretively within Ch. This
allows for the rapid testing of applications before they are com-
Copyright c© 2007 by ASME

se: http://www.asme.org/about-asme/terms-of-use

D

Table 1. Utilities provided with ImageMagick.
Utility Description
animate animate an image sequence on any X server.
compare mathematically and visually annotate the difference between an image and its reconstruction.
composite overlap one image over another.
conjure interpret and execute scripts written in the Magick Scripting Language (MSL).
convert image format conversion as well as resize, blur, crop, despeckle, dither, draw on, flip, join, and much more.
display display an image or image sequence on any X server.
identify describe the format and characteristics of one or more image files.
import save any visible window on an X server and output it as an image file.
mogrify resize an image, blur, crop, despeckle, dither, draw on, flip, join, re-sample, and much more.
montage create a composite image by combining several separate images.
stream a lightweight tool to stream pixel components of an image or portion of an image to any storage format.
piled, thus saving development time and effort. After the tests
are complete and if desired, users can then compile their code
for optimized performance.

ImageMagick provides a collection of utilities for writing,
reading, and manipulating images. A list of these utilities and
a summary of what they can do is provided in Table 1. These
ImageMagick utilities can be used in a Ch script for the rapid
development of an image manipulation and processing applica-
tion. If necessary, ImageMagick utilities can be replaced using
the ImageMagick C API, which contains all of the functionalities
of the corresponding utility, and compiled for optimization.

3 Ch ImageMagick
Ch ImageMagick is a Ch binding to the ImageMagick C li-

brary. It makes all of the ImageMagick C library functionalities
available in a C script. A list of functionalities of the ImageMag-
ick C library is given in Table 2. Embedding Ch in graphics
applications allows users or developers to dynamically generate
and manipulate graphics at run-time. The Ch Software Devel-
opment Kit (SDK) allows for the porting of C libraries and func-
tions into Ch space by creating Ch packages that bind to the C
space libraries and functions [35]. To call a C function in the Im-
ageMagick C library in Ch, a wrapper function should be created
first. The wrapper function consists of two parts: a chf function
in Ch space and a chdl function in C space. The chdl functions
are compiled into a dynamically loaded library, which is loaded
during the execution of an image manipulation or processing pro-
gram or script. The concept behind Ch ImageMagick is shown
in Figure 1 where the function named NewMagickWand() in the
ImageMagick C library is called by a Ch script or program in Ch
space.

To invoke the function NewMagickWand(), Ch searches for
the equivalent chf file, NewMagickWand.chf in this case, and
passes the proper arguments to it. The NewMagickWand.chf
searches through the dynamically loaded library for the equiv-
alent chdl function, NewMagickWand chdl(), and passes argu-
3

ownloaded From: https://proceedings.asmedigitalcollection.asme.org on 06/28/2019 Terms of U
Table 2. ImageMagick image manipulation features.
Function Description
Format convert an image to different formats
Transform resize, rotate, crop, flip or trim an image
Transparency render portions of an image invisible
Draw add shapes or text to an image
Decorate add a border or frame to an image
Special effects blur, sharpen, threshold, or tint an image
Image calculator apply a mathematical expression to an

image or image channels
Text insert descriptive or artistic text
Identification acquire image format and attributes
Animation create a GIF animation sequence from a

group of images
Composite overlap one image over another
Montage juxtapose image thumbnails on an image

canvas
Large image read, process, or write mega- and

giga-pixel image sizes

ments to it. The NewMagickWand chdl() function then invokes
the NewMagickWand() function in the ImageMagick library. Any
return arguments are passed back to the initial function call in Ch
space.

Once the libraries and functions have been ported over to Ch,
there are three different ways that users can utilize the available
image manipulation functions from the C space library. The first
way is to take advantage of Ch’s ability to interpret C/C++ at the
prompt. Users can simply type in function names and commands
at the prompt. This allows users to quickly try out certain appli-
cation functionalities. The second way is to utilize Ch’s ability to
interpret C/C++ files by placing the user’s interactive code into
a C/C++ file and running that file as a program. C/C++ files can
be readily run at the prompt by typing in the name of the file.
This allows users to quickly modify chunks of code or a single
Copyright c© 2007 by ASME

se: http://www.asme.org/about-asme/terms-of-use

Dow
Figure 1. Concept of Ch SDK with Ch ImageMagick.

line of code and generate results without the need of recompiling
and linking. Since Ch is also a shell, system command calls can
also be placed in the file. The third way is to then compile their
program into a binary executable, which allows users to further
optimize their application if needed.

Ch has a wide variety of packages and toolkits that can be
used along side Ch ImageMagick to further enhance user appli-
cations. With the Ch CGI Toolkit [36], Web-based applications
can dynamically modify or process an image through the Inter-
net. Web-servers can use Ch based scripts to quickly convert,
scale or create user images on the fly, which keeps all of the lower
level details away from the user. With the Ch GTK+ toolkit [37],
users can create graphical user interfaces to their application us-
ing ImageMagick as a backend for image manipulation.

4 Sample Interactive Image Manipulation Applica-
tions
This section describes a few interactive image manipulation

applications that demonstrate the practical use of the ImageMag-
ick utilities and C library in Ch.

4.1 Interpretive Execution of Image Manipulation Pro-
grams

A user specific image manipulation application can be cre-
ated in several ways. One method is to utilize Ch as a shell envi-
ronment by which utilities can be readily invoked in a Ch script
to manipulate images. The second method is to utilize Ch Im-
ageMagick and make function calls directly to the ImageMagick
API. Ch ImageMagick supports all C functions available from
the ImageMagick library. A C/C++ program using these func-
tions can be readily treated as a Ch script. The program can
be directly executed in different command shells and integrated
development environments (IDEs) without compilation and link-
4

nloaded From: https://proceedings.asmedigitalcollection.asme.org on 06/28/2019 Terms of U
Figure 2. A graphical user interface for plotting functions in Ch.

...
plot.data2D(x,y);
plot.outputType(..., "plot.png");
plot.plotting();
convert plot.png plot.xpm
// or system("convert plot.png plot.xpm");
pixmap =

gdk_pixmap_create_from_xpm(..., "plot.xpm");
gdk_draw_pixmap(...);
...

Figure 3. Using ImageMagick utilities for image conversion in a Ch
script.

ing. If desired, the functions can be called directly within a Ch
shell. This allows developers to quickly try out user defined func-
tions or a procedure of functions before placing them into a file.
Once the procedure is complete, the required sequence of func-
tions can be placed into a file and run as a Ch script.

Figure 2 shows a graphical user interface for plotting func-
tions launched by a Ch program using GTK. The application
shows a common use of image manipulation in which images
are converted into a different format in order to be utilized. The
application uses Ch’s plotting capabilities to produce a PNG for-
mat image, which is then converted into a image format that can
be handled by GTK’s drawable interface. A snippet of the code
used is shown in Figure 3.
Copyright c© 2007 by ASME

se: http://www.asme.org/about-asme/terms-of-use

Dow
MagickWand *mw;
mw = NewMagickWand();
MagickReadImage(mw,"plot.png");
MagickWriteImages(mw,"plot.xpm", MagickTrue);
mw = DestroyMagickWand(mw);

Figure 4. Using ImageMagick C library for image conversion in a Ch
script.

Two methods can be used to complete the conversion from
the PNG to XMP format. The first method is to utilize Im-
ageMagick’s convert utility as a shell command as shown below.

convert plot.png plot.xpm

The interpretive execution of the application first creates the plot
in the PNG file plot.png and then converts it to a XPM format
by invoking convert as a shell command as shown in Figure 3.
The second method uses the MagickWand API available in the
ImageMagick library. The program in Figure 4 can be used to
replace the convert command in Figure 3. The code first declares
a MagickWand object pointer, which is initialized using the call
to the NewMagickWand() function. The desired image is then
read in using the function MagickReadImage() and written out
in a different format with the function MagickWriteImage(). The
MagickWand object is then destroyed.

4.2 Ch and ImageMagick Web applications
This section introduces a Web-based image system using Ch

and ImageMagick. It also presents how to implement Web-based
image manipulation and processing applications based on the Im-
ageMagick utilities, Ch, Ch ImageMagick, and Ch CGI.

4.2.1 Implementation of Ch and ImageMagick
Web-based interfaces Using the ImageMagick utilities,
Ch, Ch ImageMagick and Ch CGI, Web-based interactive im-
age manipulation and processing applications can be dynami-
cally created and easily implemented. Figure 5 gives an overview
of the Web-based image manipulation concept.

The implementation of the Ch and ImageMagick Web-based
interface is based on the use of a standard HTTP Web server.
By using a standard Web server, there is no need to develop a
specific in-house image manipulation and processing server dae-
mon. HTTP based systems are coordinated through a server
client compliance by which client requests are sent to the server
as HTML documents. Parameters encoded in HTML documents
are extracted by a Ch CGI script, which causes the invocation of
corresponding Ch ImageMagick scripts or programs. In a Web-
based image manipulation and processing system, clients gener-
ally upload an image or a set of images and specify the manipula-
tion and processing procedures to be applied to the image or the
set of images. Ch CGI scripts are then invoked with the resulting
image or images displayed in a Web browser.
nloaded From: https://proceedings.asmedigitalcollection.asme.org on 06/28/2019 Terms of
Figure 5. Interactive Web-based image manipulation application.

A CGI enabled Web server is able to receive client requests,
execute applications on the server, and send execution results
back to the client. HTML interactions are based on static infor-
mation. CGI allows Web servers to output dynamic Web-based
information according to client requests. CGI applications can
be written in any language allowed by the host. Scripting lan-
guages are preferred based on the ability to quickly modify and
easily debug and maintain scripts as compared to compiled pro-
grams. With Ch, C/C++ programs become scripts. The Ch CGI
toolkit provides four easy-to-use classes, CResponse, CRequest,
CServer, and CCookie, which provide member functions similar
to the API in active server page (ASP) and Java server page (JSP).
Member functions of these classes can be directly integrated into
image manipulation and processing applications. The transfer of
user required input is accomplished through a fill-out form on
the Web page. The user parameters are extracted by Ch CGI pro-
grams and directly passed to image manipulation and process-
ing programs. The image manipulation and processing programs
then generate dynamic Web pages with the desired results. A
Ch CGI script using Ch ImageMagick or the ImageMagick util-
ities can be created to allow for on-line image manipulation and
processing.

4.2.2 Web-based interactive image manipulation
and processing An example of a Web-based manipulation
and processing interface using Ch and ImageMagick is shown
in Figure 6. The source code for this example is available on
the Web [38]. The Web-based interface is simple and can be
accessed by any user with access to a Web browser. The pro-
cess starts with the user uploading an image they would like to
manipulate or process. In the example, the file chosen is called
lenna.tif. Afterward, the user can then choose from a list of ma-
nipulation options. The options available through the Web-based
interface are listed in Table 3 and are only a selected few of the
available features in ImageMagick.

The example shows that the convert option was selected to
convert the image from the input format of TIFF to an output
5 Copyright c© 2007 by ASME

Use: http://www.asme.org/about-asme/terms-of-use

Downloade
Figure 6. Interactive Web-based image manipulation and processing upload form.
format of PNG, the edge option was selected to detect edges us-
ing a radius of 2 pixel counts, and the rotate option was selected
to rotate the image by a positive 90 degrees. The selected op-
tions and there arguments, if any, are embedded in the HTML
as parameters. When the user clicks on the submit button at the
bottom of the page, these parameters are encoded by the client
browser and sent to the HTTP server. The HTTP server then de-
codes the parameters via the Ch CGI program using the Ch CGI
member function CRequest::getFormNameValue(). Since the Ch
6

d From: https://proceedings.asmedigitalcollection.asme.org on 06/28/2019 Terms of Us
CGI toolkit is a set of C++ classes, CGI programs can be easily
integrated with ImageMagick so that the system parameters can
be directly passed to applications without any additional inter-
face. The activation of the CGI program commences the image
manipulation and processing according to the parameters speci-
fied. The CGI program then dynamically creates a Web page to
display the resulting image. Different manipulation procedures
are chosen and the resulting output is shown in Figure 7. The dy-
namically created output Web page gives the command used to
Copyright c© 2007 by ASME

e: http://www.asme.org/about-asme/terms-of-use

Downloaded Fro
Figure 7. Interactive Web-based image manipulation and processing results.
manipulate and process the uploaded image from the user. The
command used is given as follows.

convert -edge 2 -rotate 90 lenna.tif output.png

The command indicates that the convert ImageMagick utility was
invoked to manipulate and process the input image lenna.tif and
the output was written to output.png. The other options applied
to the image were edge and rotate with arguments of 2 and 90, re-
7

m: https://proceedings.asmedigitalcollection.asme.org on 06/28/2019 Terms of Us
spectively. Using commands directly in a CGI script, Ch simpli-
fies the development of CGI scripts and Web-based applications.

A snippet of the CGI code is shown in Figure 8. After con-
vert is invoked to apply the manipulation procedures imposed by
the client, a thumbnail view of the resulting image is dynamically
generated based on the size of the output image. The CGI code
uses the ImageMagick utility identify to get the width of the out-
Copyright c© 2007 by ASME

e: http://www.asme.org/about-asme/terms-of-use

Table 3. Options provided by the Web-based image manipulation and
processing form.

Option Description
resize resize the image based on a percentage entered

by the user
negate invert the image or reverses all of the colors in

the picture
convert convert the file to a desired format
charcoal change the image to simulate a charcoal drawing
edge enhance edges within the image with a

convolution filter of a given radius
emboss emboss the image
rotate apply image rotation based on the degrees entered

by the user

...
value = ‘identify -format "%w" $outname‘;
if(atoi(value) > 150)
convert -resize x150 $outname thumbnail2.jpg

else
convert $outname thumbnail2.jpg

...

Figure 8. Sample of the CGI code used in the We-based application.

put image. The name of the output image is stored in the variable
outname and referenced as a script variable using the symbol ‘$’.
The output image width is obtained using the format option pass-
ing it a format argument of “%w” where ‘%w’ is a modifier for
image width. The output from the shell command is stored in
the string variable value and used in the if statement by passing
it through atoi(). If the width of the output image is greater than
150 pixels, the ImageMagick utility convert is used to resize the
output image to have a width of 150 pixels. The height of the im-
age is scaled automatically using the original aspect ratio. If the
output image has a width less than 150 pixels, the image is not
resized. In either case, the convert utility is used to convert the
output image into a JPG file called thumbnail2.jpg. The thumb-
nail view is then used in the output Web page and linked to the
output image for viewing.

5 Conclusions
This article described the utilization of ImageMagick’s im-

age manipulation and processing functionalities in Ch. The open
source Ch ImageMagick package was introduced. It supports all
C functions available in the ImageMagick C library. A C/C++
program using these functions can be readily treated as a Ch
script and run directly from the Ch shell without the need of
compiling and linking. The functionality of the Ch ImageMag-
ick package was further enhanced by using other available Ch
8

Downloaded From: https://proceedings.asmedigitalcollection.asme.org on 06/28/2019 Terms of Us
packages. Since Ch ImageMagick is scriptable, embeddable, and
truly platform independent, it is a convenient tool for the rapid
prototyping of image manipulation and processing applications,
Web-based applications, and ideal for teaching image processing
and manipulation.

Ch, Ch ImageMagick, and Ch CGI are freely available and
can be downloaded from the Internet [29]. A methodology for
the implementation of Web-based image manipulation and pro-
cessing systems based on Ch, ImageMagick, and Ch CGI was
introduced in this article. The method described in this article
can be followed to produce a low cost and easy to maintain Web-
based image manipulation and processing system. Ch with Im-
ageMagick gives users vast versatility and quick image manipu-
lation program prototyping capabilities.

REFERENCES
[1] Lobo-Stratton, G., Mercer, T., and Polman, R., 2006. “Pa-

tient exam data reconciliation tool”. Journal of Digital
Imaging, 19, pp. 60–65.

[2] Crane, J. C., Crawford, F. W., and Nelson, S. J., 2006.
“Grid enabled magnetic resonance scanners for near real-
time medical image processing”. Journal of Parallel and
Distributed Computing, 66(12), Dec, pp. 1524–1533.

[3] Shen, H., Nelson, G., Nelson, D. E., Kennedy, S., Spiller,
D. G., Griffiths, T., Paton, N., Oliver, S. G., White, M.
R. H., and Kell, D. B., 2006. “Automated tracking of
gene expression in individual cells and cell compartments”.
Journal of the Royal Society Interface, 3(11), Dec, pp. 787–
794.

[4] Philippsen, A., Schenk, A. D., Signorell, G. A., Mariani, V.,
Berneche, S., and Engel, A., 2007. “Collaborative EM im-
age processing with the IPLT image processing library and
toolbox”. Journal of Structural Biology, 157(1), January,
pp. 28–37.

[5] Hohn, M., Tang, G., Goodyear, G., Baldwin, P., Huang, Z.,
Penczek, P. A., Yang, C., Glaeser, R. M., Adams, P. D.,
and Ludtke, S. J., 2007. “SPARX, a new environment for
Cryo-EM image processing”. Journal of Structural Biol-
ogy, 157(1), January, pp. 47–55.

[6] Biancardi, A., Cantoni, V., Codega, D., and Pini, M., 1997.
“An interactive tool for C.V. tutorials”. In Proceedings of
the Fourth IEEE International Workshop on Computer Ar-
chitecture for Machine Perception (CAMP ’97), pp. 170–
174.

[7] Yu, Q., Cheng, H. H., Cheng, W. W., and Zhou, X., 2004.
“Ch OpenCV for interactive open architecture computer vi-
sion”. Advances in Engineering Software, 35(7-8), pp. 527–
536.

[8] Mason, T. P., Applebaum, E. L., Rasmussen, M., Millman,
A., Evenhouse, R., and Panko, W., 2000. “Virtual temporal
bone: Creation and application of a new computer-based
Copyright c© 2007 by ASME

e: http://www.asme.org/about-asme/terms-of-use

Do
teaching tool”. Otolaryngology-Head and Neck Surgery,
122(2), February, pp. 168–173.

[9] Bogdanova, I., Vandergheynst, P., and Kunt, M., 2002.
“Virtual classroom for multimedia teaching on WWW”. In
Proceedings of the 32nd ASEE/IEEE Frontiers in Educa-
tion Conference.

[10] Bamberger, R. H., 1994. “Portable tools for image pro-
cessing instruction”. In Proceedings of the IEEE Interna-
tional Conference on Image Processing (ICIP-94), Vol. 1,
pp. 525–529.

[11] Chan, K. L., 1992. “An interactive image processing sys-
tem”. In Proceedings of the IEEE ’Communications on the
Move’ (Singapore ICCS/ISITA ’92), Vol. 1, pp. 366–369.

[12] Martin, S., and Alves, J. C., 2005. “A high-level tool for
the design of custom image processing systems”. In Pro-
ceedings of the IEEE 8th Euromicro conference on Digital
System Design (DSD’05).

[13] Young, N., Chang, Z., and Wishart, D. S., 2004. “GelScape:
a Web-based server for interactively annotating, manipu-
lating, comparing and archiving 1D and 2D gel images”.
Bioinformatics, 20(6), April, pp. 976–978.

[14] Bozinov, D., 2003. “Autonomous system for Web-
based microarray image analysis”. IEEE Transactions on
Nanobioscience, 2(4), December, pp. 215–220.

[15] Zeng, H., Fei, D. Y., Fu, C. T., and Kraft, K. A., 2003. “In-
ternet (WWW) based system of ultrasonic image process-
ing tools for remote image analysis”. Computer Methods
and Programs in Biomedicine, 71(3), July, pp. 235–241.

[16] Drap, P., and Grussenmeyer, P., 2000. “A digital pho-
togrammerty workstation on the WEB”. ISPRS Journal
of Photogrammetry and Remote Sensing, 55(1), February,
pp. 48–58.

[17] Chen, G., Yi, H., and Ni, Z., 2005. “MIPP: A Web-based
medical image processing system for stent design and man-
ufacturing”. In Proceedings of the IEEE Interntional Con-
ference on Services Systems and Services Management
(ICSSSM ’05), Vol. 2, pp. 1484–1488.

[18] VXL. http://vxl.sourceforge.net.
[19] Microsoft Research Center.

http://research.microsoft.com/vision.
[20] DIPlib. http://www.ph.tn.tudelft.nl/DIPlib.
[21] Gandalf. http://gandalf-library.sourceforge.net.
[22] LEADTOOLS. http://www.leadtools.com.
[23] INTEL. Open Source Computer Vision Library (OpenCV).

http://www.intel.com/technology/computing/opencv.
[24] paintlib. http://www.paintlib.de/paintlib.
[25] ImageMagick. http://www.imagemagick.org.
[26] ChMagick. http://www.imagemagick.org/ChMagick.
[27] MATHWORKS, INC. MATLAB.

http://www.mathworks.com.
[28] WOLFRAM RESEARCH, INC. Mathematica.

http://www.wolfram.com.
9

wnloaded From: https://proceedings.asmedigitalcollection.asme.org on 06/28/2019 Terms of Us
[29] Ch — an Embeddable C/C++ Interpreter.
http://www.softintegration.com.

[30] Cheng, H. H., 2006. “Ch: A C/C++ interpreter for script
computing”. C/C++ User’s Journal, 24(1), Jan., pp. 6–12.

[31] Cheng, H. H., 1993. “Scientific computing in the Ch pro-
gramming language”. Scientific Programming, 2(3), Fall,
pp. 49–75.

[32] Cheng, H. H., 1993. “Handling of complex numbers in the
Ch programming language”. Scientific Programming, 2(3),
Fall, pp. 76–106.

[33] ISO/IEC, 1999. International Standard: Programming
languages - C. Geneva, Switzerland.

[34] ISO/IEC, 1990. International Standard: Programming
languages - C. Geneva, Switzerland.

[35] SoftIntegration. The Ch Language Environ-
ment – SDK User’s Guide. SoftIntegration, Inc.
http://www.softintegration.com.

[36] SOFTINTEGRATION, INC. Ch CGI Toolkit.
http://www.softintegration.com/products/toolkit/cgi/.

[37] SOFTINTEGRATION, INC. Ch GTK+ Toolkit.
http://www.softintegration.com/products/toolkit/gtk/.

[38] Ch ImageMagick Example Website.
http://iel.ucdavis.edu/projects/chimagemagick.
Copyright c© 2007 by ASME

e: http://www.asme.org/about-asme/terms-of-use

