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1. Introduction

The analysis of radiation from a waveguide is essentially the same as the diãraction of a wave by
a rectangular hole in an inånite plate and it may be rigorously treated by applying the method of the
Kobayashi potential (KP).[1]Ä [3] For the two-dimensional problem, one of the authors has derived an
exact expression of the åeld radiated from a çanged parallel-plate waveguide via the method of the KP
and some numerical results were presented.[4]

In this paper, the radiation of an electromagnetic wave from a çanged rectangular waveguide is
exactly formulated by using the KP method when the waveguide is excited by TE- and TM-mode waves.
The process of analysis is similar to [4]. The åelds in the waveguide and half-space are expanded in
terms of the normal modes of the waveguide and the Weber-Schafheitlin (WS) discontinuous integrals,
respectively. Imposing the continuity of the tangential components of the åelds on the aperture, we obtain
a matrix equation to determine the expansion coeécients of the diãracted wave. The matrix elements
are given by double inånite integrals and double inånite series which contain Bessel functions, and an
eãective method for computing the double inånite series is proposed. Using the derived formula for the
far diãracted åeld, the radiation patterns are computed for various kinds of parameters.

2. Statement of the problem

Fig. 1 shows an open-ended çanged rectangular waveguide and the related coordinate systems. We
study the åeld Ed radiated from the aperture to the half-space z > 0, when an electromagnetic wave Ei

in the waveguide are propagating in the positive z direction. The çange and waveguide are assumed to
be perfectly conducting and the permittivity and permeability of the half-space（region I）are è1 and
ñ1, respectively. The inside of the waveguide（region II） is ålled with a homogeneous isotropic medium
with parameters è2, ñ2, and the dimension of the guide is 2aÇ2b. The aperture and çange are located in
the z = 0 plane. Because of the discontinuity of the geometry at z = 0, the reçected wave of the incident
wave and the higher-order mode waves are excited at the open end. In this analysis, the harmonic time
dependence exp(j!t) is assumed and omitted throughout.
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Fig.1 Flanged rectangular waveguide and coordinate systems

A. Field in the waveguide

For simplicity, we separate the incident wave Ei in the waveguide into TE- and TM-mode waves.
The reçected wave Er including the higher-order mode waves is represented as linear combination of the
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TE and TM modes. In this analysis, we use the z component of vetor potentials for the incident and
reçected waves. The electric vector potential Fz is used for TE mode and the magnetic vector potential
Az is for TM mode. These potentials are expanded by eigenmode functions of the waveguide as follows.
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where ò= x=a, ë= y=b, za = z=a are the normalized variables, and the other symbols are deåned by
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p
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B. Expression of the diãracted åeld

We use the x and y components of the electric vector potential F for the diãracted waves in the half-
space, and these are expressed by using the Fourier transform of the Helmholtz equation. The expressions
include some unknown functions which are determined by the following boundary conditions.
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Here D =
à
(x; y)

åå jxj < a; jyj < bâ öR2 represents the domain of the aperture, and Dc is the comple-
ment of D, that is, the region on the çange. Eqs. (4b) and (4c) express the continuity of the tangential
components of the electric and magnetic åelds on the aperture, respectively. Eq. (4a) is the condition
that the tangential electric åeld must vanish on the çange, and it is automatically satisåed by representing
the åeld by the WS integrals. Therefore, the resultant expressions of F dx and F

d
y are given as follows.

F dx = aè1

1X
m=0

1X
n=0

Z 1

0

Z 1

0

1

ê(ã;å)

n
Éõ2m(ã) cosãò

h
A(x)mnÉ

ú
2n(å) cosåë+B

(x)
mnÉ

ú
2n+1(å) sinåë

i
+Éõ2m+1(ã) sinãò

h
C(x)mnÉ

ú
2n(å) cosåë+D

(x)
mnÉ

ú
2n+1(å) sinåë

io
exp [Äê(ã;å) za ] dãdå (5a)

F dy = aè1
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The parameters õand ú, which aãect the convergence of the solution,[5] have some arbitrariness to choose.
If we select õ= 1 and ú= 0, Eq. (5) coincides with that of the thin rectangular aperture.[3]

C. Matrix equation

By enforcing the remaining conditions (4b) and (4c), we can get a determinantal equation for the

expansion coeécients A(x)mn through D
(x)
mn and A

(y)
mn through D

(y)
mn as a matrix equation.

(1) TE-mode wave incidence

Imposing the condition (4b) to the tangential electric åelds on the aperture and separating the
variable òand ë by using the orthogonality of trigonometric functions, one relation of the expansion
coeécients is obtained. Next, imposing the condition (4c) of the tangential magnetic åeld and applying
the orthogonality of the Jacobi's polynomials,[3] we obtain another relation for the coeécients. From
these relations, the matrix equation for the expansion coeécients is derived as below.î
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The matrix elements consist of double inånite integrals and double inånite series, which are given by
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where é̀`0 is the Kronecker delta and çmn =
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(2) TM-mode wave incidence

From the same process as TE mode, Eq.(6) is again obtained except for the expressions of Pst below.
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D. Expression of the far åeld

The far-åeld expression can be obtained from Eq. (5) by applying the stationary phase method of
integration,[3] and the resulting expression is given by
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where îa = î1 sinícosû, îb = qî1 sinísinû. The far electric åeld is computed by the following relations.

Eí' j(k1=è1)(Fx sinûÄ Fy cosû); Eû ' j(k1=è1) cosí(Fx cosû+ Fy sinû): (12)

3. Computation of the matrix elements
To obtain the diãracted patterns by means of Eqs. (11) and (12), we must determine the expansion

coeécients by solving the matrix equation of (6) which include double inånite integrals and double inånite
series. The double inånite integral is calculated with the method of [6], and similar manner may also
be applied to the computation of the double inånite series. Therefore, the asymptotic expression of the
summand is used. In the process of the computation of the double inånite series for õ= 1 and ú= 0,
the following single and double inånite series about the algebraic functions are obtained, which are also
appeared in the diãraction problem of a scalar wave by a thick rectangular aperture.[7]
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S` is calculated with the desired accuracy by using the Taylor expansion of the summand for b < xN+1,
but its expression converges fairly slowly when b approaches xN+1. For the large b value, we use an integral
formula of the modiåed Bessel function K0(x) and the trigonometric function, and S` is transformed into
the sum of an inånite integral converging rapidly and some ånite series. SWk` is also calculated using
two formulas about the modiåed Bessel function. Thus, we can estimate the values of the double inånite
series containing the Bessel functions, and the radiation pattern is readily obtained from Eqs. (11) and
(12). For the various kinds of incident waves and aperture sizes the far-åeld patterns are computed,
although the plots of the results are omitted here for saving space.

4. Conclusion
We derived the exact solution of the electromagnetic åeld radiated from a çanged rectangular wave-

guide by using the method of the Kobayashi potential for TE- and TM-wave incidences. The problem
was reduced to the matrix equation for the expansion coeécients of the diãracted åeld, and the matrix
elements were given by double inånite integrals and double inånite series. By using the eãective method
for computing these integrals and series, the radiation patterns were obtained for the various kinds of
parameters. Since our results can be readily extended to the problem of a rectangular waveguide array as
in the two-dimensional problem,[8] the rigolous treatment of mutual coupling between the elements will
be made in the near future.
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