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Abstract

This paper provides the convex hull description for the following basic operating con-
straints of a single power generation unit in Unit Commitment (UC) problems: 1) gener-
ation limits, 2) startup and shutdown capabilities, and 3) minimum up and down times.
Although the model does not consider some crucial constraints, such as ramping, the
proposed constraints can be used as the core of any UC formulation, thus tightening
the final UC model. We provide evidence that dramatic improvements in computational
time are obtained by solving a self-UC problem for different case studies.

Keywords: Unit Commitment (UC), Mixed-Integer Programming (MIP),
Facet/Convex hull description.

1. Introduction

The short-term Unit Commitment problem requires to optimally operate a set of
power generation units over a time horizon ranging from a day to a week. Despite
significant improvements in Mixed-Integer Programming (MIP) solvers, the time required
to solve Unit Commitment (UC) problems continues to be a critical limitation that
restricts its size and scope. Nevertheless, improving the UC formulation can dramatically
reduce its computational burden and so allow the implementation of more advanced and
computationally demanding problems.

Ideally, an MIP problem can be reformulated so that the feasible region of the corres-
ponding Linear Programming (LP) model becomes the convex hull of the feasible points.
If this is possible, we could solve an MIP as an LP since each vertex is a point satisfying
the integrality constraints and hence it always exists an optimal solution of the LP that
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is optimal for the corresponding MIP [14]. Unfortunately, in many practical problems
there is an enormous number of inequalities needed to describe the convex hull, and the
effort required to obtain them outweighs the computation needed to solve the original
formulation of the MIP problem [14, 13]. For the UC case, however, it is possible to
tighten the feasible region of the relaxed LP problem, consequently obtaining dramatic
improvements in computation [14, 13, 11, 8, 7].

In particular, an UC formulation can be considerably tightened by providing the con-
vex hull (or tight) description of some set of constraints. Even though other constraints
in the problem might add some fractional vertices, this solution should be nearer to the
optimal solution than would be the original model [14, 13]. Some efforts in tightening
specific set of constraints have been done, such as: the convex hull of the minimum up
and down times [5, 6, 12], cuts to tighten ramping limits [11], tighter approximation
for quadratic generation costs [4], and simultaneously tight and compact description of
thermal units operation [8, 7].

This paper further improves the work in Morales-Espana et al. [7] by providing the
convex hull description for the following set of constraints: generation limits, startup
and shutdown capabilities, and minimum up and down times. In addition, different case
studies for a self-UC were solved as LP obtaining feasible MIP solutions; if compared with
three other MIP formulations, the same optimal results were obtained but significantly
faster.

The remainder of this paper is organized as follows. Section 2 introduces the main
notation used to describe the proposed formulation. Section 3 details the basic operating
constraints of a single generating unit. Section 4 contains the facet inducing and convex
hull proofs for the proposed linear description of the self-UC subproblem. Section 5
provides and discusses results from several case studies, where a comparison with other
three UC formulations is made. Finally, some relevant conclusions are drawn in Section 6.

2. Notation

Here we introduce the main notation used in this paper. Lowercase letters are used
for denoting variables and indexes. Uppercase letters denote parameters.

2.1. Indexes

t Time periods, running from 1 to T hours.

2.2. Unit’s Technical Parameters

P Maximum power output [MW].

P Minimum power output [MW].

SD Shutdown capability [MW].

SU Startup capability [MW].

TD Minimum down time [h].

TU Minimum up time [h].
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Figure 1: Unit’s operation including its startup and shutdown capabilities

2.3. Continuous Decision Variables

pt Power output of the unit for period t, production above the unit’s minimum
output P [MW].

2.4. Binary Decision Variables

ut Commitment status of the unit for period t, which is equal to 1 if the unit is
online and 0 offline

vt Startup status of the unit, which takes the value of 1 if the unit starts up in
period t and 0 otherwise.

wt Shutdown status of the unit, which takes the value of 1 if the unit shuts down
in period t and 0 otherwise.

3. Modelling the Unit’s Operation

This section describes the mathematical formulation of the basic operation of a single
generating unit in Unit Commitment (UC) problems. The following set of constraints are
modelled: generation limits, minimum up and down times, and startup and shutdown
capabilities. As shown in Figure 1, the startup capability SU is the maximum energy that
a generating unit can produce when it starts up. Similarly, the unit should be producing
bellow its shutdown capability SD when it shuts down. All these constraints are inherent
to units’ operation and they are included in recent Unit Commitment literature, see
[1, 4, 11, 7, 9] and references therein for further details.

The unit’s generation limits taking into account its maximum P and minimum P
production, as well as its startup SU and shutdown SD capabilities are set as follows:

p1 ≤
(

P − P
)

u1 −
(

P − SD
)

w2 (1)

pt ≤
(

P − P
)

ut −
(

P − SU
)

vt

−
(

P − SD
)

wt+1 t ∈ [2, T − 1] (2)

pT ≤
(

P − P
)

uT −
(

P − SU
)

vT (3)

It is important to highlight that the continuous decision variable pt is the generation
over P . The total generation output can be obtained as utP + pt.



4

Be aware that (2) may be infeasible in the event that the unit is online for just one
period. That is, vt = wt+1 = 1 and the right side of (2) can be negative. Consequently,
(2) is only valid for units with uptime TU ≥ 2. Therefore, the correct formulation for
units with TU = 1 is given by:

pt ≤
(

P − P
)

ut −
(

P − SD
)

wt+1

−max (SD−SU, 0) vt ∀t ∈ [2, T − 1] (4)

pt ≤
(

P − P
)

ut −
(

P − SU
)

vt

−max (SU−SD, 0)wt+1 ∀t ∈ [2, T − 1] . (5)

Note that if SU =SD then (4)-(5) would be equivalent to the power limit constraints
proposed in [7].

The logical relationship between the decision variables ut, vt and wt; and the minimum
uptime TU and downtime TD limits are ensured with

ut − ut−1 = vt − wt ∀t ∈ [2, T ] (6)

t
∑

i=t−TU+1

vi ≤ ut ∀t ∈ [TU + 1, T ] (7)

t
∑

i=t−TD+1

wi ≤ 1− ut ∀t ∈ [TD + 1, T ] (8)

where (6)-(8) are the constraints proposed in [12] to describe the convex hull formulation
of the minimum-up and -down time constraints. Finally, the variable bounds are given
by

0 ≤ ut ≤ 1 ∀t (9)

vt ≥ 0, wt ≥ 0 ∀t ∈ [2, T ] (10)

pt ≥ 0 ∀t. (11)

In summary, inequalities (1)-(3) together with (6)-(11) describe the operation for
units with TU ≥ 2; and (1) together with (3)-(11) for the cases in which TU = 1.

4. Strength of the Proposed Inequalities

In this section, we prove that inequalities (1)-(5) and (11) are facet defining.
Note that constraints (6) uniquely define the value of the variables w as a function

of variables u and v. Unless differently specified, in the following, we will consider only
the space defined by the variables u, v, and p. Moreover, we suppose that all constraints
(1)-(5) and (7)-(11) are rewritten by substituting the w variables accordingly.

Definition 1. Let CT

(

TU, TD,P , P , SU, SD
)

be the convex hull of the feasible integer
solution for the problem. That is, for TU ≥ 2, we write

CT (TU ≥ 2, TD, P , P , SU, SD) =
conv{(u, v, p) ∈ {0, 1}2T−1 ×RT

+| (u, v, p) satisfy (1)-(3) and (7)-(11)};
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u1 u2 · · ·ut−1 ut ut+1· · · uT−1 uT p1 p2 · · ·pt−1 pt pt+1· · · pT−1 pT v2 · · ·vt−1 vt vt+1· · · vT−1 vT w2 · · ·wt−1 wt wt+1· · ·wT−1 wT

x(1) (1 0 · · · 0 0 0 · · · 0 0 gxt 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 1 · · · 0 0 0 · · · 0 0)
x(2) (1 1 · · · 0 0 0 · · · 0 0 gxt 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0)
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q(t) (0 0 · · · 0 1 0 . . . 0 0 0 0 · · · 0 g
q
t 0 . . . 0 0 0 · · · 0 1 0 . . . 0 0 0 . . . 0 0 1 . . . 0 0)

y(T+1)(1 1 · · · 1 1 1 · · · 1 1 P P · · · P g
y
t P · · · P 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0)

Figure 2: 3T Affinely independent points for gxt , gt = 0 and gzt = U , where U = SU − P , D = SD − P

and P = P − P .

for TU = 1, we write

CT

(

TU = 1, TD, P , P , SU, SD
)

=
conv

{

(u, v, p) ∈ {0, 1}2T−1 ×RT
+| (u, v, p) satisfy (1), (3)-(5), and (7)-(11)}.

For short we write CT for CT

(

TU, TD,P , P , SU, SD
)

, CT (TU ≥ 2) for CT (TU ≥

2, TD, P , P , SU, SD), and CT (TU = 1) for CT (TU = 1, TD, P , P , SU, SD).

In order to simplify the proofs, we introduce the points xi, yi, zi ∈ CT , as shown in
Figure 2. For short, we introduce the parameters U , D, and P which are equivalent to
U = SU − P , D = SD − P , and P = P − P , respectively.

Proposition 2. CT

(

TU, TD,P , P , SU, SD
)

is full-dimensional in terms of u, v and p.

Proof. From Figure 2, it can be easily shown that the 3T points xi, yi, and zi for
i ∈ [1, T ] are affinely independent when gxt = gt = 0, gyt = P , and gzt = U . Note that
in case D = 0 the point y(1) must be replaced by y(T+1), thus keeping the 3T affinely
independent points. This applies for all the following proofs; but for the sake of brevity,
we assume in the following that D 6= 0.

Proposition 3. The inequalities (2) describe facets of the polytope CT

(

TU ≥ 2
)

.
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Proof. We show that (2) describe facets of CT

(

TU ≥ 2
)

by the direct method [14]. We

do so by presenting 3T−1 affinely independent points in CT

(

TU ≥ 2
)

that are tight (i.e.,
that satisfy as an equality) for inequality (2). Note in Figure 2 that the point zT (the
origin) satisfies (1)-(5) and (11) as equality. Therefore, to get 3T −1 affinely independent
points, we need 3T − 2 other linearly independent points.

The following 3T − 2 points are linearly independent and tight for (2) when gxt = 0,
gt = gyt = P and gzt = U : T − 1 points xi for i ∈ [1, t− 1] ∪ [t+ 1, T ], T points yi for
i ∈ [1, T ], and T − 1 points zi for i ∈ [1, T − 1].

Proposition 4. The inequalities (4) and (5) describe facets of the polytope CT

(

TU = 1
)

.

Proof. As zT (the origin) satisfies both (4) and (5) as equality, it suffices to show 3T − 2
linearly independent points that are tight for (4) and the same for (5). The following
3T − 2 points are linearly independent and tight for (4) when gxt = 0, gt = gyt = P :
T − 1 points xi for i ∈ [1, t− 1] ∪ [t+ 1, T ], T points yi for i ∈ [1, T ], T − 2 points zi

for i ∈ [1, t− 2] ∪ [t, T − 1], and one point q(t) where gqt = D if SD ≤ SU and gqt = U if
SD ≥ SU .

The following 3T − 2 points are linearly independent and tight for (5) when gxt = 0,
gt = gyt = P , and gzt = U : T − 1 points xi for i ∈ [1, t− 1] ∪ [t+ 1, T ], T − 1 points yi

for i ∈ [1, t− 1] ∪ [t+ 1, T ], T − 1 points zi for i ∈ [1, T − 1], and one point q(t) where
gqt = D if SD ≤ SU and gqt = U if SD ≥ SU .

Proposition 5. The inequalities (1) and (3) describe facets of the polytope CT .

Proof. As zT (the origin) satisfies both (1) and (3) as equality, it suffices to provide a
set of 3T −2 linearly independent points that are tight for each of the above inequalities.
The following 3T − 2 points are linearly independent and tight for (1) when gt = 0,
gxt = gyt = P and gzt = U : T − 1 points xi for i ∈, [2, T ], T points yi for i ∈ [1, T ], and
T − 1 points zi for i ∈ [1, T − 1].

The following 3T − 2 points are linearly independent and tight for (3) when gxt = 0,
gt = gyt = P , and gzt = U : T − 1 points xi for i ∈ [1, T ], T points yi for i ∈ [1, T ], and
T − 1 points zi for i ∈ [1, T − 1].

Proposition 6. The inequality (11) describes a facet of the polytope CT .

Proof. The point zT satisfies the inequality (11) as equality. So, as above discussed, it
suffices to show 3T−2 linearly independent solutions that are tight for (11). The following
3T − 2 points are linearly independent and tight for (11) when gt = gxt = gyt = gzt = 0:
T points xi for i ∈ [1, T ], T − 1 points yi for i ∈ [1, t− 1] ∪ [t+ 1, T ], and T − 1 points
zi for i ∈ [1, T − 1].

Summing up (1)-(5) and (11) describe facets of CT . Finally, we prove that the
inequalities (1)-(11) are sufficient to describe the convex hull of the feasible solutions.

We need a preliminary lemma.

Lemma 7. Let P = {x ∈ R
n|Ax ≤ b} be an integral polyhedron, i.e, P = conv(P ∩Z

n).
Define Q = {(x, y) ∈ R

n × R
m|x ∈ P, 0 ≤ yi ≤ cix, i = 1, . . . , k, yi = dix, i = k +

1, . . . ,m}, where 1 ≤ k ≤ m, ci, di ∈ R
n, and cix ≥ 0, dix ≥ 0 for i = 1, . . . ,m and for

each x ∈ P . Then every vertex (x̃, ỹ) of Q has the property that x̃ is integral.
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Proof. Suppose by contradiction that there exists a vertex (x̃, ỹ) of Q such that x̃ is not
integral. Then x̃ is not a vertex of P and therefore there exist x̄1, x̄2 ∈ P such that
x̃ = 1

2 x̄
1 + 1

2 x̄
2. Moreover, ỹi = cix̃ for i = 1, . . . , k, indeed if there exists r, 1 ≤ r ≤ k,

such that 0 ≤ ỹr < crx̃, then (x̃, ỹ) is a convex combination of the point (x̃, ŷ) and the
point (x̃, y̌), where ŷr = crx̃, y̌r = 0, and ŷi = y̌i = ỹi for 1 ≤ i ≤ m, i 6= r.

For j = 1, 2, let ȳji = cix̄
j for i = 1, . . . , k and ȳji = dix̄

j for i = k + 1, . . . ,m. Then
(x̃, ỹ) = 1

2 (x̄
1, ȳ1) + 1

2 (x̄
2, ȳ2), i.e., (x̃, ỹ) is a convex combination of (x̄1, ȳ1) and (x̄2, ȳ2).

Contradiction.

Theorem 8. Let DT

(

TU, TD,P , P , SU, SD
)

be a polyhedron defined as follows:

• for TU ≥ 2

DT

(

TU ≥ 2, TD, P , P , SU, SD
)

=
{

(u, v, p) ∈ [0, 1]2T−1 ×RT
+| (u, v, p) satisfy (1)-(3) and (7)-(11) } ;

• for TU = 1

DT

(

TU = 1, TD, P , P , SU, SD
)

=
{

(u, v, p) ∈ [0, 1]2T−1 ×RT
+| (u, v, p) satisfy (1), (3)-(5), and (7)-(11) } .

Then CT

(

TU, TD,P , P , SU, SD
)

= DT

(

TU, TD,P , P , SU, SD
)

.

Proof. As for CT , we use short notations DT , DT

(

TU ≥ 2
)

, and DT

(

TU = 1
)

. The

proof for TU ≥ 2 easily follows from Lemma 7. Indeed, DT

(

TU ≥ 2
)

is described by the
inequalities (6)-(10), that describe an integral polyhedron in u and v as proved in [12],
together with inequalities (1)-(3) and (11) satisfying the hypothesis of Lemma 7.

For TU = 1 let us suppose that SU ≥ SD. We follow Approach 8 in [14] (see
Section 9.2.3, Problem 2, Approach 8). We first introduce an extended formulation of
the problem, then we prove that the extended formulation is integral, and finally we prove
that the projection of the new polyhedron correspond to DT

(

TU = 1
)

. To accomplish to
this task we need to prove some preliminary claims. We define the following new binary
variables for t = 2, . . . , T − 1:

• xt = 1 if and only if vt = 1 and wt+1 = 1,

• ṽt = 1 if and only if vt = 1 and wt+1 = 0,

• w̃t+1 = 1 if and only if vt = 0 and wt+1 = 1,

• ũt = 1 if and only if ut = 1, vt = 0, and wt+1 = 0.

Moreover, ũT = 1 if and only if uT = 1 and vT = 0.

Claim 1. The polyhedron P defined by the points (u, v, w, ũ, ṽ, w̃, x) satisfying the
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following inequalities is integral:

vt ≤ ut t = 2, . . . , T (12)

t
∑

i=t−TD+1

wi ≤ 1− ut t ∈ [TD + 1, T ] (13)

ut − ut−1 = vt − wt t ∈ [2, T ] (14)

wt+1 = w̃t+1 + xt t ∈ [2, T − 1] (15)

vt = ṽt + xt t ∈ [2, T − 1] (16)

ut = ṽt + w̃t+1 + xt + ũt t ∈ [2, T − 1] (17)

uT = vT + ũT (18)

0 ≤ ut ≤ 1 t ∈ [1, T ] (19)

vt ≥ 0 t ∈ [2, T ] (20)

wt ≥ 0 t ∈ [2, T ] (21)

ṽt, xt ≥ 0 t ∈ [2, T − 1] (22)

w̃t ≥ 0 t ∈ [3, T ] (23)

ũt ≥ 0 t ∈ [2, T ] (24)

Proof of Claim 1. The proof is carried on by showing that the coefficient matrix
associated with the above linear system is totally unimodular.

We exploit this well-known property (proved by Ghouila-Houri, see [10], Chapter
III.1, Theorem 2.7): let A be a {0, 1,−1}-matrix, if each subset J of columns of A can
be partitioned into J1 and J2 such that

∣

∣

∣

∣

∣

∣

∑

j∈J1

aij −
∑

j∈J2

aij

∣

∣

∣

∣

∣

∣

≤ 1 (25)

for each row i, then A is totally unimodular. This part of the proof has been inspired
by the proof of Malkin [6] for the polyhedron defined by minimum-up and down-time
constraints.

First we assign the variables wi ∈ J alternatively to J1 and to J2 in lexicographic
order. Then the variables ut ∈ J are assigned either to J1 if wk ∈ J2, where k =
max{i|1 ≤ i ≤ t, wi ∈ J}, or to J2 if wk ∈ J1, or to the same set with respect to ut−1 if
{i|1 ≤ i ≤ t, wi ∈ J} is empty. Thus condition (25) is satisfied for constraints (13).

Variables vt ∈ J are assigned either to J1 if ut ∈ J1, or to J2 if ut ∈ J2, or to the
opposite set with respect to ut−1 if ut /∈ J , or to the same set as wt if both ut−1, ut /∈ J .
This ensures that condition (25) is satisfied for constraints (12) and (14).

If vt, wt+1 ∈ J , then assign ṽt ∈ J to the same subset as vt, xt ∈ J to the opposite set
with respect to ṽt, and w̃t ∈ J to the same subset as wt. These assignments guarantee
that condition (25) is satisfied for constraints (15) and (16) both in the case that vt and
wt+1 are in the same set or in different sets. Moreover, the assignment for ũt can be
chosen to satisfy condition (25) for constraints (17). If one between vt and wt+1 does
not belong to J then proceed as follows: suppose w.l.o.g. that vt /∈ J , then assign wt+1,
w̃t+1, and ṽt to the same set and xt to the other set, then ũt can be chosen to satisfy
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condition (25) for constraints (17). Similar choices can be done if some of the variables
ṽt, w̃t+1, xt, ũt do not belong to J and the claim follows. End of Claim 1.

Then we define the polyhedron Q̃ by adding to the linear system defining P the
following inequalities:

pvt ≤ (SU − P )ṽt t ∈ [2, T − 1] (26)

pxt ≤ (SD − P )xt t ∈ [2, T − 1] (27)

pwt ≤ (SD − P )w̃t+1 t ∈ [2, T − 1] (28)

put ≤ (P − P )ũt t ∈ [2, T ] (29)

pvT ≤ (SU − P )vT (30)

p1 ≤ (P − P )u1 − (P − SD)w2 (31)

where pv, px, pw, pu and p1 are non-negative variables.
Claim 2. The polyhedron Q̃ is integral with respect to variables u, v, w, x, ũ, ṽ, w̃.

End of Claim 2.

The proof of Claim 2 is a direct application of Lemma 7 to the polyhedron P of
Claim 1.

Then we define the polyhedron Q by adding to the linear system defining Q̃ the
following inequalities

pt = pvt + pxt + pwt + put t ∈ [2, . . . , T − 1] (32)

pT = pvT + puT (33)

where pt for t ∈ [2 . . . T ] are non-negative variables.
Claim 3. The polyhedron Q is integral with respect to variables u, v, w, x, ũ, ṽ, w̃.

End of Claim 3.

Claim 3 follows from Claim 2 and by the straightforward extension of Lemma 7, where
the role of P is played by the integral polyhedron Q̃.

Finally we prove that
Claim 4. The projection of Q onto the space of the variables u, v, p is equivalent to

DT .
Proof of Claim 4. We start by eliminating the variables pvt , p

x
t , p

w
t , and put by simply

substituting constraints (32)-(33) with the following:

pt ≤(SU − P )ṽt + (SD − P )xt+

+ (SD − P )w̃t+1 + (P − P )ũt t ∈ [2, T − 1] (34)

pT ≤(SU − P )vT + (P − P )ũT , (35)

which are obtained by using constraints (26)-(30).
Now, we replace ũT from (18) in (35) to obtain:

pT ≤
(

P − P
)

uT −
(

P − SU
)

vT (36)

then we eliminate variables in (34) according to the following order

• ũt by using the equation (17);
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• w̃t+1 by using the equation (15);

• ṽt by using the equation (16).

It is not difficult to see that for t ∈ [2, T − 1] we obtain the following constraints:

pt ≤(P − P )ut − (P − SU)vt

− (P − SD)wt+1 + (P − SU)xt (37)

xt ≥0 (38)

xt ≥vt + wt+1 − ut (39)

xt ≤vt (40)

xt ≤wt+1. (41)

Now we can apply Fourier-Motzkin elimination to variables xt by considering the
following pairs of constraints:

• by constraints (40) and (37) we obtain

pt ≤ (P − P )ut − (P − SD)wt+1; (42)

• by constraints (40) and (38) we obtain vt ≥ 0;

• by constraints (40) and (39) we obtain

wt+1 ≤ ut; (43)

• by constraints (41) and (37) we obtain

pt ≤ (P − P )ut − (P − SU)vt − (SU − SD)wt+1; (44)

• by constraints (41) and (38) we obtain wt+1 ≥ 0;

• by constraints (41) and (39) we obtain ut ≥ vt.

By using equation (14), wt+1 ≤ ut is equivalent to vt+1 ≤ ut+1, which is one of the
inequalities (12). We can simply see that the new constraints (42) and (44) coincide with
constraints (4) and (5) for the case SU ≥ SD, respectively; and constraints (31) and
(36) coincide with constraints (1) and (3), respectively. End of Claim 4.

From Claim 4 it follows that DT is integral with respect to the variables u and v.
The proof for SD ≥ SU can be performed in a symmetric way.

5. Numerical Results

To illustrate the computational performance of the Tight and Compact formulation
proposed in this paper, the self-UC problem for a price-taker producer is solved for
different time spans. The goal of a price-taker producer is to maximize his profit during
the planning horizon (which is the difference between the revenue and the total operating
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Table 1: Generator Data
Technical Information Cost Coefficients†

Gen
P P TU/TD SU SD p0* Ste0⋆ CNL CLV CSU

[MW] [MW] [h] [MW] [MW] [MW/h] [h] [$/h] [$/MWh] [$]

1 455 150 8 252 303 150 8 1000 16.19 9000

2 455 150 8 252 303 150 8 970 17.26 10000

3 130 20 5 57 75 20 5 700 16.60 1100

4 130 20 5 57 75 20 5 680 16.50 1120

5 162 25 6 71 94 25 6 450 19.70 1800

6 80 20 3 40 50 20 3 370 22.26 340

7 85 25 3 45 55 25 3 480 27.74 520

8 55 10 1 25 33 10 1 660 25.92 60

9 55 10 1 25 33 10 1 665 27.27 60

10 55 10 1 25 33 10 1 670 27.79 60

* p0 is the unit’s initial production prior to the first period of the time span.

⋆Ste0 is the number of hours that the unit has been online prior to the first period of the time span.

†CNL, CLV and CSU stand for non-load, linear-variable and startup costs, respectively.

Table 2: Energy Price ($/MWh)

t = 1 . . . 12 → 13.0 7.2 4.6 3.3 3.9 5.9 9.8 15.0 22.1 31.3 33.2 24.8
t = 13 . . . 24 → 19.5 16.3 14.3 13.7 15.0 17.6 20.2 29.3 49.5 53.4 30.0 20.2

cost [8]). The self-UC is also associated with the scheduling problem of a single generation
unit [2], which arises when solving UC with decomposition methods such as Lagrangian
Relaxation [3]. The 10-unit system data is presented in Table 1 and the energy prices
are shown in Table 2. The power system data are based on information presented in
[1, 7]. All tests were carried out using CPLEX 12.5 on an Intel-i7 3.4-GHz personal
computer with 8 GB of RAM memory. The problems are solved until they hit the time
limit of 10000 seconds or until they reach optimality (more precisely to 10−6 of relative
optimality tolerance).

The formulation presented in this paper, labelled as TC, is compared with the previous
Tight and Compact formulation presented in [7], labelled as TC0, and with those in [1]
and [11], labelled as 1bin and 3bin, respectively.

Table 3 shows the computational performance for four cases with different time spans.

Table 3: Computational Performance Comparison

Case Optimum IntGap (%) LP time (s) MIP time (s)* Nodes

(days) (M$) TC TC0 3bin 1bin TC TC0 3bin 1bin TC TC0 3bin 1bin TC TC0 3bin 1bin

64 7.259361 0 0.09 0.88 2.57 0.57 0.47 0.80 0.95 0.57 1.92 12.01 13.79 0 0 496 487

128 14.517096 0 0.09 0.87 2.57 1.17 1.20 2.06 2.60 1.17 4.81 45.54 (3.33E-4) 0 0 528 603915

256 29.032567 0 0.09 0.87 2.57 3.16 3.29 5.38 6.88 3.16 7.75 199.18 (5.21E-4) 0 0 533 229035

512 58.063509 0 0.09 0.87 2.57 8.08 8.39 14.29 18.83 8.08 17.29 734.03 (5.35E-4) 0 0 488 136128

* If the time limit is reached then the final optimality tolerance is shown between parentheses
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Table 4: Problem Size Comparison

Case # constraints # nonzero elements # real var # binary var

(days) TC* 3bin 1bin TC TC0 3bin 1bin TC† 1bin TC† 1bin

64 65997 107459 138225 338994 334389 417313 469719 15360 46080 46080 15360

128 132045 214979 276465 678450 669237 835105 939735 30720 92160 92160 30720

256 264141 430019 552945 1357362 1338933 1670689 1879767 61440 184320 184320 61440

512 528333 860099 1105905 2715186 2678325 3341857 3759831 122880 368640 368640 122880

* TC is equal to TC0 for these cases

†TC, TC0 and 3bin are equal for these cases

All formulations achieve the same MIP optimum since all of them model the same MIP
problem. However, they present different LP optimums, the relative distance between
their MIP and LP optimums is measured with the Integrality Gap [13, 7]. Note that the
MIP optimums of TC were achieved by just solving the LP over (1)-(11), IntGap=0,
hence solving the problems in LP time. On the other hand, as usual, the branch-and-cut
method was needed to solve the MIP for TC0, 3bin and 1bin. Table 3 also shows the
MIP time and nodes explored that were required by the different formulations to reach
optimality. It is interesting to note that although TC0 reached optimality exploring
zero nodes, TC0 needed to make use of the solver’s cutting planes strategy because the
relaxed LP solution did not achieve the integer one, IntGap 6=0 (the solver used 227 and
1224 cuts for the smallest and largest case, respectively). This tightening process took
more time than the time required to solve the initial LP relaxation, that is why the MIP
time for TC0 is more than twice its LP relaxation time.

Table 4 shows the dimensions for all of the formulations for four selected instances.
Note that TC and TC0 are more compact, in terms of quantity of constraints and
nonzero elements, than 3bin and 1bin. The formulation 1bin presents a third of binary
variables in comparison with the other formulations, but 3 times more continuous vari-
ables. This is because the work in [1] reformulated the units’ operation model to avoid
the startup and shutdown binary variables, claiming that this would reduce the node
enumeration in the branch-and-bound process. Note however that this reformulation
considerable damaged the strength of 1bin, hence it presented the worst computational
performance, similar results are obtained in [11, 7]. The formulation 1bin presents more
continuous variables than the other formulations because it requires the introduction of
new continuous variables to model the startup and shutdown costs of generating units.

In conclusion, TC presents a dramatic improvement in computation in comparison
with 3bin and 1bin due to its tightness (speedups above 90x and 8500x, respectively);
and it also presents a lower LP burden due to its compactness, see Table 4. Compared
with TC0, the formulation TC is tighter; consequently, TC requires less time to solve
the MIP problem (speedup above 4.1x).

6. Conclusion

This paper presented the convex hull description of the basic constraints of generating
units for unit commitment (UC) problems. These constraints are: generation limits,
startup and shutdown capabilities, and minimum up and down times. The model does
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not include some crucial constraints, such as ramping, but the proposed constraints can
be used as the core of any UC formulation and they can help to tighten the final UC
model. Finally, different case studies for a self-UC were solved as LP obtaining MIP
solutions; if compared with three other formulations, the same optimal results were
obtained but significantly faster.
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