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Abstract: 

The influences of heredity and environment on behaviour are sometimes quantified as a heritability ratio, which 

assigns a percentage of variation in test scores to variation in the genotypes of individuals. There are compelling 

reasons, both biological and statistical, to doubt the validity of the common practice of partitioning variance in 

this manner. This paper outlines the conceptual foundations and explains the weaknesses of heritability analysis, 

reviews evidence of heredity-environment interaction during development, and argues for an alternative 

research strategy to detect and understand the functions of specific genes relevant for individual differences in 

behaviour. 

 

Article: 

The importance of heredity for human intelligence and other mental attributes is a perennial topic of debate in 

psychology with a history extending to Rousseau and earlier. Since 1970 these questions have been addressed 

by a specialization in psychology calling itself behaviour genetics and having its own professional society and 

journal. The dominant school of thought in this subdiscipline asserts that almost every human characteristic is 

determined by both the genetic inheritance and the life experience of the individual, and it seeks to estimate the 

relative strengths of these two factors. The index commonly used to summarize the results for a specific 

behaviour is the heritability coefficient, which is the most salient feature of the academic discipline of 

behaviour genetics. Studies of twins and adopted children have claimed substantial heritability of everything 

from time spent watching television to religious conservatism and what brand of beer you prefer (Plomin ct al., 

1990; Rosen, 1987; Waller et al., 1990). At the 1991 Behavior Genetics Association meeting in St. Louis, 

among the 64 presentations involving studies of human beings, 45 involved heritability analysis. Recent feature 

articles in Science touted heritablity analysis as the state of the art in the discipline (Bouchard ct al., 1990; 

Plomin, 1990). Many articles have been devoted to the likely value of the heritability of intelligence in 

particular. The present article focusses on the concept of heritability itself and questions its intelligence. 

 

Heritability in the broad sense (hB
2
) is said to estimate the proportion of variance in a measure of behaviour or 

other phenotype (VY) in a breeding population that is attributable to genetic variation (hB
2
 = VG/ VY). The 

estimation of this parameter involves a model based on the inheritance of genes via the principles of Mendel, 

which are well established, plus assumptions about how genetic effects are related to environment and behav-

iour, which are still contentious. 

 

Genetic Facts 

Before presenting the main argument, a few genetic facts should be considered. A gene is a segment of a DNA 

molecule occurring at a specific locus or place along the DNA, and it codes for the structure of a polypeptide 

molecule that may function as a protein, enzyme or hormone. A person's genotype is the pair of genes he or she 

has at the locus, one coming from each parent. There are perhaps 50,000 (possibly as many as 100,000) 

different genes in the 23 human chromosomes, each coding for a specific polypeptide (McKusick, 1991). Of 

these, about 30,000 are expressed as distinct proteins in the brain and 20,000 are specific to the brain (Sutcliffe, 

1988), which gives some idea of the complexity confronting those who hope to understand the relation of 

heredity to brain development and behaviour. There are also 37 genes in the mitochondria in the cell cytoplasm 
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deriving mainly from the mother (Wallace, 1991), although evidence from mice indicates a few mitochondria 

may he paternal (Gyllensten et al., 1991). As of October, 1990, there had been 1,909 chromosomal genes, 

perhaps 2% of the total number, identified and mapped to an approximate location on a chromosome (Stephens 

et at, 1990), and one year later the count was 2,144 (Chipperfield et al., 1991). The basic principles of genetic 

inheritance and gene action are well documented, but the era of discovering new genes has barely begun. In 

some instances people carry slightly different forms or alleles of a gene at a particular locus, such that each 

form codes for a slightly different structure of the protein molecule. When this occurs, the locus is said to cause 

a protein polymorphism in the population and can give rise to noteworthy differences between individuals in 

their blood types, immune system functions, brain structures or behaviours. Less than 5% of the human genetic 

loci are believed to cause substantial protein polymorphism. If 20,000 genes are unique to the brain, perhaps 

19,000 will be effectively the same in almost all people, whereas only 1,000 will give rise to individual 

differences. From a genetic perspective, what people have in common vastly exceeds what makes us different; 

genetic differences between human beings and our close relative the chimpanzee are far greater than the modest 

variation among people of different ancestries (Vigil= et al., 1991). The methods of Mendelian genetics are 

sensitive only to the small minority of genes which arc polymorphic and tend to make us different; they allow 

no meaningful statements about the role of heredity in general. Sometimes a defect in a single gene may have 

obvious consequences, such as in colour blindness, phenylketonuria or cystic fibrosis. On the other hand, some 

genes have rather slight effects that require large samples and rigorously controlled experiments to detect. These 

unseen genes presumed to have minor effects are the domain of quantitative genetics and heritability analysis. 

 
The Model and Assumptions 

The validity of heritability analysis depends on the merits of several assumptions. First, Falconer (1981) and 

others propose a simple model of how each possible genotype at one locus specifies a quantitative genetic 

component of a phenotype, which may be a behaviour (see Fig. 1). Next, the effect of all polymorphic loci 

affecting a behaviour are combined by adding them to yield the total O, for an individual, which assumes 

genotype at one locus does not influence the action of genes at other loci. Then it is asserted that the measured 

score (or phenotype) of an individual on a psychological test (Yi) is the sum of only two components, Gi 

determined by the genes and Ei specified by the person's environment; that is, G and E must not interact. Many 

sources introduce the model with a G×E interaction term attached to the end of the model, but they quickly drop 

this and proceed with the simple additive model as the basis for further analysis. Finally, if there is no 

correlation between the parental genetic values and the environments they provide for their children, or between 

the G and E of the children, it is possible to deduce the correspondence between the hypothetical heritability 

ratio and the observed correlations between test scores of relatives using algebra (see Falconer, 1981, for 

details). Given these derivations, the phenotypic correlations are computed from data and the heritability 

parameter is estimated from them. Advocates of this approach acknowledge that the parameter estimate from a 

single study applies only to the population sampled and the current environment. 

 

Critics such as Goldberger (1978), Kempthorne (1978), Schönemann (1989) and Wahlsten (1979) have 

expressed grave doubts about the concepts, methods and algebra presented by leading authorities on behaviour 

genetics, while others have questioned the capacity of experimental designs to separate effects of heredity and 

environment with humans (Kamin, 1974; Roubertoux and Capron, 1990; Taylor, 1980). Nevertheless, it has 



been asserted that most psychologists arc now convinced by heritability coefficients of the importance of 

genetics for individual differences in behaviour (Starr, 1987). 

 

Emergence of Developmental Interactionism 

Of course, many scientists thought that basic point had been made quite adequately 50 years ago by the 

selective breeding of Tryon's maze bright and maze dull rat strains and several human twin studies. Instead of 

becoming fixated on the question of the size of the genetic influence, they sought to learn how genes influence 

development of the individual. To achieve this objective, one must either have extraordinary control of breeding 

and rearing conditions, which can be done only with laboratory animals, or be able to identify specific genes 

relevant to a behaviour. Data from humans can in principle be assessed for effects of single genes, but this is not 

often done in behaviour genetics (only 6 papers at the 1991 St. Louis B. G. A. meeting) and pertinent methods 

are not included in leading texts in the field. Heritability analysis based on correlations among relatives is 

inadequate on both counts for a developmental analysis. 

 

Two lines of investigation, heritability analysis and a more developmental approach, have emerged and evolved 

in parallel, aware of each other but separated by a conceptual barrier vis-à-vis heredity-environment interaction. 

The developmental perspective was evident in the pioneering behaviour genetic work of John Paul Scott and 

Benson Ginsburg who independently studied fighting behaviour of the same inbred mouse strains but under 

different laboratory conditions. Scott (1942) found that C57BL mice never attacked and C3H mice usually 

started a fight after several feints towards an intruder. This was just as the USA was entering World War it, and 

he annointed the strains "pacifist" and "aggressor." Ginsburg obtained the opposite results; C57BL mice always 

defeated C3H mice in a paired encounter. He also discovered that a series of defeats could render a formerly 

dominant animal submissive, and victories could inspire the meek to fearsome feats of furry fisticuffs (Ginsburg 

and Alice, 1942). When they compared their data, the authors realized the consequences of a difference in 

heredity must depend strongly on the environment. Ginsburg (1967) later demonstrated that small differences in 

the manner of handling the mice prior to weaning accounted for the differences in fighting after sexual maturity. 

Early in his career, perhaps during a critical period for the shaping of ideology, he became an interactionist, as 

did several others who learned the lessons of these early studies. 

 

                             
 

Scott went on to become director in 1946 of the Division of Behavioral Studies at the Jackson Laboratory, a 

world center of genetic research with mice and dogs, and Ginsburg joined his staff (Ginsburg, 1992). In 1948 

Joseph Royce, a young doctoral student of Thurstone at the University of Chicago, went to the Jackson Lab as a 

research fellow to do a factor analysis of canine behaviour, and was exposed to interactionist ideas. Royce 

himself later became an ardent advocate of a multifactorial systems approach to understanding behaviour. His 

own studies of mice, summarized in his autobiography (Royce, 1978), convinced him that " ... heredity-

environment interactions, which have not been adequately investigated for any behavioural phenotype to date, 

arc extremely subtle, sensitive, and important."(p. 229, emphasis in the original) Interactionism was recognized 

in his laboratory at the University of Alberta. For example, in the M.Sc. thesis of his student L. Mos (1969) it 

was argued that: 
-
The phenotypic development of each genotype is determined by its ontogenctic environment." 



(p. 4) Mos subjected two inbred strains of mice to four different treatments shortly after weaning and then tested 

numerous behaviours several weeks later. For open field activity, the early stimulation had dramatically 

different effects on the two strains (Figure 2). Among the 19 measures of behaviour he analysed, 18 showed 

strain by treatment interaction significant at α = .025 or better. 

 

A most influential example of heredity-environment interaction was provided by the McGill bright and dull rat 

lines selectively bred for learning of the Hebb-Williams mazes. Hughes and Zubek (1956) reported a large line 

difference at the 10th generation of selection with standard lab rearing. Cooper and Zubek (1958) later reared 

the two lines at the thirteenth generation of selection in either an enriched or restricted environment, and they 

found no significant line difference in either environment. This study is the most widely cited example of 

heredity-environment interaction (Platt and Sanislow, 1988), despite the fact that the global interaction term (F 

= 3.07, df = 2/59, P = .054) is not statistically significant (Wahlsten, 1990; see Note 2). The Cooper and Zubek 

article has been widely misinterpreted as evidence for a "reaction range" or a "reaction surface" in which the 

function relating mean value of a behaviour to each environment is essentially the same shape but with slightly 

different slope for each genotype and the rank order among genotypes is always maintained (Platt and Sanislow, 

1988; see also Turkheimer and Gottesman, 1991). This study exemplifies a somewhat different concept, the 

norm of reaction (Lewontin, 1974), but does not prove rank orders are invariant. In fact, rank orders of strains 

are often changed when the environment is changed, as in the Mos(1969) study. When the same inbred mouse 

strains are tested for motor activity in different labs (Wahlsten, 1990; see Figure 3), certain strains are 

consistently high (c57BL/6) or low (BALB/c), but others are strongly affected by small details of the testing or 

rearing conditions. In a review of the literature, Erlenmeyer-Kimling (1972) concluded "that gene-environment 

interactions are numerous and that treatment effects are frequently reversed in direction for different 

genotypes."(p. 201) 

 
 

Heritability Requires Separation of Causes Here we arrive at a conceptual barrier. Heritability analysis, as 

outlined above, requires an assumption that heredity and environment do not interact. The conceptual model 

used for this analysis posits two components, one determined by the individual's genes (Gi) and the other by the 

environment (Ei), which sum to determine a measured behaviour of an individual, such that Yi = Gi + Ei. This 

corresponds to a causal model of development (Figure 4) in which the effects of the genes and environment are 

entirely separate and independent, and where the direction of causation is strictly from G and E to behaviour 

and never the reverse. Two strains of animals should differ by a preset amount when they are reared in the same 



environment, no matter what environment it is. The consequences of a change in environment, be it dietary or 

psychological, should be the same for all people, regardless of genotype. The organism should not be able to 

actively choose or change its own environment. 

 

The doctrine of the adders (G + E) is a theory of two components of behaviour which reduces to a doctrine of 

strict genetic determinism for one of the components, commonly identified with brain structure (Wilson, 1983). 

This is equivalent to a computer model of the brain, where there is a neat dichotomy between innate hardware 

and acquired memories or software. The theory of DNA-encoded brain structure was espoused recently by the 

editor of Science to justify spending billions of dollars on the Human Genome Project as a means for curing 

anti-social behaviour (Koshland, 1990). 

 
The additive model is not biologically realistic. There are so many instances where the response of an organism 

to a change in environment depends on its genotype or where the consequences of a genetic defect depend 

strongly upon the environment, that genuine additivity of the two factors is very likely the rare exception. The 

truth of this assertion is widely recognized (Bateson, 1987; Cairns et al., 1990; Fentress, 1981; Gollin, 1985; 

Gottlieb, 1991; Oyama, 1985), but not in human behaviour genetics. Abundant evidence at the molecular level 

now allows little room for doubt that circumstances can determine when and where a gene acts to influence the 

course of development and neural activity (Rusak et al., 1990; Schoups and Black, 1991; Sharp et al., 1991). 

The features of the environment most effective in turning a gene on and off, as well as the time of greatest 

sensitivity to modulation and the shape of the function depend on the specific gene and must be tested 

empirically. A well-documented example of this control is the production of the hormone melatonin (Vaughan, 

1984). Light entering the eye stimulates the hypothalamus, which activates cells in the spinal cord, then a 

sympathetic ganglion and finally the pineal gland, where the production of several enzymes synthesizing 

melatonin is shut down, later to be resumed during darkness. The effect of light in the environment is mediated 

by the nervous system; environment rarely acts directly on a gene to affect its expression. 

 

Perils of Partitioning Variance 

In addition to being outdated biology, the assumption of additivity poses statistical perils in many situations. 

Only if an individual score is a sum of two components can the variance of the sum be divided meaningfully 

into separate parts. This is done routinely with statistical analysis to separate between and within group 

variance. Statistically significant superiority of one gender on a cognitive measure, for example, might conceal 

a trivially small effect If the mean scores of men and women differ by δ standard deviations, then the proportion 

of the total variation attributable to the gender difference is ω
2
 = δ

2
 / (δ

2
 + 4) for large samples (Cohen, 1988). 

The meta-analysis by Feingold (1988) indicates that the magnitudes of gender difference on tests of numerical 

and spatial abilities, which were never much above δ = 0.5, are gradually disappearing. When δ = 0.5, about 6% 

of the variance arises from the group difference. Hence, the overwhelming bulk of the variance occurs among 

people having the same gender. This is a form of partitioning variance that generates little opposition because 

there is only one factor, gender. In this example, the size of the gender difference clearly involves cultural 

factors, and the small ω
2
 value is not a precise separation of nature and nurture. 

 



When we want to learn about the relative contributions of the combined effects of two or more distinct factors, 

partitioning of variance clearly becomes perilous. Let us use the term "heredity" or H rather than genotype 

because heredity in general entails more than the genes in the nucleus. Suppose a multiplicative relation is true 

for a behaviour. The simple formula Yi = HiEi gets at the essence of the difficulty, although many other kinds of 

interaction arc possible. Perhaps the ordinary family environment yields little benefit for a child with bad genes; 

the multiplicative model asserts the child low in H would benefit less from an improvement in E than would one 

high in H. Assigning children randomly to homes would be unethical, so let us rear two genetically uniform 

strains of animals with heredity values H1 and H2 in an environment worth El. For strain 1, the expected value 

of Y is H1E1, and for strain 2 it is H2E1. Thus, the difference in strain means, which should be proportional to 

the "heritability," will be H1E1 — H2E1 = El (H1 — H2). Logically, a simple two group design like this should 

reveal the pure effect of a difference in heredity uncontaminated by the properties of the environment, but 

algebraically it is apparent that the size of the strain difference depends as much on the specific rearing 

environment as it does on the difference in H values (Wahlsten, 1990). For a multiplicative interaction between 

H and F, the main effects and interaction effect are not independent; although algebra can separate the sum of 

squares into three parcels, their magnitudes are joinly determined. When H and E interact, heritability is plastic 

and environmental plasticity is heritable. Only if H and E are truly additive can their effects be neatly separated 

with algebra. It has been shown that if certain kinds of interaction are present in the data, the estimated 

heritability coefficient which assumes no interaction will be inflated (Lathrope et al., 1984). A log 

transformation would render multiplicative variables additive, but this would not change reality; rather, it could 

obscure the truth (Wahlsten, 1990). 

 

Some behaviour geneticists acknowledge the mathematics but argue that actual tests of interaction effects with 

analysis of variance (ANOVA) find they are usually not statistically significant and can therefore be ignored 

(Detterman, 1990). Unfortunately, for several realistic and psychologically interesting kinds of interaction the 

power of the test of the interaction term in an ANOVA is much lower than the power of the test of the main 

effects (Wahlsten, 1990, 1991). ANOVA treats interaction as what is left over after main effects have been 

taken into account. A nonsignificant interaction term is persuasive only if the test is based on a sufficiently large 

sample, which often is not the case. Increasing the range of each variable may help to reveal an interaction, but 

it generally cannot increase the sensitivity of the test of interaction until it equals the power of tests of main 

effects (Wahlsten, 1990); increasing the range also increases power of tests of main effects, and the power 

differential remains. For many kinds of interaction, the difference in power can be quite large. 

 

MATERNAL ENVIRONMENT 

Consider an experiment done in my laboratory. Using mice, we separated the effects of the prenatal and 

postnatal maternal environments by grafting the ovaries of an inbred strain into either the same strain or an F1 

hybrid, and then at birth fostering the pups to either an inbred or hybrid mother (see Table 1). Our working 

hypothesis was that the effects of differences in the maternal environment would be greater for inbred mice than 

hybrids; the hybrids should be better "buffered" against changes in the environment (Hyde, 1973). We tested 

numbers of animals that we could afford to test in a two year period, making this a very ambitious experiment 

with 337 mice or an average of 21 per group being run through several tests of complex behaviour and then 

processed for histology at 100 days after birth. Certain main effects were large but interactions usually fell short 

of significance (Bulman-Fleming, Wahlsten and Lassalle, 1991). Does this prove heredity and environment 

really were additive? One can readily estimate sample size needed to achieve an acceptable level of power when 

a one-degree-of-freedom interaction effect can be tested as a linear contrast (  ) among J group means (μ1 to 

μ1). If the contrast is    = c1μ1 + c2μ2 + … + cJμJ and the standard deviation within each group is σ, then sample 

size to yield power 1 - β of the test when Type I error probability a is given by Wahlsten (1991): 

 

n (per group)= 
               

 

 
  
 

  
      

 



 
 

The group means shown in Table 1 were derived from the explicit hypothesis that the environmental effects on 

hybrids arc half the magnitude of those on inbreds. Under this hypothesis, the sample size required to detect the 

difference between the BALB and c57 inbred strains with a power of 90% when α = 0.05, one-tailed, would be 

only 12, whereas for the interaction between genotype and postnatal environment it would be 80 mice per 

group, which is four times the number that exhausted the resources of my NSERC grant. Examples for many 

other kinds of interaction are described in Wahlsten (1991). 

 

Turning to genetic studies of humans, suppose you could convince someone to finance a really large twin or 

adoption study. How could you test for the presence of gene-environment interaction? For behaviours of interest 

to psychologists, there is no generally acceptable test. If women were like nine-banded armadillos who always 

give birth to monozygotic quadruplets (Storrs and Williams, 1968), and if they were willing to turn their broods 

over to the state for controlled rearing, we might be able to devise a method. If we could identify a specific gen-

etic locus relevant to a behaviour and specify who had which form of that gene, as occurs with phenylketonuria 

(Woo, 1991), a good test could be done. However, heritability analysis is employed when the investigator has 

no idea about how many genes may be involved, where they may be on the chromosomes or what they may do. 

Lacking an effective empirical test, the statistical model is not falsifiable. 

 

Other Dubious Premises 

Although the problem of interaction is lethal for heritability analysis, this is not the only dubious premise. There 

are at least four other major difficulties. (1) A gene codes for something at the molecular level and does not 

code for a definite part of a test score at the psychological level. Where a gene effect on IQ test score has been 

documented, as in PKU, the size of the effect is not fixed by the genotype; it depends on several other co-acting 

factors (Holtzman et al., 1986; Levy and Waibren, 1987). Enzymes, the products of genes, are arranged in 

complex metabolic pathways with numerous feedback loops and interactions galore (Lehninger, 1982). Studies 

with mice have documented large differences in the effects of a major gene when combined with different sets 

of genes at other loci (Coleman, 1981; Messer et al., 1991), which invalidates the simple summation of genetic 

effects across loci. (2) A behaviour is not the product of only two causal influences, H and E. A third source of 



individual differences, sometimes called "randomness" of development, arises internally in the organism 

(Bookstein, 1988; Bulman-Fleming and Wahlsten, 1991; Gartner, 1990; Kurnit et al., 1987), and this factor 

interacts with H and E effects. (3) Genuine absence of gene-environment covariance is most unlikely in 

research with humans. Path analysis or LISREL can come to the rescue only if the aspects of the environment 

relevant to the behaviour in question are known and can be summarized in a simple number, which is unlikely 

(Wachs, 1983). Complex path models usually involve more unknown parameters than there are observed 

correlations and thus are underdetermined (Taylor, 1980). (4) Futhermore, there are good reasons to believe that 

behaviour can actively select and change the environment (Gottlieb, 1991; Odling-Smee, 1988). This 

bidirectionality of effects contradicts the model in Figure 4a, arid it yields a covariance of Ji and E that violates 

an assumption of ANOVA. 

 

In view of all this, I would feel more secure riding a three legged moose over thin ice than relying on a 

heritability coefficient to help me understand the origins of individual differences or predict future levels of 

intelligence. These and other shortcomings recently prompted the quantitative geneticist Oscar Kempthorne 

(1990) to comment " that most of the literature on heritability in species that cannot be experimentally 

manipulated, for example, in mating, should be ignored." 

 

Pursuit of Single Genes 

If we eshew heritability analysis, what viable alternatives remain? Among those of us who work with laboratory 

animals, most devote their time to detecting new genes or studying their consequences. For example, in my 

laboratory, evidence has accumulated that absence of the mouse corpus callosum is attributable to three 

recessive genes (Livy and Wahlsten, 1991). Neumann and Collins (1991) have identified three genes making 

mice prone to sound induced seizures. It is particularly encouraging to note the excellent research being done by 

the younger generation of behaviour geneticists. Sokolowski and her students have detected and mapped a 

single gene (for) affecting foraging patterns in fruit fly larvae (de Belle et al., 1989), and they are now working 

to discover how it functions biochemically. Wilson and her students are studying the development of behaviour 

in mice with the obese gene (ob), which show a marked preference for warmer temperatures than their 

genetically normal siblings (Wilson et al., 1991). Rankin and her students are devising methods to study 

learning in single gene mutants of nematode worms (Rankin and Beck, 1992). If some psychologists see this 

work as esoteric and irrelevant to humans, they should be aware that dozens of genes identified in fruit flies are 

also found in vertebrates (Merriam et al., 1991), and that in mice there are large stretches of the chromosomes 

which are homologous with pieces of human chromosomes, containing the same genes in the same order 

(Lalley et al., 1989). The relevance of mouse research to human behaviour genetics is greater than ever, yet 

communiciation between the two groups is mainly in one direction, perhaps because the advocates of 

heritability analysis would prefer not to see what the "mousers" have found. 

 

Generic versus Genetic Statistics 

Should we conclude that scientists interested in heredity and behaviour ought to study mice, flies and worms? 

Perhaps many should, but there is a role for research involving human heredity in psychology. Knowledge of 

genetics can help to design elegant studies of nongenetic effects where exceptional control is possible and 

confounding by genetic effects is minimized. An obvious example is monozygotic twins (Mz) reared together 

but discordant for major disorders such as Alzheimer's disease (Creasey et al., 1989) or schizophrenia (Reveley 

et al., 1982). The pair has the same genotype and very similar early environments, so there must be some rela-

tively subtle aspects of development which can yield a really large difference later in life. Another example is 

dizygotic twins (oz) compared with nontwin siblings having the same parents. Genetically, the two kinds of 

pairs are equally dissimilar. Twins are conceived and born on the same day, unlike sibs who make their 

appearance years apart This provides an excellent opportunity to study cohort effects due to societal changes 

(e.g. Flynn, 1987). Contrasting same-gender with male-female dizygotic pairs could help to evaluate 

generational changes in gender related environments. 

 

The influence of heredity on behaviour can also be studied legitimately, provided the researcher is willing to use 

generic rather than genetic statistics. Studies involving twins and adoption can be analysed using the same 



multiple regression methods we apply with environmental experiments. Suppose one compares MZ and DZ 

twins. Some would advocate use of the formula hB
2
 = 2(rMZ - rDZ) to assess the size of the genetic effect (Gray, 

1991), but this requires faith in a host of disreputable assumptions, such as additivity of H and F,. Instead, 

evaluate the null hypothesis that genetic variation is irrelevant for the behaviour with two tests of significance: 

(a) rbZ vs. 0, and (b) rMZ vs. rDZ. If both tests are significant, this supports the hypothesis that genetic variation is 

important but does not prove it because confounded environmental effects could produce or magnify the differ-

ences. To assess how important the effect might be, which depends strongly on the range of variables studied, 

we could examine the multiple R
2
 in a regression equation which predicts the difference between scores of a 

pair, using effect coding for sib vs nonsib, twin vs nontwin sib, and MZ vs DZ twins. If the data indicate there is 

a substantial difference between kinds of relatives, this does not prove heredity is the cause, but it might show 

the apparent effect is large enough to justify proceeding with genetic segregation analysis (Lalouel et al., 1983) 

to see if a major gene is involved and, if it is, linkage analysis to find where it occurs on a chromosome (Ott, 

1985). This line of investigation can lead to discoveries that may actually help those who suffer from a faulty 

gene (Desnick and Grabowski, 1981). Furthermore, a preliminary twin study using generic, general purpose 

statistics is much less likely to be misinterpreted and misused by the nonspecialist in genetics than one which 

cites a heritability coefficient. Although generic regression methods will not provide a failsafe prophylactic to 

prevent reification of a parameter estimate, readers will hopefully be more critical and cautious when matters 

are expressed in familiar terms rather than the more technical language of the geneticist. Simply using the term 

heritability implies acceptance of its inherent assumptions. 

 

A search for single gene effects on human behaviour is likely to uncover only those with large effects which 

behave conventionally. As Lewontin (1974) has emphasized, gene-environment interactions can occur in 

myriad forms which make the more commonplace genetic polymorphisms devilishly difficult to uncover with 

humans beyond experimental control. 

 

Conclusion 

Heritability analysis of human behaviour has become the dominant paradigm in academic psychology and now 

appears prominently in introductory texts, where it is presented to naive students who have no understanding of 

the false assumptions inherent in the calculations. This preeminence of heritability analysis is the outcome of a 

power struggle, not the resolution of a debate among scientists. Apparently it has persuaded many academics 

that the importance of genes for behaviour can be understood without knowing anything about the cells or 

physiology which connect the two grossly disparate levels. Partitioning variance with ANOVA seems almost 

second nature to psychologists, which may help to explain why heritability analysis has found a receptive 

audience here rather than in developmental physiology where interaction is ubiquitous and calculus is 

fundamental. 

 

It is somewhat ironic that this rise to prominence has taken place during a period when biological research on 

gene action has accumulated so much evidence of interaction. The theory of one gene → one character or the 

mosaic theory of heredity has been firmly rejected by biology in favour of one gene → one or more polypeptide 

molecules. The H + E model is a vestige of mosaic theory which claims that a gene codes for a fixed portion of 

the phenotype. 

 

Interactionism, on the other hand, leads to a view of heredity and environment not as components but as 

dynamic and historically determined processes which give rise to structure and motion by virtue of the dialec-

tical interplay of the internal and the external, the nucleus and the cytoplasm, the individual and society. 

Intricate structures emerge from relatively undifferentiated tissue through qualitative transformation. Attempts 

to dichotomize are continually defeated by new discoveries of how experience sculpts the pattern of synaptic 

connections in the cerebral cortex, how behaviour actively modifies and selects the environment, and how 

social interactions of the individual modulate the metabolic activities of genes. 

 

Gene-environment interaction offers great possibilities for treating genetic disorders and deficiencies. It has 

exploded the old myth that the consequences of a genetic deficiency arc inevitable. If a child is inferior in 



school because of an unknown genetic problem, the best kind of genetic research may help to design a program 

of effective treatment. Above all, it is ignorance of causes that makes poor development inevitable. Real genetic 

knowledge may enhance the modifiability of development ... provided we know precisely what gene is involved 

and how it works. 

 

Notes: 

1 Royce, like several other behaviour geneticists, was not entirely consistent in this respect. He stressed 

interaction in one context but often cited the concept of heritability and ignored interaction when theorizing 

about human behaviour (e.g., Royce, 1979). 

2 The global interaction term may not be the best approach to assessing heredity-environment interaction in a 2 

x 3 design. For the Cooper and Zubek (1958) data, it is reasonable to expect that the difference between the two 

strains would be greater in the normal lab environment prevailing during selective breeding than in either the 

restricted or enriched environment. Using raw data kindly provided by Dr. R. M. Cooper, a planned contrast 

testing that hypothesis reveals a significant interaction effect (t = 2.44, df = 59, p = .009). 
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