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Abstract

The modern statistical literature is replete with methods for per-

forming variable selection and prediction in standard regression prob-

lems. However, simple models may misspecify or fail to capture impor-

tant aspects of the data generating process such as missingness, cor-

relation, and over/underdispersion. This realization has motivated the

development of a large class of estimating equations which account for

these data characteristics and often yield improved inference for low-

dimensional parameters. In this paper we introduce EEBoost, a novel

strategy for variable selection and prediction which can be applied in

any problem where inference would typically be based on estimating
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equations. The method is simple, flexible, and easily implemented us-

ing existing software.

Extended abstract

The modern statistical literature is replete with methods for performing vari-

able selection and prediction in standard regression problems. However, simple

models may misspecify or fail to capture important aspects of the data gener-

ating process such as missingness, correlation, and over/underdispersion. This

realization has motivated the development of a large class of estimating equa-

tions which account for these data characteristics and often yield improved in-

ference for low-dimensional parameters. In this paper we introduce EEBoost,

a novel strategy for variable selection and prediction which can be applied in

any problem where inference would typically be based on estimating equa-

tions. The method is simple, flexible, and easily implemented using existing

software. The EEBoost algorithm is obtained as a straightforward modifi-

cation of the standard boosting (or functional gradient descent) technique.

We show that EEBoost is closely related to a class of L1 constrained pro-

jected likelihood ratio minimizations, and therefore produces similar variable

selection paths to penalized methods without the need to apply constrained

optimization algorithms. The flexibility of EEBoost is illustrated by applying

it to simulated examples with correlated outcomes (based on generalized es-

timating equations) and time-to-event data with missing covariates (based on

inverse probability weighted estimating equations). In both cases, EEBoost

outperforms standard variable selection methods which do not account for the

relevant data characteristics.
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1 Introduction

In biomedical studies, it is common to obtain data where the number of predic-

tors p greatly exceeds the number of individuals n for which these covariates are

available. Many methods have been developed for performing variable/model

selection in such p > n problems. The vast majority of these methods are de-

signed for uncomplicated regression setups such as simple (Efron et al., 2004;

Tibshirani, 1996) and generalized (Park and Hastie, 2007) linear models, and

proportional hazards/accelerated failure time models (Fan and Li, 2002). At

the same time, a great deal of contemporary statistical literature has been

dedicated to describing estimation methods which yield improved inference

for low-dimensional parameters (i.e. p < n) within more complex frameworks,

for example when there are missing outcomes or covariates, correlated observa-

tions, over/underdispersion, etc. Many of these methods are based on solving

a set of estimating equations (Godambe, 1991).

In this paper, we seek to answer the question: Can the desirable proper-

ties of estimating equations be leveraged to improve the performance of vari-

able/model selection procedures for complex data structures when the number

of predictors is large in comparison to the sample size? We propose EE-

Boost, a simple, general-purpose method for variable selection in any problem

where low-dimensional estimation can be carried out via estimating equations
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(EEs). We begin by introducing some notation, using it to describe the high-

dimensional variable selection problem more formally. In Section 2, we de-

scribe the EEBoost algorithm, which is inspired by boosting algorithms from

the machine learning literature. In Section 3, we motivate the use of EE-

Boost and discuss its relationship to existing methods by demonstrating its

equivalence to the L1-penalized minimization of a projected log likelihood ra-

tio. Section 4 demonstrates the application of the EEBoost algorithm in two

settings, via simulation: 1) Correlated outcomes (based on the Generalized

Estimating Equations), and 2) Time-to-event data with covariates missing at

random (based on Inverse Probability Weighted estimating equations). We

conclude with a brief discussion and some open questions.

1.1 Setup and notation

Suppose we observe data Xi ≡ (Yi, Zi), i = 1, . . . , n, where Yi is some outcome

of interest and Zi is a vector of p covariates. Consider the problem of predict-

ing future observations Yn+1, Yn+2, . . . Yn+K based on their respective covariate

vectors Zn+1, Zn+2, . . . Zn+K with [(Yn+1, Zn+1), (Yn+2, Zn+2), . . . (Yn+K , Zn+K)]

arising from the same distribution F as [(Y1, Z1), . . . , (Yn, Zn)]. Throughout

this paper, we focus on the regression problem where some functional G of F

is parametrized by β ∈ Θ ⊂ Rp with p < ∞. The ultimate goal is to pro-

duce a set of coefficients β̂ which minimizes the risk EF [L(X, β)] ≡ R(β) for

some non-negative loss function L. Since the joint distribution F governing

X is unknown, R cannot be computed directly. In practice, we hope to create
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procedures generating β̂ with R(β̂) ≈ minβ R(β) ≡ R0. It is well-known that

when p is large in relation to n, procedures which base prediction on a selected

subset of elements of β often yield better prediction than standard regression

procedures which estimate the entire β vector. Such variable selection pro-

cedures also have the added benefit of identifying a manageable number of

factors which may be worthy of further scientific study.

1.2 Previous work

In the past decade, there has been an explosion in the amount of statisti-

cal literature addressing the variable selection problem. The vast majority

of techniques proposed in this literature apply to standard regression setups,

mainly generalized linear models and simple survival models. Recently, atten-

tion has begun to shift towards variable selection procedures which account

for complex data features (correlation, missingness, etc.), features that pre-

viously motivated the development of estimating equations for inference on

low-dimensional parameters.

In some cases, it may be natural to pre- (or co-)process the available data so

that standard variable selection procedures can be applied. For example, Yang

et al. (2005) proposed methods which combine imputation and variable selec-

tion for performing model selection when covariates are missing at random.

Such approaches are intuitive and relatively straightforward to implement, but

are not easily generalized to settings where the data cannot be augmented or

modified so that standard variable selection methods are applicable. On an-
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other track, Fu (2003) and Johnson et al. (2008) have proposed a penalized

estimating equation approach for performing variable selection in a large class

of semi-parametric models. The resulting procedures have certain desirable

optimality properties, but the computational complexity of the algorithms

involved (both in terms of computational burden and difficulty of implemen-

tation) may limit their applicability in problems where p is truly large (eg.

p ≈ 1, 000, not uncommon in many applications).

Researchers wishing to perform variable selection with complex, high-dimensional

data structures may therefore face an unappealing choice: invest time and ef-

fort to adapt an existing variable selection method to their specific situation, or

use available software which does not take important problem features into ac-

count. Our approach, EEBoost, is a computationally simple technique which

approximates the behavior of penalized methods (the relationship is made

explicit in Section 3) and is applicable whenever standard inference can be

performed by solving a set of estimating equations.

2 EEBoost

The motivation for our proposed method is a technique often referred to as

boosting or functional gradient descent (Freund and Schapire, 1997; Friedman,

2001). Boosting is an iterative procedure for building an additive model G(T ) =∑J
j=1 hj ·β

(T )
j for the functional G. H = {hj, j = 1, . . . , J} is a set of candidate

predictors, and β
(T )
j is the coefficient after T iterations. Though H may be

quite general in some boosting applications, we take H = {Z·j, j = 1, . . . , p},
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the set of available covariates in the columns of the design matrix Z. For a

given loss function L, the basic boosting algorithm iteratively updates β(T ) by

incrementing the elements corresponding to directions in which the magnitude

of the gradient of L is largest:

Algorithm 1 (Generic Boosting Algorithm)

1. Set β(0) = 0

2. For t = 1 : T,

(a) Identify jt = arg max
j

|∂L(X,β)
∂βj

|

(b) Set β
(t)
jt

= β
(t−1)
jt

− αt sign(∂L(X,β)
∂βjt

)

The output from Algorithm 1 is a one-dimensional path B = {β(0), . . . , β(T )}

through Θ. Variable selection is achieved by “early stopping”: Once B has

been generated, one can apply a function C : (X,B) → β ∈ Θ to choose a

point on the path. If jt is unique for all t (which generally occurs in practice),

only one element of β is updated at each iteration, and β(K) can have at most

K non-zero components. Hence, if C selects β(M),M < p, then at least p−M

variables have never been updated and hence are zero (i.e. “not selected”).

The choice of C is discussed further in the following section.

In step 2b of Algorithm 1, αt is a step length which gives the update increment

in iteration t. Choosing αt = ε, a small constant, has been shown to yield good

results in practice (Bühlmann and Yu, 2003; Friedman, 2001).

7



2.1 EEBoost algorithm

If X ∼ Fβ, a known parametric distribution, a standard approach for esti-

mating a low-dimensional β is to minimize the negative log-likelihood `. For

high-dimensional β, we may generate a variable selection path via Algorithm

1, using the score function ∂`/∂β in step 2. This is precisely the idea be-

hind LogitBoost (Friedman et al., 2000), a variable selection and classification

technique for binary outcomes based on the binomial likelihood.

When the distribution of X is unknown or cannot be written in closed form,

low-dimensional parameter estimates are often obtained by solving a set of es-

timating equations g(X, β) = 0. Estimators defined by the solutions of these

equations may be preferred to those derived by directly maximizing an incor-

rect log likelihood; for example, they may be more efficient than competing

estimators or remain unbiased if certain relationships are misspecified (Lipsitz

et al., 1994; Stefanski and Boos, 2002).

Estimating equations may not correspond to the gradient of any closed-form

loss function, but they are generally obtained as modifications of such gra-

dients and can be expected to behave similarly. The EEBoost algorithm,

then, consists of substituting the vector of estimating equations g(X, β) for

∂L(X, β)/∂β in Algorithm 1, yielding:

Algorithm 2 EEBoost Algorithm

1. Set β(0) = 0

2. For t = 1 : T,
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(a) Identify jt = arg max
j

|gj(X, β)|

(b) Set β
(t)
jt

= β
(t−1)
jt

− ε sign(gjt(X, β))

We emphasize that the EEBoost algorithm is technique for generating variable

selection paths; it must be paired with a point chooser C to yield a variable

selection procedure, the performance of which will depend on the choice of

C. We purposely do not specify a general-purpose point chooser for EEBoost

paths in this work; we believe that the choice of C should be driven by the

loss function of scientific interest, and need not necessarily account for the

manner in which the variable selection paths were generated. As an exam-

ple, if EEBoost were applied to data comprising correlated observations on a

number of individuals, depending on the scientific goals one might consider

point choosers which treated either a) each observation or b) each individual

as a separate unit. For those seeking a single technique applicable to a vari-

ety of estimating equations, we note the work of Pan (2001), who proposed a

bootstrap-smoothed cross validation estimate of the expected predictive bias.

In the following section, we motivate the use of EEBoost more formally by

showing its close relationship to a particular class of L1 penalized methods.
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3 Properties of EEBoost

3.1 Boosting and L1 penalization

For a given loss function L and fixed β0, consider the problems

min
β
L(X, β) subj to ||β − β0||1 < ε (1)

min
β
L(X, β) subj to ||β − β0||1 < ε, ||β||1 > ||β0||1 (2)

as ε→ 0. The solution β∗ of (2) satisfies

β∗j 6= β∗0,j ⇒
∂L

∂βj
(β0) = max

j

∣∣∣∣ ∂L∂βj (β0)

∣∣∣∣
provided sign(β0j) = −sign

(
∂L
∂βj

(β0)
)

. In other words, β∗ represents a coor-

dinate descent step from β0. Let β† denote the solution of (1). Then, if β†

satisfies the component-wise monotonicity condition |β†j | > |β0,j| for all j, then

β† = β∗.

As λ varies, the solutions to (1) obtained by varying β0 (and letting ε → 0)

are exactly those of the L1 penalized problem

min
β
L(X, β) subj to ||β||1 ≤ λ

i.e. the LASSO path (Tibshirani, 1996). The solutions to (2) correspond to

the path generated by applying Algorithm 1 with gradient g = ∂L
∂β

. Hence, for

sufficiently small ε, we would expect the LASSO and boosting paths of (1) and
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(2) to coincide, provided the component-wise monotonicity condition holds. In

practice, this monotonicity condition seems to be satisfied in many applica-

tions, and Hastie et al. (2001) and Efron et al. (2004) have demonstrated the

resulting remarkable congruence between L1 constrained and ε-boosting paths

in several examples.

The EEBoost algorithm we propose makes use of estimating equations which

are not necessarily the derivative of a closed-form loss function, so the cor-

respondence to L1 penalization is less clear. In the following section, we

show that EEBoost can also be interpreted in terms of L1 penalization by

showing the equivalence between EEBoost solution paths and a sequence of

L1-constrained projected likelihood ratio minimizations.

3.2 EEBoost and L1 penalization

In what follows, we restrict attention to the case where the first two moments

of Y1, . . . , Yn are defined by µi(θ) and Σi(θ), which are functions of θ ∈ Θ ≡ Rp.

In this semiparametric setup, inference for θ is often undertaken via the quasi-

score

g(θ) =
n∑
i=1

µ′i(θ)(Σi(θ))
−1(Yi − µi(θ)) (3)

where µ′ = ∂µ
∂θ

. g(θ) can be viewed as a projection of the true score function

onto a space spanned by Y1 − µ1(θ), . . . , Yn − µn(θ). The true likelihood L(θ)

is unknown, but we may construct an approximation to it by projecting the

likelihood ratio Λ(θ0, θ) = L(θ0)
L(θ)

onto a linear space defined by functions of the
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form

c(θ0) +
∑

k,i1<···<ik

ai1···ik(θ0)(Yi1 − µi1) · · · (Yik − µik)

Projecting Λ(θ0, θ) onto this linear space yields the projected artificial likelihood

ratio

λ(θ0, θ) =
n∏
i=1

[
1 + (µi(θ)− µi(θ0))(Σi(θ0))−1(Yi − µi(θ0))

]
(4)

where θ is assumed to lie in a neighborhood of the parameter value θ0 =

arg min
θ

L(θ). The theory of projected artificial likelihoods is treated in detail

in McLeish and Small (1992) and Small and Wang (2003) (see pp. 197-240).

We consider ` = log(λ) as a function of θ for fixed θ0, writing

`(θ) =
n∑
i=1

log
[
1 + (µi(θ)− µi(θ0))(Σi(θ0))−1(Yi − µi(θ0))

]
(5)

In the same way that we expect the quasi-score to behave similarly to the true

score function, we anticipate that the projected artificial log likelihood ratio

`(θ) should be a useful surrogate for the true log likelihood ratio. Hence, the

paths generated by EEBoost should approximate those obtained by solving a

sequence of L1-constrained projected artificial log likelihood ratio minimization

problems. After establishing some notation, we present a sequence of theorems

formalizing this intuition; the proofs appear in the Supplementary Materials.

The theorems and proofs presented build on the foundational work of Rosset

et al. (2004).

Let Y = {Y1, . . . , Yn} be a vector of scalar outcomes, and Z = {Z1·, . . . , Zn·}

be the n × p matrix of covariates consisting of the stacked covariate vectors
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associated with the elements of Y ; we denote row i and column j of Z by Zi·

and Z·j, respectively. Suppose that E(Yi | Zi·) = µi(β) = φ(Zi·β) ≡ φ(ηi(β))

for some link function φ and β ∈ Rp. Let the quasi-score g be defined as

in (3), and `(β) = log λ(β0, β) be the projected artificial log-likelihood ratio

corresponding to g for some β0. Note that

∂`(β)

∂β

∣∣∣
β=β0

= g(β0) (6)

i.e. the projected artificial log likelihood ratio is tangent to the quasi-score at

β0.

Now, let βL(s) be defined by

βL(s) = arg min
β

`(β) subj to
∑
j

|βj| ≤ s (7)

and let βB(T ) be the coefficient vector after T iterations of EEBoost with

descent directions defined by g(β) and step length ε on the path generated

by EE. The following theorem gives conditions under which the direction of

change of βL and βB coincide:

Theorem 1 Consider starting the EEBoost algorithm at some point βL(s).

Suppose that:

[ Condition 1 ] For s < s0, βL(s) and βB(T ) are monotone in s and T ,

respectively, (i.e. for all j, |βL(s)|j ≤ |βL(s′)|j for s < s′ and similarly for

βB(T ))

[ Condition 2 ] For s < s0, ||βL(s)||1 = s
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[ Condition 3 ] For all β in a neighborhood of βL(s) and for all i = 1, . . . , n,

(β − βL(s))′
(
∂2ηi
∂β2

(βL(s))

)
(β − βL(s)) = o(|β − βL(s)|)

[ Condition 4 ] For all β in a neighborhood of βL(s) and for all i = 1, . . . , n,

lim
T→∞
ε→0
T ·ε→0

η(βB(T ))− η(βL(s))

T · ε
= lim

∆s→0

η(βL(s+ ∆s))− η(βL(s))

∆s

(i.e. the limit on both sides exists and is unique).

Then

βB(T )− βL(s)

T · ε
→ ∇βL(s) as ε→ 0, T →∞, T · ε→ 0

Theorem 1 establishes the equivalence between the local behavior of βL and βB

for an “idealized” boosting algorithm wherein ε → 0, T → ∞, and T · ε → 0.

Condition 1 is the component-wise monotonicity condition described in the

previous section which is difficult to verify analytically, but commonly holds

in practice. Condition 2 requires that no unconstrained minimum of ` have L1

norm smaller than s0. Condition 3 is relatively mild; for example, it will hold

for the standard GLM link functions when the entries of the covariate matrix

are bounded. The key to Theorem 1, then, is Condition 4. The following

result is helpful in identifying situations where Condition 4 will hold.

Theorem 2 Define A = {j : |gj(βL(s))| = maxj |gj(βL(s))|}. Suppose that

conditions 1-3 of Theorem 1 hold, and that in addition:

• For all s, |A| < n (i.e. the number of elements in A is smaller than n)
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• For all β in a neighborhood of βL(s) and for all k = 1, . . . , p,

(
∂gk
∂β

(βL(s))

)′
(β − βL(s)) = O(|β − βL(s)|)

(8)

(β − βL(s))′
∂2gk
∂β2

(β − βL(s)) = o(|β − βL(s)|)

(9)

[η(β)− η(βL(s))]′
(
∂2`

∂η2
(βL(s))

)
[η(β)− η(βL(s))] = o(|η(β)− η(βL(s))|)

(10)

• η is continuous at βL(s)

Then a sufficient condition for Condition 4 of Theorem 1 to hold is that

sign(gk(βL(s))
∂2µi
∂βj∂βk

(βL(s)) does not depend on k (11)

for j, k ∈ A and i = 1, . . . , n.

There are two important special cases where (11) holds:

1. A linear model where µ(β) = Zβ. In this case, ∂2µi

∂βj∂βk
= 0, and hence

the condition holds trivially.

2. A has only one element. This will occur if the maximum element of

|g(βL(s))| is unique. In practice, the entries of g are generally distinct,

and therefore we observe concordance between the sequence of solutions
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to the L1 penalized problems and the path generated by boosting with

small step length.

Given the widespread success of L1-penalized methods for variable selection

and prediction, it is encouraging that EEBoost approximates the solution path

for a particular sequence of L1 penalized problems. In the next section, we

demonstrate the flexibility of EEBoost by applying it to perform variable se-

lection and prediction in realistic scenarios.

4 Example Applications

4.1 Correlated outcomes

To test the performance of the EEBoost algorithm on correlated outcome

data, we simulated data from n = 30 individuals, with four observations

per individual. For each observation i = 1, . . . , 30, j = 1, . . . , 4, a vector

of covariates Zij of length 100 was simulated according to a multivariate

normal distribution with mean zero, and covariance matrix ΣZ defined by

V ar(Zijk) = 0.25, Corr(Zijk, Zijl) = 0.3, k 6= l (before running the algorithms,

each column of the covariate matrix was standardized to have mean zero and

unit variance). Outcomes Yij were generated from a multivariate normal distri-

bution with mean µi = Z ′iβ, and an exchangeable correlation structure defined

by V ar(Yij) = 1, Corr(Yij, Yik) = ρ, j 6= k. The entries (β1, β2, . . . , β100) of the
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coefficient vector β were set as

βm = 0.5, 1 ≤ m ≤ 5

βm = 0.2, 6 ≤ m ≤ 10

βm = 0.05, 11 ≤ m ≤ 20

βm = 0, 21 ≤ m ≤ 100

We applied the following four algorithms to the generated data:

1. EE(Ind): EEBoost based on the Generalized Estimating Equations

(GEE) (Liang and Zeger, 1986) with independence working correlation

matrix.

2. EE(Exch): EEBoost based on the GEEs with exchangeable working

correlation matrix, correlation parameter assumed known.

3. EE(Est): EEBoost based on the GEEs with exchangeable working cor-

relation matrix, correlation parameter estimated at each iteration using

the current coefficient vector.

4. LARS: Least Angle Regression (Efron et al., 2004), a fast implementa-

tion of the LASSO for linear models. Does not account for correlation

of observations.

For each simulation, the four algorithms produced variable selection paths β̂.

In a small number of simulation runs, the EE(Est) procedure encountered
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numerical problems and oscillated between two parameter values; the tables

and plots which follow exclude these runs.

4.1.1 Prediction

We estimated prediction error at points on these paths by generating 100 test

datasets with the same settings as above and averaging the residual sum of

squares over these test sets. Figure 1 displays the estimated prediction error

as a function of ||β̂||1 for the four methods when ρ = 0, 0.3, 0.7, and 0.9. Note

that Figure 1 provides estimates of the prediction error for a large number of

points on the paths generated by the four algorithms; if the prediction error

curve for one algorithm lies below that of another, this suggests that when

paired with a suitable point chooser, the former algorithm will have smaller

prediction error than the latter.

Table 1 summarizes the simulation results in a different way: In each simu-

lation, the estimated prediction error is calculated at each point on the vari-

able selection paths, the minimum prediction error on the path is computed,

and the minima for each algorithm are ranked. Table 1 presents the mean

and standard deviation of these ranks over the simulations. The results give

the expected relative performance of the various algorithms when paired with

“ideal” point choosers, i.e. those for which R(C(X,B)) = minβ∈B R(β).

Table 1 and Figure 1 illustrate that prediction error is lower when variable

selection takes into account the correlation structure of the outcomes, and

the improvement achieved increases with the correlation. When ρ = 0.9,
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Figure 1: Prediction error as a function of ||β̂||1 for four variable selection al-
gorithms. Short dashed line = EE(Ind), solid = EE(Exch), dotted = EE(Est),
long dashed = LARS
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Table 1: Mean rank (SD) of minimum prediction error for four variable selec-
tion methods. ρ = correlation between intra-individual observations.

ρ EE(Ind) EE(Exch) EE(Est) LARS
0 2.02 (0.55) 2.02 (0.55) 2.29 (1.18) 3.68 (0.71)

0.3 2.57 (0.83) 1.76 (0.88) 1.93 (0.83) 3.74 (0.65)
0.7 2.81 (0.52) 1.38 (0.54) 2.04 (1.02) 3.77 (0.46)
0.9 2.66 (0.54) 1.21 (0.4) 2.57 (1.2) 3.56 (0.54)

for example, Figure 1 shows that the prediction error achieved at ||β̂||1 =

4 (near the minima of the plotted prediction error curves) is approximately

15% lower for EE(Exch) and EE(Est) than for EE(Ind) and LARS. Though

the curves for EE(Exch) and EE(Est) appear to coincide, Table 1 reveals

that EE(Exch) performs more consistently, as it generally achieves a smaller

minimum prediction error than the other three methods. EE(Est) achieves its

best performance when correlation between outcomes is moderate. Allowing

for more generality in the correlation structure may degrade the performance

of EE(Est) relative to EE(Exch) and other approaches.

4.1.2 Variable selection

Figure 2 summarizes the variable selection performance of EE(Ind), EE(Exch),

EE(Est), and LARS. For a given point β̂k on the variable selection path,

sensitivity sens and specificity spec were computed via

sens =

∑p
j=1 1[β̂kj 6=0]∑p
j=1 1[β0j 6=0]

spec =

∑p
j=1 1[β̂kj=0]∑p
j=1 1[β0j=0]
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where β0 is the length-p parameter vector used to generate the data. Figure

2 plots the empirical means (over 100 simulations) of sens and spec versus

||β̂||1.

We observe that EE(Exch) has slightly higher sensitivity than competing

methods for larger values of ρ. Specificity is comparable for all methods except

when ρ = 0.9, where the specificity of EE(Exch) decreases more rapidly with

||β̂||1 than other methods. The flat sensitivity and specificity trajectories of

EE(Est) are likely related to the numerical problems described above.

4.2 Time-to-event data with missing covariates

Next, we apply the EEBoost algorithm to the problem of variable selection

when the outcomes are survival/censoring times and some of the covariates

are missing. There are separate literatures on fitting low-dimensional propor-

tional hazards models when covariates are missing (Lin and Ying, 1993; Paik

and Tsai, 1997; Wang and Chen, 2001; Chen, 2002) and on the problem of

variable selection when covariates are completely observed (Fan and Li, 2002;

Tibshirani, 1997), but we are not aware of any techniques for tackling the

problem we consider here.

Let T 0 and C0 be survival and censoring times, let T = min(T 0, C0), and

define δ = 1[T 0≤C0]. We assume that each subject i has a vector of covariates

(Zi, Xi), where the Zi are always observed and the Xi are either completely

observed (Ri = 1) or completely unobserved - such a scenario might arise,

for example, when the Xi represent expensive biological measurements. We
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Figure 2: Variable selection sensitivity and specificity for four variable selec-
tion algorithms. Short dashed line = EE(Ind), solid = EE(Exch), dotted =
EE(Est), long dashed = LARS
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assume further that T 0 and C0 are independent given (Z,X), and that the

covariate values are missing at random (R ⊥⊥ X | (T, δ, Z)).

The Cox proportional hazards model (Cox, 1972) is commonly employed to

analyze survival data, with inference based on the partial likelihood score

equations. When some covariate values are missing, but the probabilities

of missingness πi = P (Ri = 1 | Ti, δi, Zi) are known, valid inference may

be obtained by solving the inverse probability weighted estimating equations

gIPW (β) = 0 (see Wang and Chen (2001)). The EEBoost iteration we employ

updates β according to which element of the vector gIPW (β) is largest in

magnitude.

We assume a setup with n = 150 subjects on which p = 40 covariates are

(possibly) observed. Let W be an n×p covariate matrix with rows generated as

independent multivariate N(0, 0.5Ip×p) vectors. Failure times were generated

from an exponential distribution with rate η = θ0 +W ′β, with θ0 = −5 and

β1 = β2 = 1, β3 = β4 = 0.5, β5 = 0.25, β6 = · · · = β10 = 0.15

β11+k = βk, k = 0, . . . , 10

β21 = · · · = β40 = 0

Censoring times were generated to give a censoring rate of approximately 33%.

The covariates were split into two sets, X and Z, according to whether or not

they were subject to missingess; we set X to be the first covariates 31-40 (i.e.

the last ten columns of W ), while the remaining (“always observed”) covariates

comprised Z. For each individual i, Xi was assumed to be missing according
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to

πi ≡ P (Ri = 1 | Zi, Ti, δi) = expit(α + 1[Ti>mT ]γ
′Zi + 1[Ti≤mT ]ζ

′Zi)

where mT is the median of the observed survival/censoring times, and

γ1 = · · · = γ5 = 1.5, γ6 = · · · = γ40 = 0

ζ1 = · · · = ζ5 = 0, ζ6 = · · · = ζ10 = −1.5, ζ11 = · · · = ζ40 = 0

The overall rate of missingness was controlled by the intercept term α. We

considered scenarios with α = −6,−4,−2 and 0, yielding average missingness

probabilities of approximately 8%, 21%, 41%, and 66% , respectively. The

EEBoost algorithm was run for 500 iterations with a stepwise increment of

ε = 0.03.

We compared three versions of EEBoost with two alternative approaches:

• EE(Fixed): The described EEBoost algorithm with πi values assumed

fixed and known.

• EE(Est1): The described EEBoost algorithm with πi values estimated

from a logistic model with Z, 1[T>mT ], and their interaction included as

linear predictors (i.e. the model for calculating probability of missingness

is specified correctly).

• EE(Est2): The described EEBoost algorithm with πi values estimated

from a logistic model with log(T+1) included as the only linear predictor

(i.e. the model for calculating probability of missingness is specified
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incorrectly).

• CoxPath(Full): A method based on minimizing the L1-penalized Cox

partial likelihood (fitted using method coxpath from R package glmpath).

This version of the algorithm uses the full covariate matrix, without any

missing values.

• CoxPath(CC): Same as previous, but only the subjects with complete

covariate data are analyzed.

4.2.1 Prediction

Figure 3 and Table 2 summarize the performance of the five algorithms in the

same manner described above, but using a different metric to assess predictive

accuracy. Let β̂
(k)
M be a parameter vector estimate with L1 norm k derived by

method M ( M ∈ { EE(Fixed), EE(Est1), . . . ,CoxPath(CC) }). Assuming

(correctly) that the baseline hazard is exponential, the predicted median failure

time for individual i is

m̂
(k)
i (M) =

log(2)

exp(θ0 +W ′
i β̂

(k)
M )

where Wi = (Xi, Zi) is the full covariate vector for individual i without any

missing values. Let T 0
i be that individual’s true failure time. Let R̂

(k)
M =

rank(m̂
(k)
1 (M), . . . , m̂

(k)
n (M)) and R0 = rank(T 0

1 , . . . , T
0
n) be the vector of

ranks of the predicted median (at boosting iteration k) and true survival times.
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Table 2: Mean rank (SD) of maxk C
(k)
rnk for five variable selection methods.

PR=0 = proportion of individuals with missing X.
α PR=0 EE(Fixed) EE(Est1) EE(Est2) CoxPath(Full) CoxPath(CC)
-6 0.08 3.96 (0.92) 2.56 (0.96) 2.17 (0.86) 4.51 (1.05) 1.81 (0.94)
-4 0.21 3.53 (0.93) 2.93 (1.08) 1.85 (0.72) 4.85 (0.48) 1.84 (0.94)
-2 0.41 3.5 (0.78) 2.92 (0.93) 1.62 (0.79) 5 (0) 1.96 (0.83)
0 0.66 3.29 (0.88) 2.81 (1.00) 1.76 (0.91) 5 (0) 2.13 (0.98)

Then we define

C
(k)
rnk(M) = corr(R̂

(k)
M , R0)

Figure 3 plots C
(k)
rnk versus k for each of the five methods, and Table 2 re-

ports the mean and standard deviation of the ranks of maxk C
(k)
rnk, over 100

simulations. Note that larger ranks correspond to larger maxima, indicating

a method which produces predicted survival times agreeing more closely with

the true survival times.

The results from Table 2 and Figure 3 show that versions of EEBoost where

the missingness probabilities are fixed (EE(Fixed)) or estimated from a cor-

rect model (EE(Est1)) outperform the method based only on the complete

cases (CoxPath(CC)). When the missingness probabilities are relatively low,

EE(Fixed) and EE(Est1) perform nearly as well as a procedure which uses the

full data (CoxPath(Full)), but as expected their performance relative to this

hypothetical gold standard degrades as the proportion of observations with

missing covariate values increases. When the model governing the probability

of missingness is misspecified (EE(Est2)), EEBoost offers no performance gain

over a complete case analysis.
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Figure 3: C
(k)
rnk as a function of k for five variable selection algorithms. Gray

lines represent CoxPath(Full) (dot dashed) and CoxPath(CC) (solid). Black
lines represent EE(Fixed) (solid), EE(Est1) (dashed), and EE(Est2) (dotted).
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4.2.2 Variable Selection

Figure 4 presents the variable selection performance of the five algorithms using

the measures of sensitivity and specificity described in the previous section.

The CoxPath(Full) and CoxPath(CC) paths generally have higher sensitivity

and lower specificity than the EEBoost paths, suggesting that the latter are

generating paths with more sparsity (i.e. fewer nonzero coefficients). The

three EEBoost paths have very similar sensitivity and specificity across the

range of k. Though the CoxPath(Full) path (gray dot-dashed line) has lower

variable selection specificity than the EEBoost paths for k > 5, it has higher

or comparable specificity for smaller values of k where C
(k)
rnk is largest.

5 Discussion

One of the main features of the EEBoost algorithm is its simplicity. Beginning

with available code for solving a set of estimating equations (say for the pur-

poses of low-dimensional estimation), a variable selection path can be gener-

ated with minimal effort. Investigators are free to apply any appropriate point

choosing procedure (eg. cross and holdout set validation, various information

criteria) to the resulting path. EEBoost is also flexible, allowing modifications

which can change the behavior of the algorithm in order to accommodate

problem-specific restrictions and features. For example, it is trivial to modify

EEBoost so that constraints on coefficient values are obeyed, or so that certain

variables are always included in the model. One could also consider adapting
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Figure 4: Variable selection sensitivity and specificity for five variable selec-
tion algorithms. Gray lines represent CoxPath(Full) (dot dashed) and Cox-
Path(CC) (solid). Black lines represent EE(Fixed) (solid), EE(Est1) (dashed),
and EE(Est2) (dotted).
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ideas suggested by Friedman and Popescu (2004) to yield paths indexed by an

additional parameter controlling the number of coefficients which are updated

at each iteration.

Though we have given theoretical results and illustrated the application of

EEBoost in the context of estimating equations which are quasi-scores, its use

is not restricted to these setups. In other work, we have successfully applied

EEBoost with the augmented inverse probability weighted (AIPW) estimating

equations of Rotnitzky and Robins (1995). Generally, we would expect EE-

Boost to perform well whenever the relative magnitudes of the elements of the

estimating equation vector reflect the explanatory ability of the variables to

which they correspond. Further work is needed to characterize how the struc-

ture of the data, the chosen loss function, and the operating characteristics of

the estimating equations influence the performance of EEBoost, and identify

the contexts in which EEBoost will provide the most benefit over competing

methods.
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