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Abstract: This paper presents the prediction of yarn breaking load properties by using artificial neural

network. A single hidden layer neural network trained by using the back propagation algorithm
performance a functional between HVI fiber properties, yarn count from several Egyptian cotton fiber

qualities and yarn breaking load. The neural network was trained and used to predict the yarns breaking
load properties, to compare with experimental yarns breaking load results. In each case, the prediction

error was less than the standard deviation of experimental results. The back- propagation network model
is not constrained by any assumptions about statistical properties of the data.  
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INTRODUCTION

Literature Survey: The Spinning process is one of the
important production processes in the textile industry.

The properties of resulting yarn are very important in
determining  their  possible  applications.  Prediction

of  yarn properties from fiber specifications and
process parameters has been investigated by various

researchers. The breaking load of spun yarn is one of
the  most  important  properties in determining the

yarn quality, since it is directly affect the winding,
weaving and knitting efficiency. Predicting the spun

yarns breaking load is very important from a fiber
properties,  technological  and machine parameters.

Fast and accurate measurement of fiber properties by
means  of  High Volume Instrument  (HVI)  and

more powerful computers are the two main reasons for
this tendency. There are essentially five modeling tools

for predicting yarn breaking load, namely the
mathematical model, the statistical model, the empirical

model,  the  computer  simulation model and the
neural network model.

Mathematical models proposed by Bogdan ,[1 ,2]

Hearle et al. , Subramanian , Kim and El-Sheikh[3] [4] [5 ,6]

Zurek et al. , Frydrych , Onder and Baser[7] [8] [9]

Rajamanickam et al.  and Morris et al.  have made[10] [11]

significant contributions in this filed. They derived
from the fundamental laws of science can be used to

explain the effects of various parameters on yarn
breaking load. These models are based on certain

idealized assumptions.
Statistical tools, e.g. regression analysis proposed

by  Neelkantan and Subramanian , Hafez , Smith[12] [13]

and  Water , El-Mogahzy , Hunter , and Mostafa[14] [15] [1 6 ]

et al.  to name a few, have made significant[17]

contributions in this filed. They established the relation

between cotton fiber properties and yarn breaking load
using the classic regression method.

Hearle et al.  reviewed various mathematical and[3]

empirical models concerning yarn breaking load which

were published between 1926 and 1969. Hunter[16]

reported on more than 200 published papers about the

prediction of yarn quality parameters, particularly
tensile properties.

From the mid – 1990s, artificial neural networks
(ANN) have been received much attention from

researchers to use in various textile related applications.
Among the yarn- property – applications, the majority

have dealt with predicting yarn properties from fiber
properties and processing parameters. The work of

Cheng and Adams , Ramesh et al. , Ethridge and[17] [18]

Zhu , Pynckels et al. , Rajamanickam et al. ,[19] [20] [21]

Anirban et al.  and Majumdar et al.  have[22] [23]

successful  employed ANN models for the prediction

of various coarse and medium yarn count properties. In
all these investigations, the performance of neural

network models has been evaluated, either without
comparing them with any other models or at most by

comparing them with statistical models. In two instance
alone: First one Rajamanickam et al. , have compared[21]

the performance of four different models- mathematical,
empirical (regression equation), computer simulation

and neural network – and have discussed their merits
and demerits, with two different data sets have been

used for this study. The mathematical and computer
simulation models have been applied on one data set

and empirical and neural net work models have been
applied on the other.
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Second, Anirban et al. have compared the[22] 

performance of three different models – Frydrych’s
model, statistical model and neural network based
model  by  using  the  data  set available in
Frydrych’s  paper,  which  pertains to cotton yarns.
The results are expected to give a clear indication of
the relative success of these models in predicting yarn
breaking load.

Neural Network: An artificial neural network is a
parallel processing architecture consisting of a large
number of interconnected processors, called neurons
organized in layers.

Figure 1 shows the structure of neural network.
There are two kinds of elements in the network- the
neuron node and the connection weight.

A neuron node is the basic processing unit that has
an activation function. Neuron modes are arranged in
a layered structure. The neuron modes in consecutive
layers  are  fully  connected by connection weights.
The first layer is called the input layer and the second
and third are called hidden and output layers,
respectively. A connection weight has a weighting
value for the node connection weights are important
because their value determine the behavior of the
network or represent the information being used by the
net to solve a problem.

Each neuron has an internal stat, called its activity
level, which is a function of the inputs it has received.
Typically- a neuron sends its activation as a signal to
several other neurons It is important to note that a
neuron can send only one signal at a time, although
that signal is broad cast to several other neurons. 

For example, consider a neuron j, which receives

1 2 3 n.input from neurons X  , X  , X  , …..X . Input to this
neuron is created as weighted sum of signals from
other neurons. This input is transformed to the scalar

ioutput Y . The output is defined as:

i j ij j j Y = h. (' (W . X - M ))  ............………………(1)

i  Where: Y = is output value of hidden mode number i
(X) = 1 for X $ 0
(X) = 0 for X # 0

ij C W = is the weight of mode I of the hidden layer
for the input coming from input j.

j C M = is the adjustable thresh old. 

The appropriate selection of the learning data and
of the network structure is of the utmost importance in
the process of the modeling functional dependencies
with the use of artificial networks. In the analysis
under  consideration, the  measurements on whose
basis the learning data vectors for the network have
been constructed were designed in such a way that the
particular  measuring  points  were  regularly  sited 

throughout the measurement space. After a set of

inputs has been fed through the network, the difference

between true or desired output and computed output

represent an error. Sum of squared errors is direct

measure of performance of the network in mapping

inputs to desired outputs. By minimizing of sum of

squared errors is possible to obtain the optimal weights

and parameters of activation function.[24]

Experimental set-up: In the present work, the back-

propagation neural network is used to predict yarn

breaking load for ring spun and compact yarns. 

Neural networks are composed of multiple

computational elements (nodes) connected by means of

weight which are adapted during the training process

such that desired output is achieved.

Four Egyptian cotton varieties and two promising

crosses belonging Extra Long Staple category were

used in this study and measured by HVI and Micromat

fiber data were used as input vectors and the yarn

breaking load the output vector as shown in Table 1.

A  wide  series  of yarn counts was spun on a

RST 1 Marzoli ring and compact spinning machine.

The yarn count range was 80 Ne, 100 Ne, 120 Ne and

140 Ne at constant twist multiplier 3.6. For each count,

yarn breaking load was measured on a Statimat ME

instrument with 120 breaks per sample. All samples

could be run simultaneously, each on sixteen spindles.

The tested yarn quality parameters were average over

the sixteen bobbins.   

Matlab software was used for neural network

modeling.

RESULTS  AND DISCUSSION

The network model has an input layer consisting of

input nodes, single hidden layers and an output layer

consisting of output nodes which are all connected into

a complete network. The advantage here is that the

complex non-linear relationship between the input and

output vectors can handled more easily each node has

a transfer function f, one output value y, and several

iinput value x . Each input value is multiplied by a

icorresponding weight factor w . The relationship

between the input and the output of each node is given

in the following equation:

...............................………..(2)

In implementing the back-propagation network

model, total of eleven input parameters consisting of

ten fiber properties and yarn count were used. The HVI

properties considered were: fiber mean length, length



J. Appl. Sci. Res., 4(11): 1380-1386, 2008

1382

Fig. 1: Structure of three layered neural network model

Table 1: Fiber origins properties and yarn breaking load
HVI properties Micromat Properties Breaking load (gf)
----------------------------------------------------------------------------------------------------------------- ------------------------------------------------------------------------------------------
UHM Uniformity Strength Elongation Mic. Yello- Brightness Maturity Fineness 80 Ne 100 Ne 120 Ne 140 Ne
(mm.)    (%) cN/tex     % reading wness b+   Rd % (mtex) --------------------- -------------------- --------------------- --------------------

Ring Compact Ring Compact Ring Compact Ring Compact
Extra Long Extra fine

Giza 45 35.8 89.4 43.2 6.1 3.1 74 8.9 0.92 120 203.7 210.9 144 160.5 111.2 121.1 87 95.6
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Giza 87 35.3 85.8 45.0 6.4 3.0 72 9.4 0.91 121 178.6 182.5 129.4 144.4 101.8 104.1 72.1 80.1
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Giza 77 ×bima 36.2 89.3 46.2 6.2 2.9 66.2 11.6 0.91 115 193.4 215.7 150.6 158.2 112 118 79.6 92.3

Extra Long Staple
Giza 70 35.4 87.5 44.6 6.3 4.1 73 9.5 0.92 145 165.2 186.8 128.9 146 97.46 106.1 71.2 84.4
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Giza 88 35.4 88 46.5 6.2 3.9 66.4 11.4 0.91 139 194.5 202.3 141.8 154.9 109.7 116 72 85.1
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Giza 74 × Giza 66 33.9 88.5 48.6 6.3 3.7 70.6 9.1 0.92 142 185.7 188.1 130.2 142.5 105.4 111.7 75.9 82.4

Table 2: Experimental and predicted values of ring spun breaking load 

Breaking load (gf)

Yarn count (Ne) ------------------------------------------ Error (gf) Error % SD load Experimental (gf)

Experimental Predicted

80s 186.85 188.42 1.55 0.829 13.25

--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

100s 137.48 141.54 2.02 1.469 13.58

--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

120s 106.26 111.2 3.94 3.71 18.36

--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

140s 76.3 80.1 3.8 4.98 22.33

Table 3: Experimental and predicted values of compact yarn breaking load 

Breaking load (gf)

Yarn count (Ne) --------------------------------------------- Error % Error SD load Experimental (gf)

Experimental Predicted

80’s 197.7 194.2 -1.3 -0.66428 12.01

-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

100’s 151.1 154.3 3.2 2.117803 14.56

-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

120’s 112.8 108.4 -3.4 -3.04114 12.44

-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

140’s 86.5 80.52 -1.98 -2.4 19.73

Table 4: M ean of the percentage error and standard deviation in predicting breaking load by the four trained nets

Training run Ring spun yarn Compact spun yarn

--------------------------------------------------- ---------------------------------------------------------------------

Error mean % SD Error mean % SD %

1 0.191 1.225 0.2461 1.5755

-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

2 0.391 2.544 0.1327 0.8499

-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
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Table 4: Continued

3 0.357 2.286 0.1282 0.8207

-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

4 0.547 3.51 0.2130 1.3642

Over all mean 0.3715 2.39125 0.18 1.152575

Fig. 2: Effect of length uniformity and fiber tenacity on ring yarn breaking load 

Fig. 3: Effect of, length uniformity and fiber tenacity on compact yarn breaking load 

uniformity, fiber strength, elongation at break,

micronaire, yellowness and brightness micromate

properties  considered  were: Maturity and fineness.

The output parameter for the model was the yarn

breaking load. The study results were divided in two

groups for testing (25% of the experimental data) and

learning (75% of the experimental data). The learning

data were used to train the network to get minimum

absolute error between measured and calculated yarn

breaking load was achieved for the test data,  in the

present study, predicting breaking load by the four

trained neural networks for each yarn type were done
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Fig. 4: Effect of yarn count and fiber tenacity on ring yarn breaking load 

(totaling 40 predictions), the absolute error is based on

following equation:

.....…….....….(3)

Where: 

0 C y = measured yarn breaking load.

1 C y = network predicted yarn breaking load.

The learning data of the back- propagation

algorithm involves of the connection weights values,

presentation of an input for each input layer node, and

specification of the desired output for output node layer

then  actual  outputs  calculation  of all the nodes by

using the presented values followed by adaptation of

weights to give the desired output. Anon – linear

transfer function was used for all the nodes of the

network. The transfer function is based on following

equation

..................................……….(4)

After training was completed, the network

configuration adopted was as follows:

C Number of input nodes (11 fiber parameters and

yarn count).

C Number nodes in hidden layer: it was found that

5 and 6 nodes are needed in the hidden layer 800

ring and compact yarn respectively. 

C Number of output nodes: measured yarn breaking

load.

Table 2 and 3 show experimentally determined

output, predicted outputs and percentage errors of

prediction for ring and compact yarn respectively. From

the tables, it is clear that in each case the prediction

error was much lower than the standard deviation of

experimental, and the percentage absolute error are

slow. For example in the cases of the yarn count 80

ring spun the actual and predicted values were 186.85

and 188.42 respectively, the error 1.55 gf was within

the experimental standard deviation of 13.25 gf. Similar

results were obtained for all yarn count trained. 

The mean and standard deviation of the percentage

error in predicting breaking load by the four trained

nets are shown in table (4) for ring and compact yarn

respectively. From the table, it can be seen the over all

mean and standard deviation of the percentage error in

predicting breaking load by the four trained nets were

0.3715 and 2.391 respectively for ring yarn, and the

corresponding values for compact yarns were 0.18 and

1.1525 respectively. 

Figures 2-5 show the relationship between the fiber

tenacity, length uniformity, yarn count and yarn

breaking  load  for  both  ring and compact yarn.

From Figures 2 and 3, it is observed that as the fiber

tenacity increases, there is concomitant increase in yarn

breaking load but this depends on yarn count. For both

the ring and compact yarns, the effect of length

uniformity is pronounced when the fiber tenacity and

yarn count are less. However, when the fiber tenacity
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Fig. 5: Effect of yarn count and fiber tenacity on compact yarn breaking load 

reaches its apex the influence of length uniformity

decreases. From figures 4 and 5, it is observed that as

the yarn becomes finer the yarn breaking load

decreases. This is due to the higher unevenness of finer

yarn as compared to less one. 

Conclusion:  Ring  and compact yarn breaking load

has  been  predicted by an artificial neural network.

The neural network based on the back-propagation

algorithm used HVI properties and yarn count of

several cotton fibers qualities as input. Yarn breaking

load was the output of the neural-net model. Anural net

was trained and then used to predict the yarn breaking

load properties. The errors of prediction in each case

were less than the standard deviation of experimental

data results. For both the ring and compact yarns, the

effect of length uniformity is pronounced when the

fiber tenacity and yarn count are less. Also, the yarn

becomes finer the yarn breaking load decreases.
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