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1. Introduction. Second-order conditions are ubiquitous in nonlinear optimiza-
tion, in particular playing a central role in perturbation theory and in the analysis
of algorithms. See for example [2, 16]. Classically, a point x̄ is called a strong local
minimizer of a function f on Rn if there exist κ > 0 and a neighbourhood U of x̄
such that the inequality

f(x) ≥ f(x̄) + κ|x− x̄|2 holds for all x ∈ U.

Here | · | denotes the standard euclidean norm on Rn. For smooth f , this condition
simply amounts to positive definiteness of the Hessian ∇2f(x̄).

Existence of a strong local minimizer is a sufficient condition for a number of
desirable properties: even in classical nonlinear programming, it typically drives local
convergence analysis for algorithms. However, this notion has an important draw-
back, namely that strong local minimizers are sensitive to small perturbations to the
function. To illustrate, the origin in R2 is a strong (global) minimizer of the convex
function f(x, y) = (|x|+ |y|)2, whereas strong minimizers cease to exist for the slightly
perturbed functions ft(x, y) = (|x|+ |y|)2 + t(x+ y) for any t 6= 0.

In light of this instability, it is natural to look for a more robust quadratic growth
condition, namely we would like the constant κ and the neighbourhoodU , appearing in
the definition of strong local minimizers, to be uniform relative to linear perturbations
of the function.

Definition 1.1 (Stable strong local minimizers). We will say that x̄ is a stable
strong local minimizer of a function f : Rn → R ∪ {−∞,+∞} if there is a constant
κ > 0 and a neighbourhood U of x̄ so that for each vector v near the origin, there is a
a point xv (necessarily unique) in U , with x0 = x̄, so that in terms of the perturbed
functions fv := f(·)− 〈v, x〉, the inequality

fv(x) ≥ fv(xv) + κ|x− xv|
2 holds for each x in U.

This condition appears under the name of uniform quadratic growth for tilt pertur-
bations in [2], where it is considered in the context of optimization problems having a
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particular presentation. One could go further and require the dependence v 7→ xv to
be Lipschitz continuous, though it is easy to see that this requirement is automatically
satisfied whenever x̄ is a stable strong local minimizer (see Proposition 2.2).

In the variational-analytic literature, conditioning and sensitivity of optimization
problems is deeply tied to the notion of metric regularity [14, 5, 15, 8]. For us,
the work of Artacho-Geoffroy [1] in this area will be particularly important. There
the authors considered regularity properties of the workhorse of convex analysis, the
convex subdifferential mapping x 7→ ∂f(x), and fully characterized such properties
in terms of a variety of quadratic growth conditions. Results of the same flavour
also appear in [2]. In this short note, we will generalize the equivalence [1, Corollary
3.9] to all lower-semicontinuous functions satisfying a natural continuity property.
Consequently, we will show that for such a function f on Rn and a local minimizer
x̄ of f , the limiting subdifferential ∂f is strongly metrically regular at (x̄, 0) if and
only if f is prox-regular at x̄ for 0 (see Definition 2.10) and x̄ is a stable strong local
minimizer of f . We should note for the special case of amenable functions, this result
has been proven in [2, Theorem 5.36]. In contrast, our approach is more intrinsic
since it does not rely on the function representation.

Our proof strategy is straightforward. We will try to reduce the general situation
to the convex case, thereby allowing us to apply [1, Corollary 3.9]. The key step in
this direction is to observe that stable strong local minimizers are tilt-stable, in the
sense of [13]. In fact, employing a reduction to the convex case, we will establish the
surprising equivalence: stable strong local minimizers are one and the same as tilt-
stable local minimizers (Corollary 3.2). We should also note that our results generalize
[7, Theorem 6.3], which is only applicable to C2-partly smooth functions satisfying a
certain nondegeneracy condition.

As a by-product of our work, we will deduce that there is a complete characteri-
zation of stable strong local minimizers using positive definiteness of Mordukhovich’s
generalized Hessian ∂2f(x̄|0). For more details on the theory of generalized Hessians
see [8, 9]. This is significant since there is now a fairly effective calculus of this second-
order nonsmooth object [10], thereby providing the means of identifying stable strong
local minimizers in many instances of practical importance.

2. Preliminaries. In this section, we summarize some of the fundamental tools
used in variational analysis and nonsmooth optimization. We refer the reader to
the monographs Borwein-Zhu [3], Clarke-Ledyaev-Stern-Wolenski [4], Mordukhovich
[8, 9], and Rockafellar-Wets [15], for more details. Unless otherwise stated, we follow
the terminology and notation of [15].

The functions that we will be considering will take their values in the extended
real line R := R ∪ {−∞,∞}. For a function f : Rn → R, the domain of f is

dom f := {x ∈ Rn : f(x) < +∞},

and the epigraph of f is

epi f := {(x, r) ∈ Rn ×R : r ≥ f(x)}.

We say that an extended-real-valued function is proper if it is never {−∞} and is
not always {+∞}. A function f is lower-semicontinuous (or lsc for short) at x̄ if the
inequality liminfx→x̄ f(x) ≥ f(x̄) holds.

Throughout this work, we will only use Euclidean norms. Hence for a point
x ∈ Rn, the symbol |x| will denote the standard Euclidean norm of x. We let Bε(x̄)
be an open ball around x̄ of radius ε, and we let Bε(x̄) denote its closure.
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2.1. Tilt stability. In establishing our main result, it will be crucial to relate
the notion of stable strong strong local minimizers to the theory of tilt stability,
introduced in [13]. We begin with a definition [13, Definition 1.1].

Definition 2.1 (Tilt stability). A point x̄ gives a tilt-stable local minimum of
the function f : Rn → R if f(x̄) is finite and there exists an ε > 0 such that the
mapping

M : v 7→ argmin
|x−x̄|≤ε

{f(x)− 〈v, x〉},

is single-valued and Lipschitz on some neighbourhood of 0 with M(0) = x̄.
For C2 smooth functions, tilt stability reduces to positive-definiteness of the Hes-

sian ∇2f(x̄) [13, Proposition 1.2]. We will see (Corollary 3.2) that the notions of tilt
stability and stable strong local minimality are the same for all lsc functions — a
rather surprising result. As a first step in establishing this equivalence, we now show
that stable strong local minimizers depend in a Lipschitz way on the perturbation
parameters.

Proposition 2.2 (Lipschitzness of stable strong local minimizers).
Consider a lsc function f : Rn → R and suppose that x̄ is a stable strong local min-
imizer of f . Then the correspondence v 7→ xv of Definition 1.1 is locally Lipschitz
around 0.

Proof. There is a constant κ so that for any vectors v, w near zero, we have

f(xw) ≥ f(xv) + 〈v, xw − xv〉+ κ|xv − xw|
2,

f(xv) ≥ f(xw) + 〈w, xv − xw〉+ κ|xv − xw |
2.

Adding the two inequalities and dividing by |xv − xw|2, we obtain

〈 v − w

|xv − xw|
,
xv − xw

|xv − xw|

〉
≥ 2κ.

We deduce |xv − xw| ≤
1
2κ |v − w|, thereby establishing the result.

The following is now immediate.
Proposition 2.3 (Stable strong local minimizers are tilt-stable).

Consider a lsc function f : Rn → R and a point x̄ ∈ Rn. If x̄ is a stable strong local
minimizer of f , then x̄ gives a tilt-stable local minimum of f .

Proof. This readily follows from definition of tilt stability and Proposition 2.2.
The converse of the proposition above will take some more effort to prove. We will
take this up in Section 3.

2.2. Some convex analysis. For any set Q ⊂ Rn, the symbol coQ will denote
the convex hull of Q, while coQ will denote the closed convex hull of Q. Consider any
function f : Rn → R that is minorized by some affine function on Rn. Then the set
co (epi f) is an epigraph of a lsc, convex function, which we denote by co f . In some
cases co (epi f) is itself a closed set, and in such an instance, we refer to co f simply
as co f . Observe that the inequality co f ≤ f always holds. For a set S ⊂ Rn, we
define the indicator function of S, denoted by δS , to be identically zero on S and +∞
elsewhere.

For any (not necessarily convex) function f : Rn → R, the convex subdifferential
of f at x̄, denoted by ∂cof(x̄), consists of all vectors v satisfying

f(x) ≥ f(x̄) + 〈v, x − x̄〉 for all x ∈ Rn.
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Equivalently, a vector v lies in ∂cof(x̄) if and only if x̄ is a global minimizer of the tilted
function x 7→ f(x)−〈v, x〉. It will be important for us to understand the relationship
between the convex subdifferential of a function f and the convex subdifferential of
its convexification co f . The following result will be especially important.

Lemma 2.4. [6, Proposition 1.4.3 in Chapter X]
Consider a lsc function f : Rn → R that is minorized by some affine function on Rn.
Then the implication

∂cof(x) 6= ∅ =⇒ (co f)(x) = f(x),

holds for any point x in Rn.
The following lemma shows that under reasonable conditions, the set of minimiz-

ers of the convexified function co f coincides with the closed convex hull of minimizers
of f . See [6, Remark 1.5.7, Lemma 1.5.3 in Chapter X] for more details.

Lemma 2.5 (Minimizers of a convexified function).
Consider a lsc function f : Rn → R with bounded domain, and suppose furthermore
that f is minorized by some affine function on Rn. Then co (epi f) is a closed set,
and we have

argmin
x∈Rn

(co f)(x) = co
(
argmin
x∈Rn

f(x)
)
. (2.1)

As a direct consequence, we obtain the important observation that tilt-stable
minimizers are preserved under “local” convexification.

Proposition 2.6 (Tilt-stable minimizers under convexification).
Consider a lsc function f : Rn → R and suppose that a point x̄ ∈ Rn gives a tilt-
stable local minimum f . Then for all sufficiently small ε > 0, in terms of the function
g := f + δ

Bε(x̄)
, we have

argmin
|x−x̄|≤ε

{f(x)− 〈v, x〉} = argmin
x∈Rn

{(co g)(x) − 〈v, x〉},

for all v sufficiently close to 0. Consequently x̄ gives a tilt-stable local minimum of
the convexified function co (f + δ

Bε(x̄)
).

Proof. By definition of tilt stability, we have that f(x̄) is finite, and for all
sufficiently small ε > 0, the mapping

M : v 7→ argmin
|x−x̄|≤ε

{f(x)− 〈v, x〉},

is single-valued and Lipschitz on some neighbourhood of 0 with M(0) = x̄. Letting
g := f + δ

Bε(x̄)
and applying Lemma 2.5 to the function x 7→ g(x)−〈v, x〉, we deduce

M(v) = argmin
x∈Rn

{g(x)− 〈v, x〉} = co
(
argmin
x∈Rn

{g(x)− 〈v, x〉}
)
=

= argmin
x∈Rn

{co (g(·)− 〈v, ·〉)(x)} = argmin
x∈Rn

{(co g)(x)− 〈v, x〉},

for all v sufficiently close to 0. The result follows.

2.3. Variational analysis preliminaries. A set-valued mapping F from Rn to
Rm, denoted by F : Rn

⇒ Rm, is a mapping from Rn to the power set of Rm. Thus
for each point x ∈ Rn, F (x) is a subset of Rm. The graph of F is defined to be

gphF := {(x, y) ∈ Rn ×Rm : y ∈ F (x)}.
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A mapping F : Rn
⇒ Rn is called monotone provided that

〈v1 − v0, x1 − x0〉 ≥ 0 whenever v0 ∈ F (x0), v1 ∈ F (x1).

It is maximal monotone if there is no other monotone mapping whose graph strictly
contains the graph of F . In particular, the convex subdifferential mapping ∂cof of a
proper, lsc convex function f : Rn → R is maximal monotone [15, Theorem 12.17].

A set-valued mapping F : Rn
⇒ Rn is strongly monotone if there exists σ > 0

such that the mapping F − σI is monotone, or equivalently

〈v1 − v0, x1 − x0〉 ≥ σ|x− x̄|2 whenever v0 ∈ F (x0), v1 ∈ F (x1).

If for a convex function f : Rn → R, the subdifferential mapping ∂cof is strongly
monotone, then we say that f is strongly convex.

Often we will be interested in restricting both the domain and the range of a set-
valued mapping. Hence for a set-valued mapping F : Rn

⇒ Rm, and neighbourhoods
U ⊂ Rn and V ⊂ Rm, we define the localization of F relative to U and V to simply
be the set-valued mapping F̂ : Rn

⇒ Rm whose graph is (U × V ) ∩ gphF .
A central notion in set-valued and variational analysis that we explore in this

work is strong metric regularity.
Definition 2.7 (Strong metric regularity). A mapping F : Rn

⇒ Rm is said to
be strongly metrically regular at x̄ for v̄, where v̄ ∈ F (x̄), if there exist neighbourhoods
U of x̄ and V of v̄ so that the localization of F−1 relative to V and U defines a (single-
valued) Lipschitz continuous mapping.

This condition plays a central role in stability theory since it guarantees that near
x̄, there is a unique solution for v near v̄ of the inclusion

v ∈ F (x),

which furthermore varies in a Lipschitz way relative to perturbations in the left-hand-
side. For other notions related to metric regularity, we refer the interested reader to
the recent monograph [14].

In the current work, we will use, and subsequently generalize beyond convexity,
the following result that has appeared as [1, Theorem 3.9].

Theorem 2.8 (Strong metric regularity of the convex subdifferential).
Consider a lsc convex function f : Rn → R and a point x̄ in Rn. Then the following
are equivalent

1. ∂cof is strongly metrically regular at (x̄, 0).
2. There exists κ > 0 and neighbourhoods U of x̄ and V of 0 so that the local-

ization of (∂cof)
−1 relative to V and U is single-valued and we have

f(x) ≥ f(x̃) + 〈ṽ, x− x̃〉+ κ|x− x̃|2 for all x ∈ U,

and all (x̃, ṽ) ∈ (U × V ) ∩ gph∂cof .
Clearly, for convex functions, property 2 in the theorem above is equivalent to x̄

being a stable strong local minimizer of f .
We now consider subdifferentials, which are the fundamental tools in the study

of general nonsmooth functions.
Definition 2.9 (Subdifferentials). Consider a function f : Rn → R and a point

x̄ with f(x̄) finite. The proximal subdifferential of f at x̄, denoted by ∂P f(x̄), consists
of all vectors v ∈ Rn for which there exists r > 0 satisfying

f(x) ≥ f(x̄) + 〈v, x− x̄〉 − r|x − x̄|2 for all x near x̄.
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On the other hand, the limiting subdifferential of f at x̄, denoted by ∂f(x̄), consists
of all vectors v for which there exists a sequence (xi, f(xi), vi) → (x̄, f(x̄), v̄), with
vi ∈ ∂P f(xi) for each index i.

For C1 smooth functions f on Rn, the subdifferential ∂f(x) consists only of
the gradient ∇f(x) for each x ∈ Rn. For convex f , the proximal and the limiting
subdifferentials coincide with the convex subdifferential ∂cof(x̄).

Seeking a kind of uniformity in parameters appearing in the definition of the
proximal subdifferential, we arrive at the following [12, Definition 1.1].

Definition 2.10 (Prox-regularity). A function f : Rn → R is prox-regular at x̄
for v̄ if f is finite and locally lsc at x̄ with v ∈ ∂f(x̄), and there exist ε > 0 and ρ ≥ 0
such that

f(x′) ≥ f(x) + 〈v, x′ − x〉 −
ρ

2
|x′ − x|2 for all x′ ∈ Bε(x̄),

when v ∈ ∂f(x), |v − v̄| < ε, |x− x̄| < ε, |f(x)− f(x̄)| < ε.
In relating strong metric regularity of the subdifferential ∂f to the functional

properties of f , it is absolutely essential to require the function (x, v) 7→ f(x) to be
continuous on gph∂f . This leads to the notion of subdifferential continuity, intro-
duced in [12, Definition 2.1].

Definition 2.11 (Subdifferential continuity). We say that f : Rn → R is sub-
differentially continuous at x̄ for v̄ ∈ ∂f(x̄) if for any sequences xi → x̄ and vi → v̄,
with vi ∈ ∂f(xi), it must be the case that f(xi) → f(x̄).

In particular, all lsc convex functions f , and more generally all strongly amenable
functions (see [15, Definition 10.23]), are both subdifferentially continuous and prox-
regular at any point x̄ ∈ dom f for any vector v̄ ∈ ∂f(x̄). See [15, Proposition 13.32]
for details.

Rockafellar and Poliquin characterized tilt stability in a number of meaningful
ways [13, Theorem 1.3], with the notions of prox-regularity and subdifferential conti-
nuity playing a key role. The following is just a small excerpt from their result.

Theorem 2.12 (Characterization of tilt stability). Consider a function f : Rn →
R, with 0 ∈ ∂f(x̄), and such that f is both prox-regular and subdifferentially con-
tinuous at x̄ for v̄ = 0. Then the following are equivalent and imply the exis-
tence of ε > 0 such that the mapping M in Definition 2.1 has the equivalent form
M(v) = (∂f)−1(v) ∩Bε(x̄) for all v sufficiently close to 0.

1. The point x̄ gives a tilt-stable local minimum of f .
2. There is a proper, lsc, strongly convex function h on Rn along with neigh-

bourhoods U of x̄ and V of 0 such that h is finite on U , with h(x̄) = f(x̄),
and

(
U × V

)
∩ gph∂f =

(
U × V ) ∩ gph∂h.

Analysing the proof of the above theorem, much more can be said. Indeed,
suppose that the set-up of the theorem holds and that x̄ gives a tilt-stable local
minimum of f . Thus there exists ε > 0 such that the mapping

M : v 7→ argmin
|x−x̄|≤ε

{f(x)− 〈v, x〉},

is single-valued and Lipschitz continuous on some neighbourhood of 0 with M(0) = x̄.
Then the convex function h guaranteed to exist by Theorem 2.12 can be chosen simply
to be the convexified function

h = co (f + δ
Bε(x̄)

).
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This observation will be important for the proof of our main result Theorem 3.3.

3. Main results. We begin this section by establishing a simple relationship
between tilt stability and strong metric regularity of the subdifferential ∂f .

Proposition 3.1 (Tilt stability versus strong metric regularity).
Let f : Rn → R be a lsc function and let x̄ be a local minimizer of f . Consider the
following properties.

1. The subdifferential mapping ∂f is strongly metrically regular at (x̄, 0).
2. f is prox-regular at x̄ for 0 and x̄ gives a tilt-stable local minimum of f .

Then the implication 1 ⇒ 2 holds, and furthermore if 1 holds, then for sufficiently
small ε > 0 the mapping M of Definition 2.1 has the representation

M(v) = Bε(x̄) ∩ (∂f)−1(v),

for all v sufficiently close to 0. The implication 2 ⇒ 1 holds provided that f is
subdifferentially continuous at x̄ for 0.

Proof. Suppose that 1 holds. Then, in particular, x̄ is a strict local minimizer of
f . Hence there exists ε > 0 satisfying

f(x) > f(x̄) for all x ∈ Bε(x̄).

It is now easy to check that the sets argmin|x−x̄|≤ε{f(x) − 〈v, x〉} are contained in
the open ball Bε(x̄) for all vectors v sufficiently close to 0. Hence by strong metric
regularity we have

Bε(x̄) ∩ (∂f)−1(v) = argmin
|x−x̄|≤ε

{f(x)− 〈v, x〉},

for all v sufficiently close to 0. It follows from the equation above and the definition of
prox-regularity that f is prox-regular at x̄ for 0. The validity of 2 is now immediate.

Suppose that f is subdifferentially continuous at x̄ for 0 and that 2 holds. Then
by Theorem 2.12, we haveM(v) = Bε(x̄)∩(∂f)−1(v), and consequently ∂f is strongly
metrically regular at (x̄, 0).

We can now establish the converse of Proposition 2.3, thereby showing that tilt-
stable local minimizers and stable strong local minimizers are one and the same.

Corollary 3.2 (Stable strong local minimizers and tilt stability).
For a lsc function f : Rn → R, a point x̄ gives a tilt-stable local minimum of f if and
only if x̄ is a stable strong local minimizer of f .

Proof. The implication ⇐ has been proven in Proposition 2.3. We now argue the
converse. To this end, suppose that x̄ gives a tilt-stable local minimum of f . Then
by Proposition 2.6, for all sufficiently small ε > 0, the point x̄ gives a tilt-stable local
minimum of the convexified function co (f + δ

Bε(x̄)
), and furthermore, in terms of the

function g := f + δ
Bε(x̄)

, we have

argmin
x∈Rn

{g(x)− 〈v, x〉} = argmin
x∈Rn

{(co g)(x)− 〈v, x〉}, (3.1)

for all v sufficiently close to 0. In light of (3.1), we have

v ∈ ∂cog(x) ⇔ v ∈ ∂co(co g)(x), (3.2)

for all x ∈ Rn and all v sufficiently close to 0.
Observe co g, being a lsc convex function, is both prox-regular and subdifferen-

tially continuous at x̄ for 0. Hence applying Proposition 3.1 to co g, we deduce that
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the subdifferential ∂co(co g) is strongly metrically regular at (x̄, 0). Consequently by
Theorem 2.8, there exists κ > 0 and neighbourhoods U of x̄ and V of 0 so that the
localization of (∂co(co g))

−1 relative to V and U is single-valued and we have

(co g)(x) ≥ (co g)(x̃) + 〈ṽ, x− x̃〉+ κ|x− x̃|2 for all x ∈ U, (3.3)

and for all (x̃, ṽ) ∈ (U × V ) ∩ gph ∂co(co g).
Shrinking U and V , we may assume that the inclusion U ⊂ Bε(x̄) holds. Combin-

ing (3.2) and Lemma 2.4, we deduce that for any pair (x̃, ṽ) ∈ (U ×V )∩gph ∂co(co g),
we have (co g)(x̃) = g(x̃) = f(x̃), and that for any x ∈ U the inequality (co g)(x) ≤
f(x) holds. Plugging these relations into (3.3), the result follows.

With the preparation that we have done, the proof of our main result is now
straightforward. We should stress that our contribution is in the proof of the equiv-
alence 1 ⇔ 2 ⇔ 3 ⇔ 4, whereas the equivalence 2 ⇔ 5 follows directly from [12,
Theorem 3.2] and [13, Theorem 1.3].

Theorem 3.3 (Strong metric regularity and quadratic growth).
Consider a lsc function f : Rn → R that is subdifferentially continuous at x̄ for 0,
where x̄ is a local minimizer of f . Then the following are equivalent.

1. The subdifferential mapping ∂f is strongly metrically regular at (x̄, 0).
2. f is prox-regular at x̄ for 0 and x̄ gives a tilt-stable local minimum of f .
3. There exists κ > 0 and neighbourhoods U of x̄ and V of 0 so that the local-

ization of (∂f)−1 relative to V and U is single-valued and we have

f(x) ≥ f(x̃) + 〈ṽ, x− x̃〉+ κ|x− x̃|2 for all x ∈ U,

and for all (x̃, ṽ) ∈ (U × V ) ∩ gph ∂f .
4. f is prox-regular at x̄ for 0 and x̄ is a stable strong local minimizer of f
5. ∂f has a localization around (x̄, 0) that is strongly monotone and maximal

monotone.
Proof. The equivalence 1 ⇔ 2 was proven in Proposition 3.1, whereas the equiv-

alence 2 ⇔ 5 follows directly from [12, Theorem 3.2] and [13, Theorem 1.3].
2 ⇒ 3 : Suppose 2 holds. Then by Theorem 2.12 and the ensuing remarks, there

is ε > 0 so that for the convexified function h := co (f + δ
Bε(x̄)

), we have

gph ∂f = gph∂h locally around (x̄, 0).

From Proposition 2.6 and the equivalence 1 ⇔ 2, we deduce that the mapping ∂h

is strongly metrically regular at (x̄, 0). Applying Theorem 2.8 to h, we deduce there
exists κ > 0 and neighbourhoods U of x̄ and V of 0 so that the localization of (∂f)−1

relative to V and U is single-valued and we have

h(x) ≥ h(x̃) + 〈ṽ, x− x̃〉+ κ|x− x̃|2 for all x ∈ U, (3.4)

and for all (x̃, ṽ) ∈ (U × V ) ∩ gph∂f . Shrinking U and V , we may assume that the
inclusion U ⊂ Bε(x̄) holds. Observe by Proposition 3.1, we have

argmin
|x−x̄|≤ε

{f(x)− 〈ṽ, x〉} = Bε(x̄) ∩ (∂f)−1(ṽ),

for all ṽ sufficiently close to 0. In particular, we may shrink V so that for all pairs
(x̃, ṽ) ∈ (U×V )∩gph ∂f , we have ∂cof(x̃) 6= ∅. Then applying Lemma 2.4, we deduce
h(x̃) = f(x̃) for all (x̃, ṽ) ∈ (U ×V )∩gph ∂f , and h(x) ≤ f(x) for all x ∈ U . Plugging
these relations into (3.4), the result follows immediately.
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3 ⇒ 4: This follows directly from the definitions of prox-regularity and stable
strong local minimizers.

4 ⇒ 2: This implication is immediate from Proposition 2.3.
As the above theorem illustrates, prox-regularity appears naturally when charac-

terizing strong metric regularity of the subdifferential, thereby underscoring the im-
portance of the concept. This is in contrast to [13, Theorem 1.3] where prox-regularity
occurs as a standing assumption. Furthermore the following example shows that tilt
stability does not necessarily imply that prox-regularity holds, even for Lipschitz con-
tinuous, subdifferentially regular [15, Corollary 8.11] functions. Hence the assumption
of prox-regularity in conditions 2 and 4 of Theorem 3.3 is not superfluous.

Example 3.4 (Failure of prox-regularity). Consider the Lipschitz continuous
function

f(x) =

{
min

{(
1 + 1

n

)
x− 1

n(n+1) ,
1
n

}
, 1

n+1 ≤ |x| ≤ 1
n

0, x = 0

Clearly x̄ = 0 gives a tilt-stable local minimum of f . Observe however

(∂f)−1(0) ⊃
{ 1

n
: n is a nonzero integer

}
,

and hence the subdifferential mapping ∂f is not strongly metrically regular at (0, 0).
Of course this situation occurs because f is not prox-regular at x̄ for 0.

To make this example more convincing, it is easy to “smooth-out” f on the open
sets {x : 1

n+1 < |x| < 1
n
}, to ensure that f is subdifferentially regular on the whole

real line. For instance, let

rn =
1

(n+ 1)3
+

1

(n+ 1)2

√( 1

n

)2

+
( 1

n+ 1

)2

, (3.5)

xn =
1

n
+

1

(n+ 1)4

(
1− n(n+ 1)(n+ 2)rn

)
. (3.6)

and define the function

f̃(x) =





{(
1 + 1

n

)
x− 1

n(n+1) ,
1

n+1 ≤ |x| ≤ xn√
r2n − (x − 1

n
)2 − (rn − 1

n
), xn ≤ |x| ≤ 1

n

0, x = 0

The construction is depicted in Figure 3.1.
One can readily verify that f̃ is indeed subdifferentially regular on the entire real

line, and for the same reasons as for f , the subdifferential mapping ∂f̃ is not strongly
metrically regular at (0, 0) even though (0, 0) gives a tilt-stable local minimum of f .
This happens because f̃ is not prox-regular at x̄ for 0.

It is important to note that subdifferential continuity plays an important role in
the validity of Theorem 3.3, as the following example shows.

Example 3.5 (Failure of subdifferential continuity). Consider the function f on
R defined by

f(x) =

{
1 + x4, x < 0,
x2, x ≥ 0.
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1
n+1

xn 1
n

f

f̃

1
n+1

1
n

Fig. 3.1. Graphs of f and f̃ on the interval ( 1

n+1
, 1

n
).

One can easily check that f is prox-regular at x̄ = 0 for v̄ = 0 and that the origin is a
stable strong local minimizer of f . However ∂f fails to be strongly metrically regular
at (0, 0). This occurs, of course, because f is not subdifferentially continuous at x̄ = 0
for v̄ = 0.

Remark 3.6. In light of [13, Theorem 1.3], we may add another equivalence to
Theorem 3.3, namely that f is prox-regular at x̄ for 0 and the generalized Hessian
mapping ∂2f(x̄|0) is positive definite in the sense that

〈z, w〉 > 0 whenever z ∈ ∂2f(x̄|0)(w), w 6= 0. (3.7)

Hence in concrete instances, we may use the newly developed calculus of the gener-
alized Hessians [10] and the calculus of prox-regularity [11] to determine when any
of the equivalent properties listed in Theorem 3.3 hold. It is also worth noting that
such calculations are drastically simplified when f is convex. In this situation, by [14,
Theorem 3G.5] and [15, Theorem 9.43] for example, strong metric regularity of ∂f at
(x̄, 0) amounts to nonsingularity of the generalized Hessian

0 ∈ ∂2f(x̄|0)(w) =⇒ w = 0,

a condition that is much easier to check in practice than the positive definiteness
condition (3.7).
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[6] J.B. Hiriart-Urruty C. Lemaréchal. Convex Analysis and Minimization Algorithms.
Grundlehren der mathematischen Wissenschaften 305 and 306, Springer-Verlag, Berlin,
New York, Heidelberg, 1993.

[7] A.S. Lewis and S. Zhang. Partial smoothness, tilt stability, and generalized Hessians. preprint,
2012.

[8] B.S. Mordukhovich. Variational Analysis and Generalized Differentiation I: Basic Theory.
Grundlehren der mathematischen Wissenschaften, Vol 330, Springer, Berlin, 2005.

[9] B.S. Mordukhovich. Variational Analysis and Generalized Differentiation II: Applications.
Grundlehren der mathematischen Wissenschaften, Vol 331, Springer, Berlin, 2005.

[10] B.S. Mordukhovich and R.T. Rockafellar. Second-order subdifferential calculus with applica-
tions to tilt stability in optimization. 2011.

[11] R. Poliquin and R.T. Rockafellar. A calculus of prox-regularity. accepted to J. Convex Analysis,
2011.

[12] R.A. Poliquin and R.T. Rockafellar. Prox-regular functions in variational analysis. Trans.

Amer. Math. Soc., 348:1805–1838, 1996.

[13] R.A. Poliquin and R.T. Rockafellar. Tilt stability of a local minimum. SIAM J. on Optimization,
8(2):287–299, February 1998.

[14] R.T. Rockafellar and A.L. Dontchev. Implicit functions and solution mappings. Monographs
in Mathematics, Springer-Verlag, 2009.

[15] R.T. Rockafellar and R.J-B. Wets. Variational Analysis. Grundlehren der mathematischen
Wissenschaften, Vol 317, Springer, Berlin, 1998.
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