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ABSTRACT
Anonymized user datasets are often released for research or indus-
try applications. As an example, t.qq.com released its anonymized
users’ profile, social interaction, and recommendation log data in
KDD Cup 2012 to call for recommendation algorithms. Since the
entities (users and so on) and edges (links among entities) are of
multiple types, the released social network is a heterogeneous in-
formation network. Prior work has shown how privacy can be com-
promised in homogeneous information networks by the use of spe-
cific types of graph patterns. We show how the extra information
derived from heterogeneity can be used to relax these assumptions.
To characterize and demonstrate this added threat, we formally de-
fine privacy risk in an anonymized heterogeneous information net-
work to identify the vulnerability in the possible way such data are
released, and further present a new de-anonymization attack that
exploits the vulnerability. Our attack successfully de-anonymized
most individuals involved in the data—for an anonymized 1,000-
user t.qq.com network of density 0.01, the attack precision is over
90% with a 2.3-million-user auxiliary network.
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1. INTRODUCTION
The world is getting more inter-connected. Tons of social net-

work data are generated through people’s interactions, and differ-
ent entities are linked across multiple relations, forming a gigantic
information-rich, inter-related and multi-typed heterogeneous in-
formation network [5]. Is there any risk in the current efforts to
avoid privacy intrusion upon the anonymized copy of a heteroge-
neous information network? We start with a motivating example.
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Figure 1: The heterogeneous information network in t.qq

1.1 Motivating Example
Various datasets containing micro-data, that is, information about

specific individuals, have been released for different research pur-
poses or industry applications [11]. Some datasets contain individ-
ual profiles, preferences, or transactions, which many people con-
sider sensitive or private. In the recent KDD Cup 2012, t.qq.com (a
popular microblogging site, hereinafter referred to as t.qq) released
its 2.3 million users’ profile, social interaction, and recommenda-
tion preference log data to call for more efficient recommendation
algorithms [1]. In a microblogging site like t.qq as depicted in Fig-
ure 1, entities (nodes) correspond to users, tweets or comments, and
edges correspond to different types of links (post, mention, retweet,
comment, and follow) among them1. Since both nodes and links are
of multiple types, such a social network is essentially a heteroge-
neous information network [14]. Besides identifying information
such as user ID which has been anonymized by randomly assigned
strings, some other attributes are also replaced with meaningless
IDs, such as user tags.

1The terms edge and link are used interchangeably in this work,
while the term entity is preferred over node here to reflect more re-
alistic scenarios where each node contains multiple attributes rather
than a single identifier in the settings of a heterogeneous informa-
tion network.



In the released anonymized target dataset, consider an adversary
that is interested in breaching privacy of some selected target user-
s based on their preferences. The preference can be inferred from
the target users’ recommendation preference (acceptance/rejection)
log included in the target dataset. This information is sensitive and
not accessible on the t.qq site (the rejection log cannot be inferred
from the site). Suppose the adversary obtains the non-anonymized
auxiliary dataset from t.qq exactly containing the users from the
same time-synchronized target dataset. To de-anonymize the user-
s of interests in the target dataset, the adversary has to match the
meaningless user IDs in the target dataset with the real user names
in the auxiliary dataset. Given the rich information available in the
heterogeneous information network as demonstrated in Figure 1,
suppose the adversary locks his target on an anonymized user (say,
A3H) in the target dataset who accepted the “follow Citibank” rec-
ommendation but rejected all other bank recommendations. The
adversary may search in the auxiliary dataset by specifying A3H’s
entity profile (A3H’s year of birth, hereinafter referred to as yob:
1980, gender: male, etc.) combined with A3H’s multiple social
links (mention, retweet, comment, follow) and profile information
of its neighbor entity to whom the target user connects via these
links—A3H gave 15 comments to an anonymized female user F8P
born in 1985 and retweeted an anonymized male user M7R 10 times
that is born in 1970. If Ada in the non-anonymized auxiliary dataset
is the only one that satisfies the matching—Ada has both the same
profile information as A3H and Ada has the same social interac-
tions with the other users of the same gender and age as those of
F8P and M7R correspondingly; thus, the adversary successfully
de-anonymizes A3H by establishing a unique matching between it
in the target dataset and the real user Ada in the auxiliary dataset.
Now the adversary knows Ada probably has a Citibank account or
is interested in applying for it. The leak of such private informa-
tion may allow scammers to spam Ada with phishing URLs cam-
ouflaged with the Citibank online-banking interface. In fact, 8%
of some sampled 25 million URLs posted to microblogging sites
point to phishing, malware, and scams [4].

Therefore, there is privacy risk in an anonymized heterogeneous
information network if such unique matchings can be easily estab-
lished. Users in a network of high privacy risk that can be easily
de-anonymized may be vulnerable to external threats. In this work,
we experimentally substantiate adversaries can exploit the privacy
risk to de-anonymize over 90% users in a 1,000-user t.qq network
of density 0.01 from a 2,320,895-user auxiliary network.

1.2 Limitations of k-Anonymity
To formalize privacy risk observed in Section 1.1, directly using

the existing metric seems possible at first thought. A dataset is
said to be k-anonymous if on the minimal set of attributes in the
table that can be joined with external information to de-anonymize
individual records, each record is indistinguishable from at least
k − 1 other records within the same dataset [16]. The larger the
value of k, the better the privacy is preserved.

Consider target dataset T1000 that satisfies 1000-anonymity and
another target dataset T2 that satisfies 2-anonymity, together with
their original non-anonymized counterparts. Imagine a new tuple
t∗ is created and inserted into both T1000 and T2. After anonymiza-
tion processes still no any other tuple in either dataset has the same
value of t∗, and the new datasets are T ∗

1000 and T ∗
2 respectively.

Both T ∗
1000 and T ∗

2 are now 1-anonymity simply because of the
injection of t∗—both T ∗

1000 and T ∗
2 are same vulnerable in terms

of the same k-anonymity. Suppose a selective adversary is not in-
terested in de-anonymizing t∗, then the remaining T ∗

1000 of 1000-
anonymity seems much less vulnerable than the remaining T ∗

2 of

2-anonymity, which may be misled by the same 1-anonymity.
Due to limitations of k-anonymity in differentiating individuals

in the same target dataset, it is not suitable to formalize privacy risk
in a more general scenario where adversaries may not be equally
interested in de-anonymizing all users. In this paper we define pri-
vacy risk in a more general sense, and prove it can be very high in
the anonymized heterogeneous information network.

1.3 New Settings, New Threats
Social media are getting popular with more and more function-

alities. As shown in Section 1.1, t.qq allows its over 500 million
users to connect with one another in different ways such as fol-
low, mention, retweet, and comment. The growing multi-typed het-
erogeneous information networks out of the growing social media
functionalities may render the existing homogeneous information
network anonymization algorithms no more effective.

Existing de-anonymization attacks on social networks made sev-
eral assumptions, such as both target and auxiliary graphs are large-
scale so random graphs or non-trivial cliques can be re-identified
from both graphs [2, 12]. It should be highlighted that, in the new
settings of a heterogeneous information network, if new attacks are
feasible while relaxing these assumptions, such attacks must be ad-
dressed in the proposal of all relevant anonymization algorithms.

1.4 Our Contributions
In this work we make three unique contributions. First, we pro-

pose a definition of privacy risk tuned to the concerns of heteroge-
nous information networks. In particular, this definition considers a
more general situation where adversaries may not be equally inter-
ested in compromising all users’ privacy. We show that the privacy
risk can be high in an anonymized heterogeneous information net-
work, and can be exploited in practice.

Second, we present a de-anonymization algorithm against het-
erogeneous information networks which exploits the identified pri-
vacy risk without requiring creating new accounts or relying on
easily-detectable graph structures in a large-scale network. While
central in illuminating the privacy issue for a heterogeneous infor-
mation network, we also expect our algorithm to be applied to de-
anonymizing a homogeneous information network (with slight per-
formance degradation).

Our third contribution is a practical evaluation of the KDD Cup
2012 t.qq anonymized dataset, which contains 2.3 million user-
s and over 60 million multiple types of social links among them.
To demonstrate the effectiveness of the de-anonymization algorith-
m, we apply the state-of-the-art graph anonymization algorithms to
the t.qq dataset, which were claimed effective by their designers
for defending graph structural attacks. The experiments show that
our algorithm is able to beat the investigated graph anonymization
algorithms in the settings of a heterogeneous information network
even without knowledge of the specific anonymization technique in
use. It undermines the notion of “security by obscurity” for privacy
preservation: ignorance of the anonymization does not prevent an
adversary from de-anonymizing successfully.

2. RELATED WORK
Simply replacing sensitive information with random strings can-

not guarantee privacy and how to release data for different research
purposes or industry applications without leaking any privacy in-
formation has been an interesting problem.

2.1 Relational Data Anonymization
A major category of privacy attacks on relational data is to de-

anonymize individuals by joining a released table containing sen-



sitive information with some external tables modeling the auxiliary
dataset of attackers. To mitigate this type of attacks, k-anonymity
was proposed [16]. Further enhanced techniques include l-diversity
[9] and t-closeness [7].

Narayanan and Shmatikov proposed de-anonymization attacks a-
gainst high-dimensional micro-data and showed success in Netflix
Prize dataset [11]. They pointed out micro-data are characterized
by high dimensionality and sparsity. A recent study by Narayanan
et al. further demonstrated the feasibility of internet-scale author
identification via linguistic stylometry [10]. However, all the afore-
mentioned studies assume that an adversary utilizes attribute infor-
mation of micro-data and can deal with relational data only.

2.2 Graph Structural Attacks
In a large-scale social network, it is hard to observe non-trivial

random subgraphs or cliques [13]. Hence they easily stand out if
they exist. Backstrom et al. discussed active attacks where adver-
saries create users and establish connections randomly among them
and attach such random subgraphs (“sybil nodes”) into the target n-
odes in the auxiliary graph data [2]. Since such random subgraphs
can be easily detected from the anonymized counterpart of the orig-
inal data, the target nodes connected to the sybil nodes are then de-
anonymized by consulting the original auxiliary graph. Narayanan
and Shmatikov pointed out the main drawback of this active at-
tack is that, creating accounts, links among themselves and links to
target nodes, is not feasible on a large-scale [12]. They designed
an attack propagating the de-anonymization process via neighbor
structure from the initial precisely-matched “seed nodes”. Hence
success of this attack heavily depends on if such seed nodes can be
detected precisely; thus, seed nodes must stand out easily both in
the target and auxiliary dataset. So non-trivial cliques are chosen
[12]. Since there is no guarantee that the released anonymized net-
work is always large, this attack is not always successful because
non-trivial cliques cannot always be detectable.

2.3 Graph Data Anonymization
For graph-based social network data, the degree of nodes in a

graph can reveal the identities of individuals. Liu and Terzi stud-
ied a specific graph-anonymization problem and called a graph k-
degree anonymous if for every node v, there exist at least k − 1
other nodes in the graph with the same degree [8]. This definition
of anonymity prevents de-anonymization of individuals by adver-
saries with a background knowledge of the degree of certain nodes.

Zhou and Pei identified a structural neighborhood attack and
tackled it by proposing k-neighborhood anonymization [19]. They
assumed an adversary may know the neighbors of the target nodes
and their inter-connections. The privacy preservation goal is to pro-
tect neighborhood attacks which use neighbor structure matching to
de-anonymize nodes. For a social network, suppose an adversary
knows the neighbor structure for a node. If such neighbor structure
has at least k isomorphic copies in the anonymized social network,
then the node can be de-anonymized in the target dataset with con-
fidence at most 1/k [20]. Due to its heavy isomorphism testing
computation, a limitation of this attack is only distance-1 neigh-
bors can be evaluated effectively.

Zou et at. assumed an attacking model where an adversary can
know any subgraph that contains the targeted individual and pro-
posed k-automorphic anonymity that the graph must has k − 1
non-trivial automorphism and no node is mapped to itself under
the k − 1 non-trivial automorphism [21]. Wu et al. proposed a
similar k-symmetry [18].

Cheng et al. identified that k-automorphism approach is in-
sufficient for protecting link privacy and proposed the k-security

Figure 2: The corresponding network schema for the heteroge-
neous information network in Figure 1

anonymity [3]. In their approach, an anonymized graph satisfies k-
security if for any two target individuals and any subgraphs contain-
ing either individual, the adversary cannot determine either whether
a node that is linked to either target individual (NodeInfo Security)
or whether both target individuals are linked by a path of a certain
length (LinkInfo Security), with probability higher than 1/k.

Although these recent graph data anonymization algorithms can
be applied to social network data against graph structural attack-
s in Section 2.2, their applicability has not been demonstrated in
the more challenging settings of a heterogeneous information net-
work. Our evaluation in Section 6 shows that these graph data
anonymization algorithms are not effective to preserve privacy of
an anonymized heterogeneous information network.

3. HETEROGENEOUS INFORMATION
NETWORK SETTINGS

In this section, we formalize the general anonymized heteroge-
neous information network settings that are frequently discussed in
the remaining of the paper and illustrate them with the motivating
example discussed in Section 1.1.

DEFINITION 1. The information network is a directed graph
G = (V,E) with an entity type mapping function τ : V → E and
a link type mapping function ϕ : E → L, where each entity v ∈ V
belongs to one particular entity type τ(v) ∈ E , and each edge
e ∈ E belongs to a particular link type ϕ(e) ∈ L. If two edges
belong to the same link type, they must share the same starting and
ending entity types.

DEFINITION 2. The heterogeneous information network is an
information network where |E| > 1 or |L| > 1.

A sample heterogeneous information network for the t.qq dataset
is depicted in Figure 1. Given a complicated heterogeneous in-
formation network, it is necessary to provide its meta level (i.e.,
schema-level) description for better understanding the network, and
network schema is to describe the meta structure of a network.

DEFINITION 3. The network schema, denoted as TG = (E ,L),
is a meta template for a heterogeneous information network G =
(V,E) with the entity type mapping τ : V → E and the link map-
ping ϕ : E → L, which is a directed graph defined over entity
types E , with edges as links from L.

Figure 2 shows the network schema for the heterogeneous infor-
mation network in Figure 1. In practice data publishers may not
release information about all the entities and links in the original



network schema while links among the same entity type (also the
target entity type of adversaries’ interests) are generally available
either directly or indirectly via summarization over different enti-
ty types [1]. In view of this, although we believe providing richer
information about multiple types of entities could further facilitate
de-anonymization, in this work, we consider a more challenging
and practical scenario where data publishers only provide limited
information about how the same type of entity (i.e., target entity
type E∗) can be linked via different types of links or over different
types of entities. Thus, a simplified network schema is needed such
that it reflects only the relationships over the target entity type.

DEFINITION 4. The target meta paths (target network schema
links) P(E∗), are paths defined on the graph of network schema

TG = (E ,L), denoted by E∗ L1−−→ E1
L2−−→ ...

Ln−−→ E∗.

DEFINITION 5. The target network schema T ∗
G = (E∗,L∗) is

projected from TG = (E ,L) where L∗ are reproduced or short-
circuited from target meta paths P(E∗) and target entity type E∗.

To illustrate, we take the released target t.qq dataset as an ex-
ample. This anonymized dataset contains the following files and
attributes (anonymized attributes are marked with underlines):

• recommendation preference data: user ID(A),
recommended item ID(R), result (whether A likesR)
• user profile data: user ID, yob, gender, tweet count (no. of

tweets), tag IDs
• user mention data: user ID(A), user ID(B), the number of

timesAmentionedB either inA’s tweets or comments (men-
tion strength)
• user retweet data: user ID(A), user ID(B), the number of

times A retweeted B’s tweets (retweet strength)
• user comment data: user ID(A), user ID(B), the number of

times A commented B either in B’s tweets or comments
(comment strength)
• user follow data: user ID(follower), user ID(followee)

In the above dataset, besides user entities’ profile information,
users’ multiple social interactions are also available. Thus, the ad-
versary can decide to project the original network schema in Fig-
ure 2 to only reflect relationships among his target user entity. Nav-
igating the original network schema based on the above user men-
tion, retweet, comment, and follow data, these target meta paths
connecting users across different types of entities are possible:

• user mention path: User
post−−−→ Tweet

mention−−−−−→ User

or User
post−−−→ Comment

mention−−−−−→ User (short-circuited
feature: mention strength)
• user retweet path: User

post−−−→ Tweet
retweet−−−−−→ Tweet

posted by−−−−−−→ User (short-circuited feature: retweet strength)
• user comment path: User

post−−−→ Comment
comment−−−−−−→

Tweet
posted by−−−−−−→ User or User

post−−−→ Comment
comment−−−−−−→

Comment
posted by−−−−−−→ User (short-circuited feature: com-

ment strength)
• user follow path: User

follow−−−−→ User

The target meta paths allow the adversary to produce a new net-
work schema by projecting the original network schema to a simpli-
fied one to only reflect particular few relationships over the target
entity type. Specifically, the user mention, retweet and comment
paths can be short-circuited to produce new links over users re-
spectively while the user following path can be reproduced in the
projection. It is also emphasized that, the target meta paths are

Figure 3: The target network schema for Figure 2

able to greatly enrich the features (attributes) of the target entity
by utilizing different distances of neighbors from the target entity
along the specified meta paths. Specifically, target meta paths that
are short-circuited across different types of entities and different
types of links, may preserve the link heterogeneity information of
the network by generating new short-circuited feature (attribute)
and further enrich the features of the target entity. For instance,
the short-circuited feature mention strength can be newly generat-
ed from the user mention path.

The target network schema for Figure 2 is shown in Figure 3.
Since target meta paths may span across multiple types of entities,
entity heterogeneity information is still preserved, although not ful-
ly, in target network schema only containing the target entity type.

Therefore, the de-anonymization problem in the settings of a het-
erogeneous information network can be formulated as follows. De-
tailed illustrations are provided in Section 5.

DEFINITION 6. The de-anonymization problem in heteroge-
neous information network is utilizing the background knowledge
of the public graph G = (V,E), the private graph G′ = (V ′, E′),
and the target network schema T ∗

G to de-anonymize a target entity
v′ ∈ V ′ by establishing matches between v′ and a candidate set
C ⊆ V where the anonymized v′’s counterpart v ∈ C. If |C| = 1
and the only element v ∈ C is the correct counterpart of v′, the
de-anonymization is successful.

4. PRIVACY RISK ANALYSIS
Intuitively, privacy risk in a heterogeneous information network

is the ease of formulating unique attribute-metapath-combined val-
ues as formalized in Section 3. Formal analysis is derived from the
definition of privacy risk in general anonymized datasets.

4.1 Attribute-Metapath-Combined Values of
Target Entities

Data publishers anonymize data through generalization, suppres-
sion, adding, deleting, switching edges or nodes [15][20]. Natu-
rally, such modifications cause information loss and for a certain
privacy preservation goal they should be minimized to ensure the
anonymized data still satisfy the need for how they are expected
to be used, i.e., the need for utility. Generally, a certain level of
utility has to be preserved for the anonymized t.qq dataset in order
to design effective and reliable recommendation algorithms; thus,
an adversary is expected to be able to compromise some sacrificed
privacy due to the natural tradeoff between utility and privacy p-
reservation [20]. In the t.qq dataset case, the utility is preserved
in the sense that, some attribute values of user entities and most of
the social interactions among different user entities are preserved
(non-anonymized) as in the available target dataset descriptions in
Section 3 (e.g., non-anonymized attributes are not underlined).

Based on the target network schema in Figure 3, Figure 4 de-
scribes an example of how user entities are directly inter-connected
via part of different types of links in the t.qq dataset. Here m, r, c, f
stands for mention, retweet, comment, follow links in the target net-
work schema shown in Figure 3.



Figure 4: The neighbors of the target entity A1X are generated
along target meta paths

As mentioned in Section 3, target meta paths that are short-
circuited across different types of entities and different types of
links preserve the link heterogeneity information of the informa-
tion network and further enrich the features of the target entity. It
should be noted that, following the user mention path identified
in Section 3, 5m in Figure 4 from A1X to U2V indicates a new
numerical feature (attribute) short-circuited from the user mention
path—the mention strength from A1X to U2V in the target dataset
of value 5 either through the tweet entity or comment entity. Thus,
multiple meta-paths inject richer heterogeneity information for tar-
get entities in the settings of a heterogeneity information network.

If target user entities in the target dataset can form unique attribute-
metapath-combined values across the entire network, these user-
s can be de-anonymized from the auxiliary dataset by establish-
ing unique matches and the dataset is not secure. To analyze the
privacy risk of a heterogeneous information network, which can
be intuitively considered similar to the ease of formulating unique
attribute-metapath-combined values, one way is to expand the at-
tribute dimensions of micro-data by navigating from user entities to
their neighbors, neighbors’ neighbors, and so on, via their multiple
types of target meta paths.

With the assumption made in Section 1.1 that the target and aux-
iliary datasets are time-synchronized counterparts, take A1X in Fig-
ure 4 as an example. Without utilizing meta paths and only utilizing
profile attribute information, the features of A1X are:

• Max. Distance-0: yob, gender, ...

After utilizing his immediate distance-1 neighbors along target
meta paths, the features of A1X are expanded to (here “5-time-
mentionee” means a mentionee mentioned 5 times by the target
entity, i.e., mention strength = 5):

• Max. Distance-1: yob, gender, ..., 5-time-mentionee (U2V)’s
yob, 5-time-mentionee’s gender, ..., 15-time-mentionee (P3M)’s
yob, 15-time-mentionee’s gender, ..., 10-time-retweetee (E4G)’s
yob, 10-time-retweetee’s gender, ...

Further utilizing his distance-2 neighbors (neighbors of distance-
2 along target meta paths from A1X), the features of A1X are further
expanded to:

• Max. Distance-2: yob, gender, ..., 5-time-mentionee’s yob,
5-time-mentionee’s gender, ..., 15-time-mentionee’s yob, 15-
time-mentionee’s gender, ..., 10-time-retweetee’s yob, 10-time-
retweetee’s gender, ..., 10-time-retweetee’s followee (B8R)’s
yob, 10-time-retweetee’s followee’s gender, 10-time-retweetee’s
1-time-mentionee (Y9Z)’s yob, 10-time-retweetee’s 1-time-
mentionee’s gender, ...

Consistent with the idea by Narayanan and Shmatikov that large
dimensions of micro-data give rise to risks of privacy [11], the ex-

pansion of dimensions by propagating via multiple types of target
meta paths seems to increase the possibility for a user entity to form
a unique attribute-metapath-combined value under all the expanded
features across the entire dataset, which can be considered as pri-
vacy risk. In the remaining of this section, we formally prove this
intuition from the observations.

4.2 Privacy Risk in General Anonymized
Datasets

Privacy Risk indicates risk that privacy of a given dataset can
be compromised—the higher privacy risk, the lower security and
vice versa. Hence it might be tempting to directly adopt the notion
of widely-used k-anonymity and simply reverse its value to obtain
the measure of privacy risk. Here we state that, k-anonymity is
not able to differentiate users from one another in terms of their
different levels of security or privacy risk.

As discussed in Section 1.2, k-anonymity may be misleading in
more general situations where adversaries may not be equally inter-
ested in compromising all users’ privacy. To address its limitations,
when quantifying risk of any user in any dataset, we consider fac-
tors that influence privacy risk both socially and mathematically.

In real life, it is highly possible that an adversary is not equal-
ly interested in compromising everyone’s privacy in a dataset. As
illustrated in Section 1.1, an adversary may be more motivated to
de-anonymize an anonymized user who probably has a Citibank ac-
count. We denote the loss function of tuple ti by l(ti), with values
between 0 and 1. l(ti) can be considered as the potential loss of a
user whose privacy is compromised given that this user does care
about his loss of privacy. Therefore, in a social network, l(ti) is a
certain user’s privacy need because such need is positively corre-
lated with the cost of privacy breach; hence, it is the social factor
of a user’s privacy risk.

Similar to the concept of k-anonymity, we make the same as-
sumption that the target dataset is an anonymized copy of the same
auxiliary dataset. In any given dataset T , if there are k(ti)− 1 oth-
er tuples of the same value of tuple ti, the probability that each of
these k(ti) tuples, say ti, can be de-anonymized by random guess-
ing with probability no higher than 1

k(ti)
. Therefore, the higher

value of 1
k(ti)

, the higher possibility that the privacy of user ti
can be compromised—hence the higher privacy risk of the user
ti. 1

k(ti)
is the mathematical factor. Mathematical factor can be

considered positively correlated with the attack incentive as well:
given the same social factor, the adversary is more motivated to de-
anonymize the user with a higher mathematical factor because the
potential attack precision is higher.

Combining both social and mathematical factors, we define the
privacy risk of a tuple in a dataset as follows.

DEFINITION 7. We define the privacy risk R(ti) of tuple ti in
dataset T as follows:

R(ti) =
l(ti)

k(ti)
,

where k(ti) is the number of tuples in T with the same value of
tuple ti, and l(ti) is the loss function of tuple ti.

Averaging the risk R(ti) for each tuple ti in dataset T , the risk
R(T ) for dataset T is defined as follows.

DEFINITION 8. The privacy risk R(T ) of dataset T is

R(T ) =

∑N
i=1 R(ti)

N
,

where size N is the number of tuples ti in T .



It is noted that the privacy risk value R(T ) ∈ [0, 1]. Denoting
by C(T ) the cardinality of T—the number of distinct values, or
distinct combined values under different attributes, describing each
tuple ti in T , we give the following lemma.

LEMMA 1. Given dataset T with the cardinality C(T ), for each
tuple ti in T , assuming the loss function is independent of 1

k(ti)

with mean value µ, the expected privacy risk

E(R(T )) =
µC(T )
N

.

PROOF. By Definition 7 and 8,

R(T ) =

∑N
i=1

l(ti)
k(ti)

N
.

E(R(T )) =

∑N
i=1 E( 1

k(ti)
)E(l(ti))

N

=

∑N
i=1 µE( 1

k(ti)
)

N

=
µE(

∑N
i=1

1
k(ti)

)

N

= µE(C(T ))
N

= µC(T )
N

.

Lemma 1 provides an estimation of dataset privacy risk in a rela-
tively general sense. For instance, if the loss function for each tuple
is a random number between 0 and 1 and independent of 1

k(ti)
, the

expected privacy risk of the dataset is C(T )
2N

. Although it may be in-
teresting to quantify the social factor in other ways, to guarantee the
highest possible privacy need from all users has been considered,
in the remaining analysis we focus on the mathematical factor and
set the value of every loss function l(ti) to 1. Adversaries may still
have varying attack incentives in terms of different mathematical
factors as discussed earlier in this section.

THEOREM 1. The privacy risk R(T ) of dataset T is

R(T ) =
C(T )
N

, (R(T ) ∈ [
1

N
, 1]),

where in T , N is the number of tuples, and cardinality C(T ) is the
number of distinct (combined) attribute values describing tuples.

PROOF. The proof can be completed by applying Lemma 1 and
mathematical derivation with l(ti) = 1. R(T ) is lowest when all
the tuples are of the same value; in contrast, if every ti has a unique
value in T , R(T ) = 1.

Back to the example of T1000 and T2 in Section 1.2, suppose they
are both of the same size 1000—T1000 has 1000 tuples of the same
value while T2 has 500 same-value tuple pairs and values from d-
ifferent pairs are distinct. By Definition 8, R(T1000) = 0.001
and R(T2) = 0.5 and the result is consistent with k-anonymity
in terms of relative privacy risk. After inserting the unique tuple
t∗, R(T ∗

1000) = 2
1001

and R(T ∗
2 ) = 501

1001
, reasonably indicating

T ∗
1000 is in general still much less vulnerable than T ∗

2 . It addresses
the identified limitations of k-anonymity when adversaries may not
select some users to de-anonymize in the target dataset.

4.3 Privacy Risk in Anonymized Heterogeneous
Information Networks

Section 4.1 informally shows entity attribute dimensions grow
fast when neighbors are utilized. It is highlighted that, rather than
the exact value of privacy risk, it is the growth of privacy risk with
respect to max. distances of utilized neighbors n that we focus on.
Hence, given any anonymized dataset, the number of tuples N is
fixed as a constant. So Theorem 1 implies that privacy risk R(T )
is of the same order of growth as that of the cardinality C(T ).

THEOREM 2. For power-law distribution of the user out-degree,
the lower and upper bounds for the expected heterogeneous infor-
mation network cardinality grows faster than double exponentially
with respect to the max. distance of utilized neighbors.

PROOF. Given a network schema T ∗
G = (E∗,L∗) projected

from its original schema TG = (E ,L) and the network entity size
N is ideally large enough and all possible distinct values describing
E∗ appear in T ∗

G. LetA(E∗)j andA(L∗
i )j denote the j-th attribute

of the entity type E∗ and the link type L∗
i . We assume indepen-

dence among entity attributes and link types with attributes along
target meta paths. To focus on the analysis of key factors that may
affect the bounds of network cardinality, we also assume an enti-
ty has at most in-degree 1, the link among each pair of entities is
of all types and the out-degree k of each entity follows the power-
law distribution PK(k) = ck−α, which are commonly adopted in
social network analysis with α ∈ [2, 3] [13][19].

To analyze the number of distinct attribute-metapath-combined
values describing E∗, or the cardinality C(T ∗

G), of the network
schema T ∗

G, we begin with the network cardinality C(T ∗
G) with-

out utilizing any neighbors (distance-0); it is equal to the entity
cardinality C(E∗), which is the actual observed number of distinct
combined attribute values describing entities:

C(T ∗
G)0 = C(E∗).

Theoretically, C(E∗) can be as high as the product of each entity
attribute’s cardinality:

C(E∗) ≤
|A(E∗)|∏

j=1

C(A(E∗)j).

After utilizing the distance-1 neighbors from the entity, let C(L∗
i )

denote the homogeneous link cardinality, which is the actual ob-
served number of distinct combined attribute values describing the
link L∗

i . Likewise, the maximum value of L∗
i is the product of each

attribute cardinality of the link type L∗
i :

C(L∗
i ) ≤

|A(L∗
i )|∏

j=1

C(A(L∗
i )j).

Since entities are connected to one another via different target
meta paths, heterogeneous link cardinality is no greater than the
product of each homogeneous link cardinality:

C(L∗) ≤
|L∗|∏
i=1

C(L∗
i ).

Thus, the number of distinct values that an entity can have when
distance-1 neighbors are utilized is:

C(T ∗
G)1 = C(T ∗

G)0 · (C(E∗)C(L∗))k.

By utilizing neighbors of next distance iteratively, generally when
max. distance of utilized neighbors from target entities n > 0,

C(T ∗
G)n = C(T ∗

G)n−1 · (C(E∗)C(L∗)n)k
n

. (1)

Based on the distribution function of power law for the out-
degree PK(k) = ck−α, we estimate the expected value E[C(T ∗

G)n]
of Equation 1 as follows:

E[C(T ∗
G)n] = C(T ∗

G)n−1 · E[(C(E∗)C(L∗)n)k
n

]

≥ C(E∗) · E[(C(E∗)C(L∗)n)k
n

]

= E[C(E∗) · (C(E∗)C(L∗)n)k
n

]

=
∑N

k=1 PK(k) · C(E∗) · (C(E∗)C(L∗)n)k
n

>
∑N

k=2 ck
−α · C(E∗) · (C(E∗)C(L∗)n)k

n

≥
∑N

k=2 ck
−α · (C(E∗)C(L∗)n)k

n

.



Let f = ck−α · (C(E∗)C(L∗)n)k
n

, k ∈ R, 2 ≤ k ≤ N ,

∂f

∂k
=

c(C(E∗)C(L∗)n)k
n

(nknln(C(E∗)C(L∗)n)− α)

kα+1

> 0 (nknln(C(E∗)C(L∗)n) > α).

Hence,

E[C(T ∗
G)n] > 2−α(N − 1)c · (C(E∗)C(L∗)n)2

n

.

Since the vertex size N is given, the lower bound of the expected
network cardinality is

Ω{E[C(T ∗
G)n]} = (C(E∗)C(L∗)n)2

n

. (2)

To establish the upper bound of the expected network cardinality,
since k ≤ N and we assume N is large, solving the recursion of
Equation 1 we have

C(T ∗
G)n ≤ C(E∗)

Nn+1−1
N−1 C(L∗)

Nn+1((N−1)n+1)−N

(N−1)2

≈ (C(E∗)C(L∗)n)N
n

.

Hence the upper bound of the expected network cardinality is the
same as that of the network cardinality when all k is set to N :

O{E[C(T ∗
G)n]} = (C(E∗)C(L∗)n)N

n

. (3)

Equation 2 and Equation 3 complete the proof.

Recalling the positive linear relationship between privacy risk
and cardinality from Theorem 1, we obtain the following corollary.

COROLLARY 1. For power-law distribution of the user out-degree,
the lower and upper bounds for the expected privacy risk of a het-
erogeneous information network grows faster than double exponen-
tially with respect to the max. distance of utilized neighbors.

Corollary 1 substantiates the privacy risk growth in a heteroge-
neous information network as observed in Section 4.1. It should
be emphasized that, it is the heterogeneity of information network
links, which is in the mathematical form of C(L∗)n, that makes
both bounds even a higher order than double exponential growth.

4.4 Limitations of the Analysis
While it may be tempting to conclude that, as long as the max.

distance of utilized neighbors grows infinitely, the dimensions for
each entity will grow more than double exponentially until the pri-
vacy risk R(t) becomes 1; it should be pointed out that it is not
feasible in practice.

First, the assumption that N is large and all possible distinct val-
ues describing E∗ appear in T ∗

G may not hold. Then the observed
cardinality depends on how to sample from a pool of all possible
distinct values. The extreme case is that such “sampling” is so bi-
ased that each entity is assigned a value from a very small subset of
the pool. However, such a “sampling” bias hardly happens because
both C(E∗) and C(L∗) are actual observed cardinalities which are
generally of reasonable sizes in practice.

Second, the assumption that in-degree is at most 1 may not hold
and a large-scale information network in practice often has small
average diameters [17]. For instance, in Figure 5, if user v′1 and
user v′2 have the same attribute-metapath-combination value after
utilizing their distance-1 neighbors, further utilizing their longer-
distance neighbors will not make them unique from each other s-
ince they will share the same neighbors of distances longer than 1.
In addition, the existence of leaf nodes which do not have outgoing
edges also prevents utilizing longer-distance of entity neighbors,

Figure 5: The bottleneck scenarios

such as user v′4 and v′5 in Figure 5. However, in Section 6 we show
in practice this concern can be addressed because a slight increase
of n renders the actual cardinality very close to N .

We show the empirical findings in Table 1 and Figure 7 that R(t)
grows very fast when n ∈ {0, 1} and after n > 1, R(t) grows to-
wards 1 asymptotically until the bottleneck scenarios keep R(t)
from growing. Nonetheless, the growth order of bounds is consis-
tent with the actual growth during n ∈ {0, 1} so R(t) can soon get
very close to 1.

4.5 Practical Implications to Reduce Privacy
Risk

To reduce privacy risk, following the two bounds established in
Equation 2 and Equation 3, either the entity cardinality C(E∗) or
link cardinality C(L∗) has to be reduced. Since preventing user-
s from sharing their profile information may restrain the growth
of online communities, practical efforts should focus on reducing
C(L∗) which makes both bounds grow more than double exponen-
tially. Instead of making heterogenous types of links fully accessi-
ble from the public, online forums may only allow premium users
to access all or partial types of relationships, so C(L∗) decreases.

5. DE-ANONYMIZATION ALGORITHM
To exploit the privacy risk in a heterogeneous information net-

work as identified in Section 4, a de-anonymization algorithm is
presented with a threat model.

5.1 Threat Model
In the privacy risk analysis, we assume the auxiliary dataset is

exactly the non-anonymized counterpart of the target dataset. Al-
though this assumption may hold in real attack scenarios, we con-
sider a more challenging scenario where there is a time gap between
the time data publishers release the target dataset and the time ad-
versaries start to collect the auxiliary dataset from the web. Since a
social network generally grows over time, we assume the later col-
lected auxiliary dataset contain all the target users and links among
them. Other or newly formed users and links can be included in the
auxiliary dataset as well.

We emphasize that de-anonymizing with the auxiliary dataset
larger than the target dataset is a non-trivial and more challeng-
ing task than both datasets are of the same size, especially when
allowing certain attribute values and links to grow. First, when
the auxiliary dataset becomes a superset of the target dataset with-
out increasing the cardinality of each tuple from the target dataset,
the actual risk should be lower because each tuple ti in the tar-
get dataset has potentially more matches with users in the auxiliary
dataset. Second, allowing certain attribute or link growth gives rise
to potentially more candidate users in the auxiliary dataset that may
match a certain target user. For instance, for a user in the target
dataset that posted 3 tweets and only followed 5 users, any user in
the auxiliary dataset with more than 3 tweets and more than 5 fol-
lowees could be a candidate match if we consider number of tweets



Algorithm 1: De-anonymizing entity v′ in a Heterogeneous In-
formation Network: DeHIN (G, G′, T ∗

G, v′, n)

Input: G = (V,E): auxiliary graph, G′ = (V ′, E′): target
graph, T ∗

G = (E∗,L∗): target network schema,
v′ ∈ G′: target entity, n: max. distance of utilized
neighbors

Output: C: candidate set from the auxiliary dataset matching
v′

begin
C

set←−− ∅;
foreach v ∈ V

if entity_attribute_match(v′, v, E∗)
if n > 0

if link_match(n, v′, v,G,G′, T ∗
G)

C
add←−− v;

else
C

add←−− v;

return C;

Figure 6: Comparing neighbors via multiple types of target net-
work schema links from target and auxiliary datasets

and number of followers grow over time. Section 6 demonstrates
that the proved privacy risk can still be exploited even when the
task is more challenging.

5.2 Algorithm
In Algorithm 1 we formulate a general de-anonymization algo-

rithm DeHIN to prey upon the risk of a heterogeneous information
network as identified in Section 4.

The attribute values of the target entity and the entity from the
auxiliary dataset is compared by function entity_attribute_match.
This function can be configured by users depending on different
scenarios. We consider the auxiliary dataset grows from the target
dataset in the threat model. So some attribute values may grow over
time, such as number of tweets.

The recursive Algorithm 2 is to assist DeHIN to compare the
distance-n neighbors from a target entity and an entity in the aux-
iliary dataset whose attributes are matched with those of the target.
Likewise, function link_attribute_match compares the attribute val-
ues of target meta paths (links in the target network schema), if
any, and is configurable. The challenge lies in how to compare the
neighbors of two entities, after their own entity and link attribute
values are matched. Consider the case depicted in Figure 6, the
target entity v′8 is matched with entity v9 in the auxiliary dataset
for function entity_attribute_match, and the target’s neighbor v′5 is
matched with v1 and v2 (entity v9’s neighbors) via the same type of
link for the same function, v′6 matched with v2, v′7 matched with v3

Algorithm 2: Comparing neighbors of entities v′ and v via het-
erogeneous links: link_match(n, v′, v, G,G′, T ∗

G)

Input: n: max. distance of utilized neighbors, v′ ∈ G′: target
entity, v: the entity in auxiliary graph under
comparison, G = (V,E): auxiliary graph,
G′ = (V ′, E′): target graph, T ∗

G = (E∗,L∗): target
network schema

Output: is_match: a boolean value
begin

is_match
set←−− true;

GB
set←−− ∅ (The bipartite graph modeling neighborhood

matching);
Nb(v

′, L∗
i )

set←−− v′’s neighbors via the link type L∗
i ;

Nb(v, L
∗
i )

set←−− v’s neighbors via the link type L∗
i ;

foreach link type L∗
i ∈ L∗

foreach neighbor b′i ∈ Nb(v
′, L∗

i )
∅ ← C(b′i); (C(b′i): candidate set for b′i);
foreach neighbor bi ∈ Nb(v, L

∗
i )

if link_attribute_match(b′i, bi)
if entity_attribute_match(b′i, bi)

if n = 1

C(b′i)
add←−− bi;

else
if link_match(n−
1, v′, v,G,G′, T ∗

G)

C(b′i)
add←−− bi;

GB
add←−− C(b′i);

if max_bipartite_match(GB) ̸= |Nb(v
′, L∗

i )|
is_match

set←−− false;

return is_match;

and v4. For a growing network, v9 in the auxiliary dataset may be
the “grown” target: v9 itself matches v′8 in profile attributes, v9’s
neighbors v1 and v2 in fact are the non-anonymized v′5 and v′6, who
are the neighbors of the target via the same type of link. Although
v′7 may be either v3 or v4 since they are matched via the same type
of link, we can consider the remaining neighbor of v9, either v4
or v3, to be the newly developed relationships during the time gap
of the target and auxiliary datasets. Therefore, it is a maximum
bipartite matching problem in graph theory (the candidate set for
v′5, C(v′5) = {v1, v2}, C(v′6) = {v2}, C(v′7) = {v3, v4}), and
the most efficient Hopcroft-Karp algorithm is employed to decide
whether such a maximum bipartite matching exists [6]. As long
as a maximum bipartite matching exists (e.g., v′5, v′6 and v′7 match
v1, v2 and v3 respectively; or v′5, v′6 and v′7 match v1, v2 and v4
respectively), v9 is considered as a candidate of v′8. Finally DeHIN
returns a candidate set containing all entities from the auxiliary
dataset that may be the target entity. If the size of the correct can-
didate set is 1, a unique matching is found and the target entity is
successfully de-anonymized.

It should be pointed out that, DeHIN is suitable for the general
information network and is also applicable to a homogeneous in-
formation network, when it is considered as a special case of the
general information network whose number of entity type and link
type are 1. Besides, DeHIN does not employ isomorphism testing
algorithms due to its high computational cost although we believe
it can further enhance the accuracy. In the next section, we show



Table 1: Privacy Risk of the Anonymized t.qq Dataset (densi-
ty: 0.01, size: 1000) increases as the amount of utilized target
network schema link types increases (in percentage)hhhhhhhhhhhTypes of Links

Max. Distance
1 2 3

f 84.4 93.8 93.8
m 85.4 93.6 93.8
c 87.6 93.6 93.9
r 90.2 94.2 94.3

f-m 96.0 98.5 98.6
f-c 95.6 98.5 98.5
f-r 96.8 98.5 98.5
m-c 89.9 94.0 94.2
m-r 91.2 94.4 94.5
c-r 91.8 94.4 94.5

f-m-c 96.5 98.5 98.6
f-m-r 96.9 98.6 98.6
f-c-r 96.8 98.6 98.6
m-c-r 92.3 94.5 94.6

f-m-c-r 96.9 98.6 98.6
*f: follow; m: mention; r: retweet; c: comment
*Max. Distance n: max. distance of utilized neighbors to target entities
*n = 0: only target entities’ profiles are utilized and risk is always 1.1%

DeHIN is effective in the settings of a heterogeneous information
network even without incorporating isomorphism tests.

6. EVALUATION
In this section, we evaluate the privacy risk and DeHIN perfor-

mance on t.qq dataset. Then we show DeHIN is able to beat the in-
vestigated graph anonymization algorithms in the settings of a het-
erogeneous information network, while further sacrificing utility is
able to defend the attack. It is also shown that DeHIN undermines
the notion of “security by obscurity” for privacy preservation.

6.1 Case Study of t.qq Dataset
Following the motivating example in Section 1.1, we first eval-

uate the privacy risk as formalized in Section 4. Details of the
anonymized KDD Cup 2012 t.qq dataset is depicted in Section 1.1
and Section 3. 500 target graphs of 1,000 vertices are sampled from
t.qq dataset where vertices are randomly sampled and all the edges
among them are preserved. Although a power-law out-degree dis-
tribution is assumed in the analysis (Section 4), since increasing
privacy risk requires more edges to utilize different distances of
neighbors from a target user, the privacy risk may vary when in re-
ality heterogeneous information networks are of different densities:

density =
|E|

m |V |2 + (|L| −m) |V | (|V | − 1)
(4)

In Equation 4, |E| and |V | are the number of edges and vertices in
the network. |L| indicates the total number of link types in the net-
work and m denotes the number of link types which allow nodes to
self-link. The denominator of Equation 4 represents the maximum
possible number of edges in the network and the value of density is
always between 0 and 1.

57 of the sampled target graphs have density 0.01. The average
cardinality of gender, yob, number of tweets, and number of tags
for these 57 samples are 3, 87, 643, and 11 respectively. Consider-
ing the relatively small size of the target dataset, to better observe
the growth of risk and variation in terms of different amounts of
link types, only the number of tags is used in computing the entity
cardinality C(E∗). Results in Table 1 and Figure 7 (Figure 7 aver-
ages the privacy risk utilizing the same amount of link types) show
that privacy risk calculated by Theorem 1 increases as the utilized
heterogeneity information grows, which is the amount of target net-
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Figure 7: Privacy risk increases with more link types

work schema link types. The drastic growth from distance 0 to 1 is
consistent with the established order of growth in Equation 2 and
Equation 3, then risk grows asymptotically towards 1 until it re-
mains unchanged. Recall Section 4.5, the results also justify the
practical efforts of reducing accessible link types is able to reduce
C(L∗) and hence privacy risk. When no link information is acces-
sible, n = 0 and privacy risk is reduced efficiently given that the
entity cardinality is not large as compared with the entity size.

To evaluate the performance of DeHIN proposed in Section 5 on
t.qq dataset, the entire anonymized t.qq dataset is used as the auxil-
iary dataset while the target dataset is the sampled 500 target graphs
and none of them contains cliques of size over 3. We will show De-
HIN works effectively without the need to create any “sybil nodes”
or to rely on easily-detectable graph structures in a large-scale net-
work as required in the existing attacks [2, 12]. The anonymized
user IDs (randomly assigned strings) in both target and auxiliary
datasets are not used for attribute value matching. After DeHIN
employs the remaining attribute and link information described in
the motivating example (user profile, mention, retweet, comment,
follow data) to establish the unique matching between the target
user in the target dataset and a user in the auxiliary dataset, the
anonymized user IDs will serve as the ground truth to decide if the
unique matching is correct.

Since a social network generally grows over time, we inten-
tionally consider attributes such as tweet count, mention strength,
retweet strength, comment strength may grow between the time gap
of the auxiliary and target datasets. Therefore, the attribute match-
ing functions are configured to allow any user entity in the auxiliary
dataset with values of these attributes greater than or equal to those
of the target user to be a candidate. Likewise, we also intentional-
ly consider links may be newly formed in the auxiliary dataset for
link matching. These considerations make the de-anonymization s-
cenario more practical and more challenging since they will poten-
tially introduce more candidates comparing with the exact attribute
or link value matching.

The entire auxiliary dataset contains 2,320,895 user entities. With
random guessing, the adversary may de-anonymize a user from the
target dataset with probability no higher than 1

2,320,895
. If the can-

didate size can be reduced to 100 including the target, the random
guessing may be correct with a drastically increased chance of 1

100
.

If the candidate size is exactly 1 and such a unique matching is
correct, the de-anonymization is successful. Hence, we define two
metrics for the experiments:

Precision =

∑|V ′|
i=1 s(v′i)

|V ′| ,

Reduction Rate =
1

|V ′|

|V ′|∑
i=1

(1− |C(v′i)|
|V | ),



Table 2: Performance of DeHIN on t.qq anonymized dataset (in percentage)
Density Max. Distance 0 Max. Distance 1 Max. Distance 2 Max. Distance 3

Precision Reduction Rate Precision Reduction Rate Precision Reduction Rate Precision Reduction Rate
0.001 4.1 99.836 12.6 99.848 12.6 99.848 12.6 99.848
0.002 5.1 99.925 22 99.947 22.7 99.948 22.7 99.948
0.003 6.5 99.917 32.8 99.944 33.5 99.945 33.5 99.945
0.004 4.3 99.907 39.4 99.941 40.8 99.942 40.9 99.942
0.005 4.3 99.927 48.7 99.969 49.8 99.969 49.9 99.969
0.006 7 99.920 59.4 99.979 61.6 99.980 61.7 99.980
0.007 5.1 99.908 65.6 99.977 68.8 99.978 68.9 99.978
0.008 5.3 99.921 76.6 99.989 78.8 99.989 79 99.989
0.009 6.4 99.914 86.2 99.997 88.6 99.997 88.8 99.997
0.01 5.4 99.892 92.5 99.989 95.6 99.990 95.7 99.990
*Max. Distance n: max. distance of utilized neighbors to target entities; when n = 0, only target entities’ profile attributes are utilized

Table 3: Performance of DeHIN on t.qq anonymized dataset (density: 0.01) improves as the amount of utilized target network schema
link types increases (in percentage)

Types of Links Max. Distance 1 Max. Distance 2 Max. Distance 3
Precision Reduction Rate Precision Reduction Rate Precision Reduction Rate

f 68.1 99.982 77.6 99.983 77.7 99.983
m 80.9 99.976 87.8 99.976 88 99.976
c 82.8 99.975 88.7 99.976 88.8 99.976
r 81.1 99.976 88.7 99.976 88.9 99.976

f-m 89.3 99.989 94.2 99.990 94.2 99.990
f-c 90.1 99.989 94.6 99.990 94.6 99.990
f-r 89.2 99.989 94.9 99.990 95 99.990
m-c 84.7 99.976 89.6 99.976 89.7 99.976
m-r 83.2 99.976 89.5 99.977 89.7 99.977
c-r 85.2 99.976 90.3 99.976 90.5 99.976

f-m-c 91.6 99.989 94.8 99.990 94.8 99.990
f-m-r 90.6 99.989 95.1 99.990 95.2 99.990
f-c-r 91.5 99.989 95.4 99.990 95.5 99.990
m-c-r 86.5 99.977 91 99.977 91.2 99.977

f-m-c-r 92.5 99.989 95.6 99.990 95.7 99.990
*f: follow; m: mention; r: retweet; c: comment
*Max. Distance n: max. distance of utilized neighbors to target entities; when n = 0, only target entities’ profile attributes are utilized
*n = 0: only target entities’ profiles are utilized—precision and reduction rate are always 5.4% and 99.892%

Table 4: Performance of DeHIN on t.qq dataset of complete graph anonymity (in percentage)
Density Max. Distance 0 Max. Distance 1 Max. Distance 2 Max. Distance 3

Precision Reduction Rate Precision Reduction Rate Precision Reduction Rate Precision Reduction Rate
0.001 4.1 99.836 11.5 99.847 11.9 99.847 11.9 99.847
0.002 5.1 99.925 19.7 99.941 20.9 99.941 20.9 99.941
0.003 6.5 99.917 29.8 99.938 31.6 99.938 31.6 99.938
0.004 4.3 99.907 35.8 99.936 38.3 99.936 38.4 99.936
0.005 4.3 99.927 44.1 99.963 47.1 99.963 47.1 99.963
0.006 7 99.921 54.3 99.973 57.8 99.973 57.9 99.973
0.007 5.1 99.908 59.5 99.971 64.2 99.971 64.2 99.971
0.008 5.3 99.921 70.3 99.978 74.8 99.978 74.8 99.978
0.009 6.4 99.914 78.1 99.985 83.4 99.986 83.5 99.986
0.01 5.4 99.892 84.4 99.976 89.8 99.976 89.8 99.976
*Max. Distance n: max. distance of utilized neighbors to target entities; when n = 0, only target entities’ profile attributes are utilized

where |V ′| and |V | are the size of the target and auxiliary dataset,
s = 1 if v′i ∈ V ′ is successfully de-anonymized, otherwise s = 0,
and |C(v′i)| is the size of candidate set for the target v′i.

The performance of DeHIN on target datasets of different densi-
ties is shown in Table 2. Clearly, the general performance improves
as the density of the target dataset increases because higher density
indicates DeHIN may be able to utilize more neighbors to expand
the dimensions of each target user to achieve unique matchings. It
reveals an important problem that, if a group of people have rich
social connections, they may have higher social values and may
cause adversaries’ attention; however, their privacy can be compro-
mised more easily. Generally, the reduction rate looks promising as
compared with the original candidate size of 2.3 million; so even
when precision is relatively low on a low-density network, high
reduction rate makes manual investigation of matched candidates
possibly practical. For a certain density level, precision increases
drastically when distance-1 neighbors are utilized, particularly for a

higher-density network where there may be more neighbors. Due to
the bottleneck scenarios discussed in Section 4.3 and Figure 5, the
performance improves much more slowly or remains unchanged
when DeHIN utilizes neighbors of longer distances.

To evaluate whether the heterogeneity of an information network
improves the performance, we selectively employ different types
of links in DeHIN and gradually increase the number of links in
de-anonymizing the target dataset with potentially a higher social
value (density = 0.01). The results in Table 3 and Figure 9 (Fig-
ure 9 averages the precision of DeHIN utilizing the same amount
of link types) justifies that the performance improves as the utilized
heterogeneity information grows, which is the amount of target net-
work schema link types. Moreover, the observed growth trend is
consistent to that of privacy risk in Figure 7.

6.2 Beating Complete Graph Anonymity
The utility of t.qq dataset has to be preserved to a certain level to
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(b) Density: 0.002
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(c) Density: 0.003
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(d) Density: 0.004
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(e) Density: 0.005
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(f) Density: 0.006
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(g) Density: 0.007
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(h) Density: 0.008
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(i) Density: 0.009

0 1 2 3
0

10

20

30

40

50

60

70

80

90

100

DeHIN’s Max. Distance of Utilized Neighbors n

P
re

ci
si

on
 (

in
 P

er
ce

nt
ag

e)

 

 

DeHIN vs. VW−CGA
DeHIN (Single Link) vs. CGA
DeHIN vs. CGA
DeHIN vs. KDDA

(j) Density: 0.01

Figure 8: Precision of DeHIN against different anonymized heterogeneous information networks of different densities (CGA: Com-
plete Graph Anonymity; VW-CGA: Varying Weight Complete Graph Anonymity; KDDA: KDD Cup 2012 t.qq Original Anonymiza-
tion)
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Figure 9: DeHIN Precision Improves with More Link Types

ensure effective recommendation algorithms can be designed. We
now lower their utility and apply the state-of-the-art graph anony-
mization algorithms in Section 2.3 on t.qq dataset. Since adding
edges to link all the users will make the entire network safer from
all the structural attacks as identified in the work of k-degree, k-
neighborhood, k-symmetry, k-automorphism, and k-security, to
ensure the best case of defence, we formulate complete graph-
s under different types of links. Complete Graph Anonymity can
be considered as one of the best case for the investigated graph
anonymization algorithms. For instance, when the graph becomes
a complete graph after fake links are added, the k turns to be the

largest possible value, which is the number of vertices in the graph,
for anonymization like k-degree, k-neighborhood, etc, as surveyed
in Section 2.3. To be consistent with these original algorithms that
do not consider short-circuited features and to preserve certain u-
tility, we set short-circuited attribute values to be the same random
number and keep the existing short-circuited attribute values.

To address the enhanced anonymity, DeHIN is now re-configured
to remove all the links with the majority short-circuited attribute
value in the entire network before taking effect. Since a social net-
work is generally of density lower than 0.5, it can almost be en-
sured that all the newly added fake links will be removed from the
target dataset. However, this step will mistakenly remove the real
links that have the same short-circuited attribute values as the fake
links from the target dataset and C(L∗) decreases in Equation 2
and Equation 3; thus the performance of DeHIN degrades slightly
as shown in Table 4 and Figure 8(a)—Figure 8(j). In Figure 8(a)—
Figure 8(j), complete graph anonymity is able to lower the attack
precision effectively when DeHIN only utilizes a single homoge-
neous link. However, DeHIN still poses great threats to complete
graph anonymity, when heterogeneous links are fully utilized.

6.3 Defending DeHIN by Sacrificing Utility
To enhance preserved privacy against DeHIN, we have to further

lower the utility of the target dataset by assigning randomly gener-
ated varying weights to the short-circuited attributes of each newly



added fake links. It can be observed from Figure 8(a)—Figure 8(j)
that this Varying Weight Complete Graph Anonymity renders De-
HIN ineffective when utilizing neighbors because most faked links
are still preserved in the target dataset and n is clear to 0 in Equa-
tion 2 and Equation 3. However, varying weight values in the fake
links cause much higher information loss than assigning the same
values; thus the anonymized data utility is sacrificed much more.

6.4 “Security by Obscurity”?
While DeHIN can be launched successfully against certain anony-

mization (e.g., DeHIN v.s. KDD Cup Original anonymization), it
may be (slightly) less effective against other anonymizations (e.g.,
complete graph anonymity) even when it is re-configured as in Sec-
tion 6.2. Researchers might be tempted to suggest that, because the
adversary might not know what anonymity is employed, he might
not be able to launch an attack. Here, we hope to dispel this notion.
Suppose an adversary always uses the re-configured DeHIN in Sec-
tion 6.2, the performance on the original t.qq anonymization will
be exactly the same as that of complete graph anonymity because
likewise only the real edges of the same majority attribute values
will be affected during de-anonymization. Since DeHIN still poses
great threats, this is an extremely important indication that privacy
preservation requires more attention from researchers.

7. CONCLUSIONS AND FUTURE WORK
Heterogeneous information networks abound in real life but pri-

vacy preservation in such new settings has not received the due
attention. In this work, we defined and identified privacy risk in
anonymized heterogeneous information networks and presented a
new de-anonymization attack that preys upon their risk. We further
experimentally substantiated the presence of privacy risk and suc-
cessfully tested the attack in the KDD Cup 2012 t.qq dataset. One
might find surprising the ease with which the devised attack can
beat the investigated anonymization algorithms. While we have s-
elected a small number of anonymization for this initial study, we
have no reason to believe that other anonymization will prove im-
pervious to this attack. Hence, our results make a compelling argu-
ment that privacy must be a central goal for sensitive heterogeneous
information network publishers.

This paper presents early results of our investigation. Planned
future work includes: a) explore properties of the privacy risk met-
ric and extend its applications; b) identify possible solutions for
defending DeHIN, particularly without much utility loss.
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