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A two dimensional model of a divergent magnetic nozzle is used to analyze the conversion
of thermal into kinetic energy for a collisionless plasma jet with a large radial density
gradient at the nozzle entrance. Comparisons with a 1D model and with a uniform plasma
jet are made. The focused plasma jet has a much better nozzle efficiency. The large
Hall current required to focus the jet increases downstream and sets up two magnetic
detachment mechanisms: an induced magnetic field and azimuthal electron inertia effects.
This second mechanism seems stronger than the first one.

I. Introduction

A divergent magnetic nozzle is used to accelerate a magnetized plasma in the applied-field magnetoplas-
madynamic (MPD) thruster,1 the helicon thruster,2 the VASIMR,3 and the diverging cusped field thruster
(DCFT).4 Andersen et al.5 showed the analogy between the dynamics of a magnetized plasma in a magnetic
nozzle and a neutral gas in a solid (deLaval) nozzle: the plasma flow is tied to the magnetic streamlines and
a regular sonic transition occurs at the magnetic throat, i.e. the radial section where the magnetic field is
maximum. However, plasma dynamics in a magnetic nozzle are more complex than gas dynamics in a solid
nozzle. For instance: there are several possible sources of plasma ’internal’ energy; Lorentz forces compete
with thermal pressure; the plasma can be put into rotation; self-magnetic fields can be induced; the response
changes with plasma collisionality and ion magnetization. In addition, once the plasma is accelerated the
plasma must detach (via inertia, resistivity, or induced magnetic field) from the turning magnetic lines in
order to achieve the desired axial thrust.6–8

We have presented recently a two-dimensional (2D) model of the acceleration of a current-free plasma in a
divergent magnetic nozzle with fully magnetic-guided electrons.9 Ion momentum is gained from the electron
thermal pressure, via the electrostatic self-field. It was shown that except for unusually large magnetic
fields, ion magnetization is weak and ion streamlines deviate from magnetic (i.e. electron) streamlines. As a
consequence the local ambipolar condition does not hold, and local electric currents are formed. The model
takes into consideration both azimuthal ion and electron currents, but simulations in that paper were limited
to one magnetic nozzle profile and a uniform non-rotating plasma jet at the entrance. Notice that both the
upstream subsonic region (in a convergent nozzle or inside a plasma device), where the plasma is generated
and heated, and the downstream detachment region are out of the scope of the supersonic acceleration model.
The upstream subsonic condition is treated in a separate paper.10

The main goal of this paper is to analyze the acceleration of a collisionless plasma jet with a large radial
gradient of the plasma density. This plasma configuration can be found at the exit of a dielectric cylindrical
vessel with a parallel magnetic field.10 The density gradient is balanced by the magnetic confinement force
created by a large Hall-current (i.e. the electron azimuthal drift). The differences in behavior between
the focused and the uniform plasma jet will be discussed. Finally, an assessment of magnetic detachment
mechanisms will be made.
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II. Model formulation

The plasma-nozzle model was presented in Ref. 9. A summary is given here. A collisionless plasma is
flowing in a guiding, longitudinal magnetic field, B = Br1r +Bz1z. The cylindrical and magnetic reference
frames are {1z,1r,1θ} and {b,1⊥,1θ}, with b = B/B = cosα1z + sinα1r, and 1⊥ = − sinα1z + cosα1r.
The solenoidal magnetic field admits the magnetic streamfunction ψ(r, z), with

∇ψ = rB1⊥ : rBr = −∂ψ/∂z, rBz = ∂ψ/∂r. (1)

The magnetic flux across a section z = zc, 0 ≤ r ≤ rc, is

2π
∫ rc

0

Bzrdr = 2πψ(rc, zc).

Results here are presented for the magnetic field created by a current ring placed at z = 0 and of radius
RL. Then, the magnetic streamfunction is11

ψ(r, z) =
2B0R

2
Lr

π
·
(
2− k2

)
K
(
k2
)
− 2E

(
k2
)

k2

√
(RL + r)2 + z2

, (2)

with k2 = 4RLr/(RL + r)2 + z2, B0 = Bz(0, 0), and K (m) and E (m) the complete elliptic integrals of first
and second kind, respectively, with the argument m as defined by Abramowitz and Stegun.12 Figure 1 plots
this magnetic topology.

A plasma jet is injected sonically at the nozzle throat, at z = 0, and is accelerated supersonically in
the divergent nozzle. The steady-state, axisymmetric (i.e. ∂/∂θ = 0) response is considered. Plasma
quasineutrality holds (i.e. ne = ni = n), all collisional effects are neglected, and electric currents in the
plasma are assumed small enough to neglect the induced magnetic field. Electron inertia is disregarded (i.e.
me/mi → 0) and the magnetic field is strong enough to guide electrons. This restricts electron motion,
which can include an azimuthal drift, to magnetic streamsurfaces. Let R, with R < RL, be the radius of
the plasma jet at the throat A of the magnetic nozzle. Then, magnetic guiding of electrons and plasma
quasineutrality yield that the magnetic streamsurface V: r = RV (z), with RV (z) defined implicitly by
ψ(RV (z), z) = ψ(R, 0), contains the whole plasma jet. Although the magnetic streamsurface r = RV (z) is
containing the external ion streamsurface, the model deals with any degree of ion magnetization. Except for
strong ion magnetization, the ion streamsurfaces are not contained in general in magnetic streamsurfaces.
Observe that the ratio R/RL measures the divergence rate of the magnetic nozzle acting on the plasma jet.
Figure 1 shows the boundaries of the two plasma jets simulated in Ref. 9 and here.

For vectorial quantities it is convenient to distinguish the longitudinal (vectorial) component with a tilde.
For instance, the ion velocity is expressed as ui = ũi + uθi1θ. Thus, the ion continuity equation is

∇ · nui = ∇ · nũi = 0, (3)

and ũi admits a streamfunction, ψi, satisfying rnuri = −∂ψi/∂z and rnuzi = ∂ψi/∂r. The longitudinal and
azimuthal ion momentum equations lead to9

miũi · ∇ũi = −e∇φ+ euθi1θ ×B + 1rmiu
2
θi/r (4)

rmiuθi + eψ = Di(ψi), (5)

with Di(ψi) determined from entrance conditions. The projection of Eq. (4) along the ion streamlines yields
the conservation of the ion mechanical energy,

eφ+miu
2
i /2 = Hi(ψi).

The zero electron-inertia limit yields ũe = u‖eb. An isothermal electron model is assumed: except for
the small electron current flowing downstream and neutralizing the ion current, electrons are confined and
occasional collisions tend ultimately to thermalize it. Then, the applicable electron equations are9

nu‖e/B = Ge(ψ), (6)
0 = −Te∇n+ en∇φ− enuθeB1⊥, (7)
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Figure 1. Black lines are the magnetic streamlines created by a circular ring located at r = RL, z = 0. Green
lines are the constant-B lines. The two red lines correspond to the two plasma jets used in the simulations.

with Ge(ψ) the electron-to-magnetic flux ratio. The vectorial force balance decomposes into

Te lnn− eφ = He(ψ), (8)

uθe = − 1
eB

∂He

∂1⊥
= −r

e

dHe

dψ
, (9)

where Te lnn is the (specific) enthalpy of the electron gas, and He(ψ) is the total (specific) enthalpy. Both
Ge(ψ) and He(ψ) are determined from entrance conditions.

In each streamsurface, Eq. (8) can be interpreted as either the conservation of total enthalphy or the
Maxwell-Boltzmann equilibrium (with −He/e the thermalized potential). Equation (9) shows that the
electron azimuthal velocity is a B-perpendicular drift, with contributions of both the electric field and the
pressure gradient. More important is that Eq. (9) states that the ratio uθe/r remains constant in each
streamsurface. As a consequence, if the electron azimuthal drift is zero at the entrance, it remains zero in
the whole nozzle; if it is not zero, it increases with the radius of the corresponding magnetic streamsurface.

Substituting the electric potential from Eq. (8), Eqs. (3) and (??) become

uri
∂ lnn
∂r

+ uzi
∂ lnn
∂z

+
∂uri
∂r

+
∂uzi
∂z

= −uri
r
, (10)

uri
∂uri
∂r

+ uzi
∂uri
∂z

+ c2s
∂ lnn
∂r

= (uθi − uθe)Ωi cosα+
u2
θi

r
, (11)

uri
∂uzi
∂r

+ uzi
∂uzi
∂z

+ c2s
∂ lnn
∂z

= −(uθi − uθe)Ωi sinα, (12)

where cs =
√
Te/mi is the plasma sound speed and Ωi(r, z) = eB/mi is the local ion gyrofrequency.

Boundary conditions yield plasma magnitudes at the magnetic throat. These determine the ion stream-
function at the entrance, ψi(r, 0), and functions Di(ψi), Hi(ψi), He(ψ), and Ge(ψ). Then, the method of
characteristics13 is used to integrate Eqs. (10)-(12) for n, uzi, and uri. The families of characteristic curves
are the ion streamlines and the pair of Mach lines. The numerical integration stops at a certain section,
z = zF , located before the turning section, dr/dz|V → ∞, of the magnetic tube V. The rest of plasma
variables (φ, uθi, uθe, and u‖e) are determined from algebraic conservation equations. Other magnitudes of
interest are the ion and electron density currents, ji = enui and je = enue (notice the sign used in je), and
the electron current density

j ≡ ̃ + jθ1θ = ji − je. (13)

Prior to integration, magnitudes are non-dimensionalized with the energy Te, the velocity cs, the length
R, the density n0 = n(0, 0), the electric current density j0 = en0cs, and so on. Dimensionless variables are
expressed with a hat, e.g. û = u/cs. Since the plasma is isothermal ûi is the Mach number M too. Just for
reference, Table 1 gives typical magnitudes at the magnetic throat for a small and a large plasma source.
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Low-power plasma High-power plasma
magnetic field at entrance, B0 0.1T 1T
plasma density at entrance, n0 1018m−3 2 · 1019m−3

electron temperature, Te 10eV 40eV
nozzle throat radius, R 2 · 10−2m 10−1m
thermal velocity, ce 1.3 · 106m/s 2.7 · 106m/s
sound velocity, cs 4.9 · 103m/s 9.8 · 103m/s
Alfven velocity, cA 3.4 · 105m/s 7.7 · 105m/s
Debye length, λd 2.4 · 10−5m 1.1 · 10−5m
electron Larmor radius, le 7.5 · 10−5m 1.5 · 10−5m
ion Larmor radius, li 2.0 · 10−2m 2.0 · 10−3m
ion gyrofrequency, Ωi 2.4 · 105s−1 2.4 · 106s−1

ion current, Ii 1A 1000A
quasineutrality parameter, λD/R 1.2 · 10−3 1.1 · 10−4

magnetic guiding parameter, `e/R 3.7 · 10−3 1.5 · 10−4

magnetic detachment parameter, Sm(0) 2.5 · 10−4 2 · 10−4

inertial detachment parameter, Si(0) 7.5 · 10−3 3 · 10−4

Table 1. Typical parameters at the nozzle throat for a low-power(L) and a high-power(H) plasma source.

III. Acceleration of a uniform plasma jet

Let us consider first the simplest case of a plasma jet that, at the entrance, is uniform, current-free, with
no swirling (i.e. ion rotation) and no Hall current. Thus, boundary conditions at z = 0 are

ûri = 0, ûθi = 0, ûzi = M0, (14)
ûre = 0 ûze = M0, (15)

φ̂ = 0, n̂ = 1, ûθe = 0, (16)

with M0 ≥ 1 the plasma Mach number at the entrance, which is set at 1.05 (M0 = 1 is not accepted by
the integration scheme, but the solution is not very sensitive to M0 − 1). The dimensionless parameters
of the problem are the nozzle divergence rate, measured by R/RL, and the ion magnetization strength,
Ω̂i0 = eB0R/mics ≡ R/`i0, with `i0 the ion gyroradius at the entrance.

Reference 9 already discussed how the response depended on Ω̂i0. It was shown that ion magnetization
effects (included the ion azimuthal current) are small in the range Ω̂i0 ≤ O(10), which covers most practical
applications. In the simulations here, we just take Ω̂i0 = 0.10.

Reference 9 presented results for a nozzle with R/RL ' 0.3 with the turning point of V at (r, z) = (22, 16).
Here, we analyze mainly simulations for a low divergence-rate nozzle, with R/RL ' 0.185 with the turning
point of V at (r, z) ≈ (85.2, 60.1), Fig. 1. Solid black lines in Fig. 2 show the axial variation of main plasma
jet magnitudes in that nozzle. The separation between values at the center and border of the jet measures
the radial inhomogeneity that develops as the plasma proceeds downstream. It is interesting to compare the
axial profiles of this 2D model, with the ’averaged’ ones obtained from the simple 1D model5,14

R̂2
V (ẑ)n̂M = M0, n̂ = eφ̂, M =

√
M2

0 − 2φ̂. (17)

Here φ̂, n̂, and M depend only on ẑ. Potential profiles φ̂(ẑ) are obtained from

R̂2
V (ẑ)eφ̂

√
M2

0 − 2φ̂ = M0. (18)

Red lines in Fig. 2 plot the results for the 1D model, which, as expected, lie between those corresponding
to the central and border lines of the 2D model. This fact and the relative low radial inhomogeneity for M
and φ̂ (about a 25% for ẑ ∼ 50) indicates the validity of the 1D model for predicting the variation of the jet
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Figure 2. Axial response of main plasma magnitudes at the jet axis and border for the case R/RL ' 0.185 and

Ω̂i0 = 0.10. Solid black lines correspond to a uniform plasma jet (σ = 0). Red lines correspond to the 1D model
of the uniform plasma jet. Dashed lines correspond to a focused plasma jet with σ = 0.99. In plot (d), ion
current densities ji(r, z) have been normalized to their values at z = 0, ji0(r).

Figure 3. Ion (red lines) and electron (black lines) streamtubes for plasma jets with σ = 0(a) and 0.99(b).

Other parameters are R/RL ' 0.185 and Ω̂i0 = 0.10. Color maps depict the dimensionless kinetic energy of ions.

kinetic energy, M2/2. However, 2D effects are important for other magnitudes, such as the plasma density
and the ion current density, which experience large radial variations, as Fig. 2(b) and 2(d) illustrate.

Figure 3(a) shows the misalignment between the ion and magnetic/electron streamtubes and a color map
of the ion velocity for the uniform jet. Figure 4(a) shows how the maximum misalignment angle αei increases
with ẑ; of course, αei = 0 at the central and border lines. Partially-magnetized ions tend to diverge less than
the magnetically-guided electrons. As a consequence, there is more ion current density than electron current
density around the jet axis, and a local electric current develops. Since the plasma is current-free globally,
the electric current must be negative near the border of the plasma jet. Figures 4(b) to 4(d) illustrate this
electric current formation. Observe that the relative current |̃|/̃i becomes large at the jet border partially
because ̃i there is much smaller than at the jet axis. Azimuthal ion currents are not shown; in all cases they
are well below a 10% of the longitudinal ion currents.9 Finally, we do not find any significant difference in
the plasma behavior for the high and low divergence-rate nozzles.

IV. Acceleration of a focused plasma jet

The radial structure of a plasma produced inside a cylindrical dielectric vessel of radius R with a strong
applied axial magnetic field B0, parallel to the vessel, consists of a bulk diffusive region and two thin layers:
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Figure 4. Uniform plasma jet. (a) Misalignment angle (in degrees) between ion an electron streamtubes with
z increasing (along the arrow direction). (b) Relative electric current density (along z) at different radial
sections. (c) Relative electric current density at the center and the border of the jet. (d) Electric current
density lines.
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Figure 5. Profiles at the magnetic throat of a focused plasma jet with σ = 0.99.

a quasineutral inertial layer and the Debye sheaths.10 Their respective thicknesses are a local electron
gyroradius, `∗e (based on the local change of electron enthalpy), and the local Debye length, λD. The
hierarchy λD � `∗e � R is assumed. The radial plasma behavior in the bulk diffusive region is summarized
next for the low-collisionality limit. First, there is a θ-pinch type equilibrium for electrons, which satisfies

−en∂φ
∂r
� enuθeB0 ' −Te

∂n

∂r
. (19)

Second, the azimuthal ion velocity is negligible. Third, the plasma radial velocity is very small,

ur ' uθe/βe, (20)

with βe the electron Hall parameter. Fourth, the ion continuity equation and the above equations yield

n(r) = n0J0

(
a0
r

R

)
, uθe(r) =

Tea0

eB0R

J1(a0r/R)
J0(a0r/R)

, (21)

with J0 and J1 Bessel functions of first kind, and a0 ' 2.405, the first zero of J0. Thus, the Hall current
satisfies

jθe(r) = en0
Tea0

eB0R
J1

(
a0
r

R

)
.

Fifth, at the transition to the thin inertial layer, uθe is of the order of the electron thermal velocity, ce =√
Te/me, and the Hall current is

jθe ' a0J1(a0)
en0c

2
s

RΩi0
, (22)
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Figure 6. Variation along the nozzle of the relative Hall current at the border of the focused plasma jet.
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Figure 7. Same as Fig. 4, for the focused plasma jet.

with a0J1(a0) ' 1.25.
Boundary conditions at the magnetic throat of our model, consistent with the above plasma behavior,

the collisionless limit, the hierarchy λD � `∗e � R, and a current-free plasma, are Eqs. (14), (15), and

φ̂(r̂, 0) = 0, n̂(r̂, 0) = J0(a0σr̂), ûθe(r̂, 0) =
a0

Ω̂i0

J1(a0σr̂)
J0(a0σr̂)

, (23)

with
1− σ ∼ Ω̂−1

i0

√
me/mi,

in order that uθe ∼ ce at the jet border. Figure 5 plots the profiles of n̂e, ûθe, and ĵθe for σ = 0.99. One has
n̂e and ûθeΩ̂i0 of order one except near the jet border. Observe that the azimuthal electron current at the
throat is ĵθe(r, 0) = J1(a0σr̂)a0/Ω̂i0.

The dashed lines of Fig. 2 show the acceleration of the focused jet along the nozzle. Results for M and
φ are very close to the uniform jet case and are well approximated by the 1D model. Obviously, the main
differences between the uniform and focused jet cases are in the radial profiles of the plasma density and
related magnitudes. Figure 6 shows the variation along the nozzle of the relative Hall current at the jet
border (where it is maximum). The plotted magnitude increases proportionally to RV (z)/MV (z).
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The comparison of Figs. 3(a) and 3(b), and Figs. 4 and 7, show that the differences in ion-electron
misalignment and local electric current between the uniform and focused jets are not very significant. The
much larger radial density drop for the focused jet produces a larger negative electric current at the jet
border.

The radial expansion of the plasma jet reduces the thrust efficiency of the ideal nozzle expansion. The
efficiency of the ion acceleration process along the nozzle is measured by

ηnoz(z) =
F 2
z

2ṁiP
, (24)

with ṁi the (constant) mass flow, Fz(z) the axial ion momentum flow, and P (z) the flow of ion kinetic
energy; the flow axial kinetic energy, Pz(z), is a useful magnitude too. Figure 8 plots these magnitudes for
the two plasma jets considered here. The most relevant result is the much better performance of the focused
jet due to the concentration of most of the plasma near the axis, where radial forces are small.

Figure 9 plots the evolution of the parameters measuring the validity of plasma quasineutrality and
electron magnetic guiding. The wide hat on the variables means that all curves are normalized to their values
at z = 0. Observe that for the focused jet λD(R, 0) � λD(0, 0). Near the throat, one has λD(RV )/RV ∝
M1/2, but far downstream it increases faster because of the larger radial rarefaction of the plasma. For the
magnetic guiding parameter one has `e/RV ∝ R−1

V B−1 ∝ RV .

V. Detachment of the focused plasma jet

The detachment of this collisionless plasma can be achieved via an induced magnetic field that stretches
axially the magnetic tube containing the plasma8,15 or via electron inertia effects that detach effectively the
plasma jet from the guiding magnetic tube.6 Although the model studied here cannot simulate the plasma
detachment, it allows to assess whether any of the above mechanisms is relevant. The first important point,
as we will see next, is that both mechanisms depend on the presence of a Hall current, so they can develop
only for the focused plasma jet case.

Once the electric current density is known, the induced magnetic field, B?, is computed from ∇×B? =
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the nozzle for the focused plasma jet.

µ0j. Thus, the azimuthal Hall current induces a longitudinal magnetic field satisfying

∂B?r
∂z
− ∂B?z

∂r
= µ0jθ,

1
r

∂rB?r
∂r

+
∂B?z
∂z

= 0. (25)

An estimate of the longitudinal induced field is given by

B?z ∼ µ0jθer ∝ nr2 ∼M−1. (26)

Then, the magnetic detachment parameter, Sm, can be defined as the ratio between the induced and the
applied field,

Sm(z) = µ0jθerB
−1
∣∣
r=RV (z)

. (27)

Using Eq. (22), at the nozzle throat one has

Sm(0) ≈ 1.25c2s/c
2
A,

with cA = B/
√
µ0min the Alfven velocity, based on the guiding field. Figure 10(a) depicts Sm(z)/Sm(0),

which starts varying proportionally to RV (z)2M−1, according to Eq. (26), but then it stops growing because
of the large plasma rarefaction at the jet border. Therefore, for the simulated case, the induced magnetic
field is relevant only if Sm(0) > O(10−2), which is not the case for the plasmas of Table 1.

The longitudinal electric current induces an azimuthal magnetic field, but this is really small. A simple
estimate yields

B?θ/B
?
z ∼ /jθe � 1. (28)

Plasma detachment via electron inertia was discussed by Hooper.6 The relevant term is the electron
inertia in the azimuthal electron equation, which leads to an equation for the conservation of the electron
axial angular momentum, similar to Eq. (5) for ions,

rmeuθe − eψ = De(ψe), (29)

with, ψe the electron streamfunction. In the massless limit, the first term on the left is negligible and Eq. (29)
reduces to the biunivocal relation between ψe and ψ. Inertial effects become important when the first term
in Eq. (29) becomes of the order of the second one. Thus, the inertial detachment parameter is

Si(z) = rmeuθe(eψ)−1
∣∣
r=RV (z)

. (30)

At the nozzle throat one has
Si(0) ≈ 2`e/R.

Figure 10(b) plots Si(z)/Si(0). Since ψV = const and uθe ∝ r, Si(z) increases proportionally to the nozzle
radial area, i.e. ∝ Rv(z)2.

Since Si(z)/Si(0) increases much more than Sm(z)/Sm(0), and Table 1 shows than Sm(0)/Si(0) is not
likely to be large for a focused plasma jet, detachment via electron inertia seems to be more likely, at least
for the plasma jets considered here.
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VI. Summary

A 2D model of plasma acceleration in a divergent magnetic nozzle has been applied to a focused plasma
jet and compared to the case of a uniform plasma jet. For both cases, axial acceleration is similar, the
ion azimuthal drift is negligible, and local electric currents develop. The nozzle efficiency is higher for the
focused plasma jet due to the concentration of most of the plasma around the nozzle axis.

For a focused plasma jet, the Hall current density that creates the magnetic force sustaining the radial
density gradient increases downstream and is able to develop both an induced magnetic field and azimuthal
inertia effects on electrons, which are the two envisaged detachment mechanisms in a collisionless plasma.
The electron inertia mechanism seems a stronger one for the plasmas considered in this work.

Finally, it is worth to mention that in all cases the acceleration of our simple plasma is quasineutral and
the size of the ambipolar electric field depends on the plasma temperature and the geometrical lengths of the
nozzle. Some authors have claimed the formation of a current-free (non-neutral) double layer in a plasma
expanding in a magnetic nozzle inside a vacuum chamber.16–18 Ahedo and Mart́ınez-Sánchez have shown
that, when the plasma expands into vacuum, the formation of such double layer requires the presence of two
electron populations with disparate temperatures.14,19
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