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Thermo-EIastic Responses 
Associated With Cavities and 
Cracks in Infinite Media 
The increased adaption of classical thermo-elasticity solutions for rock mechanics 
applications has been evident in recent years. In this paper, specialized thermo-
elastic solutions for a triaxial ellipsoidal cavity with uniform surface temperature 
are presented and results for several limiting cases are deduced. For completeness 
and comparison, solutions and-results for the related thermally stressed problem of 
a prolate spheroidal cavity are detailed. In addition, the applicability of the finite 
element technique and an appropriate failure criteria for in-situ thermo-mechanical 
problems is indicated. 

Introduction 

The quest for innovative techniques for energy resource 
extraction has focused considerable attention on various 
thermally related recovery procedures. Optimum in-situ 
energy recovery from coal [1], oil shale [2, 3], tar sands and 
geothermal reservoirs [4, 5] necessitates evaluations of 
temperature profiles and induced stress/fracture responses 
associated with cavities and cracks in sedimentary rock. A 
selected bibliography on rock thermo-physical and thermo-
mechanical properties along with a state-of-the-art review of 
numerical response models has been recently published by the 
National Academy of Sciences [6]. For rock mechanics ap­
plications, it is indicated that closed form solutions provide 
not only a versatile and economical tool for analysis, but also 
a sound base for validation of more general numerical 
models. An increased usage of classical thermo-elasticity 
solutions for response calibration and model scaling prior to 
sophisticated numerical or experimental simulations of 
complex problems has been recently evident. 

Pertinent investigations related to the determination of 
thermal stresses in infinite bodies include studies on hot, 
prolate spheroid-shaped inclusions [7, 8] and insulated 
ovaloid and spheroidal cavities [9, 10]. Several two-
dimensional crack problems with thermal loading have also 
been investigated [11-14]. Closed form thermo-elastic 
solutions for three-dimensional crack problems subjected to 
uniform temperature or heat flux loading have been reported 
by Olesiak and Sneddon [15], Kassir and Sih [16] and Kassir 
[17, 18]. Recently, Advani and Wang [19] have obtained 
explicit expressions for the state of stress associated with an 
ellipsoidal cavity having uniform surface temperature. These 
solutions have been specialized to determine the crack opening 
mode stress intensity factor for elliptic cracks by limiting 
derivations. 

In this paper, the thermo-elastic solutions for a triaxial 
ellipsoidal cavity with uniform temperature are briefly 

presented and specialized results for an oblate spheroidal 
cavity and simplified crack configurations are indicated. 
Solutions and results for the corresponding three-dimensional 
problem of a prolate spheroidal cavity are also detailed. The 
relevance of these problems, for example, is evidenced by the 
spheroidal or tear drop cavity configurations encountered in 
underground coal conversion. These cavities generally evolve 
from a "needlelike" reverse combustion linking channel. The 
stress intensity factor determinations provide basic in­
formation on thermal crack propagation in the thermally 
disturbed zones. Results demonstrating the use of finite 
element techniques for sample problems are also presented. In 
addition, the potential application of a previously derived 
thermo-mechanical failure criterion is indicated. 

Ellipsoidal Cavity Formulations and Special Cases 

The ellipsoidal cavity problem represents the general case 
for various correspondingly stressed cavity/crack con­
figurations. Special cases include the oblate spheroidal and 
spherical cavities as well as the elliptical, parabolic, circular, 
and through line crack geometries. Selected formulations and 
solutions for the ellipsoidal cavity boundary value problem 
are hence presented here [19]. 
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Fig. 1 Ellipsoidal cavity with constant temperature and associated 
coordinate system 
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We consider an ellipsoidal cavity in a homogeneous, 
isotropic, linear elastic medium of infinite extent (Fig. 1). The 
traction-free cavity surface is maintained at a constant 
temperature T0. Vanishing temperature and stress fields are 
assumed at infinity. The uncoupled thermo-elastic problem, 
with time-dependent terms ignored, requires the solution of 
the three-dimensional Laplacian equation 

v 2 r = 0 (1) 

and determination of the resulting displacements and stresses 
from the Navier equations and Duhamel-Neumann con­
stitutive relations 

v ( v »u) + (l 

tf=M*( v u + u v + 

-2K*) v 2 

2 

2(\ + v*)avT (2) 

( l - 2 ^ ) [ " * V ' U " ( 1 + " * ) a T ] n i ( 3 ) 

where u is the displacement vector, t is the stress dyadic, ft*, 
v* and a denote the shear modulus, Poisson's ratio, and 
coefficient of linear thermal expansion, respectively, and II is 
the unit dyadic. 

The solution to equation (1) with the temperature T= T0 at 
the cavity surface X = X0 and vanishing at infinity (A = 0) is 

T= -f- (4) 

With the temperature field determined, the stress solutions are 
obtained from the thermo-elastic potential equation 
associated with the particular solution for the displacement 
vector and the Papkovitch-Neuber form of the homogeneous 
stress field. Detailed expressions for the resultant thermo-
elastic stress fields are presented by Advani and Wang [19]. 

For the oblate spheroidal cavity, the expression analogous 
to equation (4) is 

~, ~ cot~'(sinh\) , „ 
T= T0 - — (5) 

° cot~'(sinhA0) 

and the pertinent stress fields can be accordingly deduced 
from the ellipsoidal cavity expressions with a = b. 

Specialization of the general ellipsoidal results to the case of 
a flat ellipsoidal cavity (c—0) yields the maximum principal 
stress at A (Fig. 1) [19] 

-2b(\ + v*) aix*T0 
(ffl)max — (6) 

C ( 1 - K * ) E(k) 

This principal stress can also be used to derive the stress in­
tensity factor for the elliptical crack (c = 0) by utilizing the 
definition 

Kx =lim 
p-0 

( a , ) ™ , * " 2 * 1 ' 2 

(7) 

( x + a ) ' , V , . n 

(xo,yo,0) 

4mx 

N O T E : m < 0 

Fig. 2 Transition of elliptical crack to parabolic crack 

where p = c2 /(a2 cos2 cfr + b1 sin2 0) l / 2 is the maximum principal 
radius of curvature of the ellipsoidal surface at a point z = 0 
and the coordinate angle 4> is measured in the elliptical crack 
plane from the major axis. 

Equations (6) and (7) yield the classical result 

(1 + v*)ba^* ro(7r)1/2 

(o) K,= -
(1 - v*)E(k) (a2cos2</. + &2sin2(/>)1/4 

The reduction of the elliptic crack to a plane crack bounded 
by a curve in the shape of a parabola (y2 = Amx, z = 0) is 
achieved by letting a and ft—oo (Fig. 2), such that 

a-(a2-b2)l/2=-m 

The transition to the parabola simultaneously entails an 
increase in the eccentricity of the ellipse to unity [20]. The 
resultant expression is 

-(1 + **) 
K,= cV*ro(4/K2+.y0

2)1/4(7r)1 (9) 
( ! -"*) 

where (x0,y0) is a point on the parabolic crack. 
Cases represented by the circular crack (« = b) and through 

crack (plane strain case a-~oo) can also be deduced from 
equation (8). For example, the Mode I stress intensity factor, 
from equation (8) with <f> = TT/2, is given by 

(! + "*) Ki=~ ~,—^ «M* Tc •Kb-
(!+"*) *Qo(b 

a/z -{ — ) (io) ( l - „ * ) '~ ° ' 2(1 -v*) 

where Q0 is the equivalent heat flux intensity and K is the 
thermal conductivity of the medium. 

The results for the plane strain model of an insulated crack 

N o m e n c l a t u r e 
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Fig. 3 Prolate spheroidal cavity with constant surface temperature 
and associated coordinate system 

disturbed by a steady-state temperature gradient (v T) can be 
similarly deduced from the skew symmetric elliptic crack 
results of Kassir and Sih [16]. The Mode II stress intensity 
factor is given by 

K„=-
(l + y*) 
2 ( 1 - O 

afi*(v T)bmsin^l (11) 

where fi\ is the inclination of the undisturbed heat flow axis 
with respect to the crack axis. 

In lieu of the preceding limiting case derivations, ex­
pressions (10) and (11) have been directly obtained [21] from 
the Kolosoff function complex variable approach reported by 
Mushkhelishvili [22]. 

Prolate Spheroidal Cavity Thermo-Elastic Solutions 

The prolate spheroidal cavity (x2/b2+y2/ b2 +z2/a2 = 1) 
with uniform temperature T0 prescribed on its surface (Fig. 3) 
represents extreme configurations ranging from a spherical 
cavity to a needle crack of finite length. For the problem 
discussed here, vanishing temperature and stress fields are 
assumed at infinity. The related problem of thermal stresses 
induced by the disturbance of uniform heat flow by an in­
sulated spheroidal cavity has been investigated by Florence 
and Goodier [9]. The solution to the problem, governed by 
equations (1), (2), and (3), is presented as a function of 
auxiliary variables corresponding to the prolate spheroidal 
coordinate system defined by 

x=6smhXsin/j.cos v = &qpcos v 

y = SsinhAsin^sinc = bqpsinv 

z = Scoshhcos fx = bqp (12) 

9 = coshX,<7 = sinhX= (q2 - 1)I/2 

p = cos/z,p = sin/i = (l -p2)ul 

where 52 = a2 - b2. 
The solution to equation (1) with the temperature T= T0 at 

the cavity surface q — q0 and vanishing at infinity is 

T= QoiQ) 
T 
1 n -In (9+D 

(13) 
QoiQo) '*"*'" IQo(Qo) ( 9 - D 

Where Q0 (q) is the Legendre function of the second kind of 
zero degree. 

The solution to equation (2) is obtained by expressing the 
displacement field in the form 

u = u / / + u p (14) 

where uH represents the solution to the isothermal, 
homogeneous form of equation (2) and up is a particular 
solution to the nonhomogeneous equation (2). 
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Fig. 4 Nondimensional stress ax\/EaT0 along the z and x axes of the 
prolate spheroidal cavity 

To facilitate determination of up, we introduce the thermo-
elastic displacement potential \P defined by 

u„ = 52v XP 

Insertion of equation (15) into equation (2) yields 

5 2 v 2
X p = 

l+p* 

(15) 

(16) 

The particular solution to equation (16), after inserting 
equation (13) is found to be 

(1 + «*) aT0 
xP-- -[(p2+q2)Qo(q)+2q] (17) 

6(1-1-*) Q0(q0) 

The <JX\, o\„ stress components associated with this thermo-
elastic potential, determined in terms of Legendre 
polynomials, are 

0\\ 
= R0 (q)P0 (p) +R2{q)P2 (p) + R4(q)P,(p) 

2n*8*h4l3 

°^' _ D l„\ n\(„\ I & f„\ Oil 

(18) 

= R2{g)P2(p) +R*te)P\(p) 
2M*54/!4/3 

where 

Ro (Q) = y5 [Qo (?) ( " 60?4 + 4<V - 12) + 20q 

+ qQ'o(q)(30q*-70q2+28)} 

R2(Q) = ^lQo(q) (W2q\-28)+ qQ'0(q) ( -70q2 

+ 82)-28q] 

R4(q)=y5lqQo(q)-4Qo(Q)} 
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Fig. 5 Nondimensionalized stress an/EaT0 along the z and x axes of 
the prolate spheroidal cavity 
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Fig. 6 Nondimensionalized stress o^/EaTg along the z and x axes of 
the prolate spheroidal cavity 

where A„ and B„ are constants determined from the traction-
free cavity surface boundary conditions. The resulting stress 
fields generated by those functions have been detailed in 
reference [9] and are not repeated here. The requirement that 
the superposed solution for <rxx and o\„ vanishes at q = q0 

yields A„ =0(n odd), B„ = 0 (« even) and the following set of 
algebraic equations 

b0A0+a2A2 + /3lBl+ci3B3 

c0A0+b2A2+aAA4 + ylBl+l33B3 +a5B5 

c0A0 + b2A2+d4A4 + ylB\+fl-iB3 + a5B5 

c2A2+b4A4+a6A6 +8lBl + y3B3 +P5B5 +a1B1 

c2A2+b4A4 + d6A6 +8\B, + y3B3 + J35B5 + a7.B7 

= -0o 

= -02 

= ~02 

= ~04 

= ~04 

The stress components generated by xP vanish at infinity. 
However, the thermo-elastic stresses a^ and ax„ at the cavity 
surface q = q0 have to be annulled by superposition with the 
corresponding homogeneous solution. 

The homogeneous solution is sought from the Papkovitch-
Neuber form for the axisymmetric, isothermal displacement 
field corresponding to the homogeneous field defined by 

UH=Ul+U 2 (19) 
with 

u, ., -<52v4>, u2 = 5zv^-k(3-4y*)5i / ' 

where v 2</> = 0, v 2\j/ = Q, and k is a unit vector along the z-
axis of the spheroid. 

The harmonic functions <j> and \p admit a Fourier-Legendre 
series representation in the form 

for « > 6 , n even 

c„.2A„_2+b„An + 

+ P„ + iBn + i + a„ + 3B„ + i = 0 

c„_2A„^2 + b„A„+d„+2A„+2 + 8„_3B„^3+yn.lBn^l 
(21) 

4> = ?>2'LAl,QAq)Pn(p) 
n = 0 (20) 

The values of the coefficients a„, bn ,c„, a„, /3„, y„, 5„, d„, b„, 
c„, an,j3„, y„, 8„, are identical to those in reference [9]. In 
contrast, it is noteworthy that A„ = 0 (« even), B„ = 0 (« odd) 
for the assumed boundary conditions in reference [9] with 
radically different thermal forcing terms. 

The coefficients A„ and B„ are numerically calculated by 
using a preselected finite number of equations from the 
foregoing linearly independent system equations. The 
resultant stress solutions typically have the form 
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Idealized Model 

Thermal Load & 
Boundary Conditions 

Material Properties 

Coal 

Rock 

E v a k 
GPa um/mC mW/mC 

(kpsi) (10sft/ft-F)(105Btu/Ffts) 

1.282 0.44 5.004 206.4 
(186.) (2.780) (3.348) 
13.790 0.12 8.100 186.9 
(2000.) (4.500) (3.000) 

Fig. 7 Idealized ellipsoidal cavity layered model for finite element 
simulation 

2 W =^Ro^)Po(P)+R2(q)Pi(p) 

+ R4(q)P^{p)]+ntevenA„[an (g)P„-2(p) 
+ b„{q)P„(P)+c„(q)Pn+2(P)) 

+ nEodd.8„[a„(g)P„^(p)+ft,(<7)JP„-i(£0 
+ 7„(<7)P„+,<J9)+5„(g)P„+3(p)] 

The convergence characteristics of the normal stresses oxx, 
a^, and a„ along the principal axes of the prolate spheroid 
were numerically checked for a 10x10 and 16x16 matrix 
resulting from two different truncations of equations (18). 
The results for the stress components for these two trun­
cations revealed less than a 1-percent difference for the 
selected prolate spheroid geometries. Numerical results 
illustrating the nondimensionalized stress profiles along the 
cartesian axes (x,z) for different prolate spheroid shape ratios 
and v* = 0.35 are illustrated in Figs. 4, 5, and 6. All the curves 
correspond to the solution of a 10 x 10 matrix with the values 
oiA0,A1,A4,Aft,Ai,Bl,Bi,B5, B-,, and B9 solved for the 
truncated set of equations (18). 

Journal of Energy Resources Technology 

Fig. 8 Nondimensional maximum principal stress (o/EaT) contour 
plots for principal cartesian coordinate planes 

Finite Element and Failure Criteria Simulation 

The preceding results serve as benchmarks for subsequent 
sophisticated finite element modeling. Complicating effects 
such as multi-layering, temperature-dependent properties, 
and moving boundary conditions due to progressive com­
bustion and/or failure zones can be incorporated in these 
simulations [23]. The thermo-elastic solution for the case of 
an ellipsoidal cavity in an elastic, isotropic infinite medium 
has been successfully calibrated against its finite element 
counterpart prior to finite element evaluations for the layered 
problem. As an example, Fig. 7 illustrates a confined ellip­
soidal cavity model representing an intermediate stage during 
underground coal conversion. The assumed boundary con­
ditions and material properties are also indicated. Figure 8 
illustrates the normalized maximum principal stress (o/EaT) 
contour plots, using an in-house developed code, in the 
principal planes. The jump in the normal stress magnitudes at 
the coal-overburden interface is a result of the elastic modulus 
mismatch. These results when superposed with the 
gravitational loading effects provide basic information on 
stress mediated cavity growth. Additional illustrations 
revealing a comparison between the stress intensity factors 
governed by equations (10) and (11) and corresponding finite 
element formulations (Figs. 9(a,b)) have also been conducted. 
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Fig. 9(b) Finite element mesh and boundary conditions for K „ 
problem 

Eight node degenerate finite elements are utilized for these 
thermally loaded crack response computations with collapsed 
six-node triangular elements around the crack tip. The finite 
element results yield 

(1 + v*) 
Kjl -—-^ an*T0 (Tb)U2 = 1.0204 

( 1 - K * ) 

(1 + u*) 
and KII/

y'aWnb3'2--

Fig. 10(a) Nondimensional temperature (77T0) contour plots for K/ 
problem 

Fig. 10(b) Nondimensional temperature (7V(vT)b) contour for K)( 
problem 

Associated temperature and maximum principal stress plots 
are shown in Figs. 10 and 11. 

Pertinent two and three-dimensional thermo-elastic failure 
criteria, incorporating the effects of crack/cavity closure, 
have been developed by Advani and Lee [24]. The two-
dimensional thermo-mechanical failure condition in terms of 
the principal stresses CTJ , CT3 can be expressed in the form [24] 

4Ai 
(ff,-(j3)(l + ^ ) 1 / 2 - — + lif[ol+oJ+2p0 

= 4S,[1-

-2(3aMT0 + ac)] 

(3aMT0 + <jc+p0+2AR/b)]1/2 

S, 
(22) 

1.0525. 

where JXJ is the internal coefficient of friction, p0 is the crack 
pressure, M is the bulk modulus, ac is the critical stress for 
crack closure, S, is the tensile strength, and the constants AR 

and A j are defined in terms of the thermally induced stress 
intensity factors by the relations # , = 2,4R -KU2/bW2 and K„ = 
-2A,(TT) "i/bU2. The results of McClintock and Walsh [25] 
can be deduced from equation (22) by ignoring thermal and 
crack pressure effects (AR=A,=0, po=0). Alternatively, a 
thermo-mechanical criterion, with crack closure and fric-
tional effects, in terms of the Modes I and II stress intensity 
factors has been developed [24], The fracture envelop is 
governed by 

K^ \2K7C) = 1 (23) 

Good agreement between the experimentally determined 
values and theoretical predictions have been obtained. 

Conclusions and Recommendations 

The techniques and results presented here provide the rock 
mechanics researcher sophisticated tools for (/) thermo-
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Fig. 11(a) Nondimensional maximum principal stress plots 
(umax/EaT) for K( problem 

Fig. 11(b) Nondimensional maximum principal stress plots 
(ffmax/£«(v T)b) forKji problem 

elastic response prediction, (ii) comparison of results with 
special cases, and (Hi) assignment of appropriate failure 
criteria for evaluation critical zones. Current areas of ap­
plication include energy recovery from underground coal 
gasification, oil shale retortion, tar sands, geothermal 
reservoirs and subsidiary areas related to nuclear waste 
disposal and permafrost. 

Extension of the numerical models to investigate thermo-
poro-elastic effects [26] and associated nonisothermal con­
solidation is still in infancy. The development of com­
prehensive finite element codes introducing coupled 
phenomena along with suitable constitutive properties, 
transient behavior, thermo-visco-plastic creep, joint fracture 
systems including bi-material interfaces, and ablating 
boundary conditions should be systematically incorporated in 
various subroutines. 
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