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A lower bound on the sinc function is given. Application for the sequence {𝑏
𝑛
}
∞

𝑛=1
which related to Carleman inequality is given as

well.

1. Introduction

The sinc function is defined to be

sinc (𝑥) =
{
{
{

sin (𝑥)
𝑥

𝑥 ̸= 0,

1 𝑥 = 0.
(1)

This function plays a key role inmany areas of mathemat-
ics and its applications [1–6].

The following result that provides a lower bound for the
sinc is well known as Jordan inequality [7]:

sinc (𝑥) ⩾ 2

𝜋
, 𝑥 ∈ [0,

𝜋

2
] , (2)

where equality holds if and only if 𝑥 = 𝜋/2.
This inequality has been further refined by many authors

in the past few years [8–35].
In [36], it was proposed that

sinc (𝑥) ⩾ 𝜋
2 − 𝑥2

𝜋2 + 𝑥2
, 𝑥 ̸= 0. (3)

We noticed that the lower bound in (3) is the fractional
function. Similar result has been reported as follows [1]:

sinc (𝑥) ⩾ 53

53 + 9𝑥2
, 0 ⩽ 𝑥 ⩽

1

3
. (4)

To the best of the authors’ knowledge, few results have
been obtained on fractional lower bound for the sinc func-
tion. It is the first aim of the present paper to establish the fol-
lowing fractional lower bound for the sinc function.

Theorem 1. For any 𝑥 ∈ [0, 𝜋], one has

𝑠𝑖𝑛𝑐 (𝑥) ⩾
16𝜋4

(3𝜋2 + 𝑥2)
2
− 1. (5)

In [37], Yang proved that for any positive integer 𝑚, the
following Carleman type inequality holds:

∞

∑
𝑛=1

(𝑎
1
𝑎
2
⋅ ⋅ ⋅ 𝑎
𝑛
)
1/𝑛

< 𝑒
∞

∑
𝑛=1

(1 −
𝑚

∑
𝑘=1

𝑏
𝑘

(𝑛 + 1)𝑘
)𝑎
𝑛
, (6)

whenever 𝑎
𝑛
⩾ 0, 𝑛 = 1, 2, 3, . . ., with 0 < ∑∞

𝑛=1
𝑎
𝑛
< ∞,

where

𝑏
0
= 1,

𝑏
𝑛
=
1

𝑛
(

1

𝑛 + 1
−
𝑛−2

∑
𝑘=0

𝑏
𝑛−1−𝑘

𝑘 + 1
) , (𝑛 = 1, 2, . . .) .

(7)

From a mathematical point of view, the sequence {𝑏
𝑛
}∞
𝑛=1

has very interesting properties. Yang [38] andGyllenberg and
Ping [39] have proved that, for any positive integer 𝑛,

𝑏
𝑛
> 0,

𝑏
𝑛
<

1

𝑛 (𝑛 + 1)
.

(8)

Hindawi Publishing Corporation
e Scientific World Journal
Volume 2014, Article ID 571218, 4 pages
http://dx.doi.org/10.1155/2014/571218



2 The Scientific World Journal

In [40], the authors proved that

lim
𝑛→∞

𝑏
𝑛+1

𝑏
𝑛

= 1, (9)

𝑒𝑏
𝑛
= ∫
1

0

𝑥𝑛−2ℎ (𝑥) 𝑑𝑥, 𝑛 ⩾ 2, (10)

where

ℎ (𝑥) = 𝑥𝑥+1(1 − 𝑥)1−𝑥sinc (𝜋𝑥) . (11)

As an application ofTheorem 1, it is the second aim of the
present paper to give a better upper bound on the sequence
{𝑏
𝑛
}∞
𝑛=1

.

Theorem 2. For any positive integer 𝑛 ⩾ 2, one has

𝑒𝑏
𝑛
<

1

𝑛 (𝑛 + 1)
−

2 − 4/𝜋

𝑛 (𝑛 + 1) (𝑛 + 2)
. (12)

2. The Proof of Theorem 1

The proof is not based on (3). We first prove the following
result.

Lemma 3. For any 𝑥 ∈ (𝜋 − 1/3, 𝜋], one has

𝑠𝑖𝑛𝑐 (𝑥) ⩾
16𝜋4

(3𝜋2 + 𝑥2)
2
− 1. (13)

Proof. Set 𝑥 = 𝜋 − 𝑡, 0 ⩽ 𝑡 < 1/3. Then inequality (13) is
equivalent to

𝜋 − 𝑡 + sin 𝑡 ⩾ 16𝜋4 (𝜋 − 𝑡)

(3𝜋2 + (𝜋 − 𝑡)2)
2
. (14)

To prove (14) by (4), it is enough to prove that

(𝜋 − 𝑡) +
53𝑡

53 + 9𝑡2
⩾

16𝜋4 (𝜋 − 𝑡)

(3𝜋2 + (𝜋 − 𝑡)2)
2
; (15)

namely,

(𝜋 − 𝑡) (53 + 9𝑡2) + 53𝑡

(53 + 9𝑡2)
⩾

16𝜋4 (𝜋 − 𝑡)

(3𝜋2 + (𝜋 − 𝑡)2)
2
. (16)

Next we prove (16). Let

𝑔 (𝑡) = (𝜋 − 𝑡) (53 + 9𝑡2) (3𝜋2 + (𝜋 − 𝑡)2)
2

+ 53𝑡(3𝜋2 + (𝜋 − 𝑡)2)
2

− 16𝜋4 (𝜋 − 𝑡) (53 + 9𝑡2) .

(17)

We need only to prove that 𝑔(𝑡) ⩾ 0. Elementary calculations
reveal that

𝑔 (𝑡) = 𝑡2 (−9𝑡5 + 45𝜋𝑡4 − 144𝜋2𝑡3 + (53𝜋 + 252𝜋3) 𝑡2

− 4𝜋2 (36𝜋2 + 53) 𝑡 + 636𝜋3) .
(18)

Noting that, for 0 ⩽ 𝑡 < 1/3, we have

−9𝑡5 > −
1

27
,

−144𝜋2𝑡3 > −
16𝜋2

3
,

−4𝜋2 (36𝜋2 + 53) 𝑡 > −
4

3
𝜋2 (36𝜋2 + 53) .

(19)

Thus, from (19) and (18), we get

𝑔 (𝑡) ⩾ 𝑡2(636𝜋3 −
1

27
−
16𝜋2

3
−
4𝜋2 (36𝜋2 + 53)

3
) ⩾ 0.

(20)

This completes the proof. Now we proveTheorem 1.

Proof. By using the power series expansions of sin(𝑥) and
16𝜋4/(3𝜋2 + 𝑥2)

2, we find that

1 + sinc (𝑥) − 16𝜋4

(3𝜋2 + 𝑥2)
2

=
2

9
+
∞

∑
𝑛=1

(−1)𝑛−1𝑢
𝑛
(
𝑥2

𝜋2
)
𝑛

,

(21)

where

𝑢
𝑛
=
16 (𝑛 + 1)

3𝑛+2
−

𝜋2𝑛

(2𝑛 + 1)!
. (22)

Set 𝑥2/𝜋2 = 𝑡, 0 ⩽ 𝑡 ⩽ 1. Consider the function 𝑓(𝑡) defined
by

𝑓 (𝑡) =
2

9
+
∞

∑
𝑛=1

(−1)𝑛−1𝑢
𝑛
𝑡𝑛. (23)

From (21), we get 𝑓(0) = 2/9 and 𝑓(1) = 0. Lemma 3 implies

𝑓 (𝑡) ⩾ 0, 𝑡
0
< 𝑡 ⩽ 1, (24)

where

𝑡
0
= (1 −

1

3𝜋
)
2

≈ 0.79 ⋅ ⋅ ⋅ . (25)

Elementary calculations reveal that for 𝑛 ⩾ 4,

16 (2𝑛 + 1)

33
>
(3𝜋2)

𝑛

(2𝑛 + 1)!
. (26)

Hence, for 𝑛 ⩾ 4, we have

𝑢
𝑛
> 0,

𝑢
𝑛
− 𝑢
𝑛+1

=
16 (2𝑛 + 1)

3𝑛+3
−

𝜋2𝑛

(2𝑛 + 1)!
+

𝜋2𝑛+2

(2𝑛 + 3)!
> 0.

(27)
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Therefore,

𝑓 (𝑡) ⩾
2

9
+
6

∑
𝑛=1

(−1)𝑛−1𝑢
𝑛
𝑡𝑛. (28)

If we set

𝑔 (𝑡) =
2

9
+
6

∑
𝑛=1

(−1)𝑛−1𝑢
𝑛
𝑡𝑛, (29)

then we have

𝑔 (0) =
2

9
> 0, 𝑔 (1) < 𝑓 (1) = 0. (30)

The intermediate value theorem implies that there must be at
least one root 𝑐 with (0, 1) such that 𝑔(𝑐) = 0. Using Maple,
we find that on the open interval (0, 1) the equation 𝑔(𝑡) = 0
has a unique real root 𝑡

1
≈ 0.89 ⋅ ⋅ ⋅ .

Hence, from (28) we get

𝑓 (𝑡) ⩾ 0, 𝑡 ∈ [0, 𝑡
1
] . (31)

By (21), (24), and (31), Theorem 1 follows.

3. The Proof of Theorem 2

First, we need an auxiliary result.

Lemma 4. For any 𝑥 ∈ [0, 1/2], one has

𝑠𝑖𝑛𝑐2 (𝜋𝑥) ⩾
1 − 2𝑥 + 𝑥2

1 − 𝑥 + 𝑥2
. (32)

Proof. By letting 𝑥 = 1/2 − 𝑡/2𝜋, 0 ⩽ 𝑡 ⩽ 𝜋, the requested
inequality can be equivalently written as

cos 𝑡 ⩾ 𝑡
2

2
+

8𝜋4

𝑡2 + 3𝜋2
−
5𝜋2 + 2

2
, (33)

so it suffices to show that the function

𝐺 (𝑡) = cos 𝑡 − 𝑡
2

2
−

8𝜋4

𝑡2 + 3𝜋2
+
5𝜋2 + 2

2
(34)

is negative on 0 ⩽ 𝑡 ⩽ 𝜋. Theorem 1 implies

𝐺 (𝑡) < 0. (35)

Hence,

𝐺 (𝑡) ⩾ 𝐺 (𝜋) = 0. (36)

The required inequality follows. Now we prove Theorem 2.

Proof. Let

𝐻(𝑥) = {
𝑥𝑥(1 − 𝑥)−𝑥sinc (𝜋𝑥) , 0 < 𝑥 < 1

1 𝑥 = 0, 1.
(37)

We first consider the case 0 ⩽ 𝑥 ⩽ 1/2.

Taking the natural log gives

ln𝐻(𝑥) = (𝑥 − 1) ln𝑥 − 𝑥 ln (1 − 𝑥) + ln sin𝜋𝑥 − ln𝜋.
(38)

Taking the second derivative of both sides of (38), we have

𝐻𝐻 − 𝐻2

𝐻2
=
𝑥2 − 𝑥 + 1

𝑥2(1 − 𝑥)2
− 𝜋2csc2 (𝜋𝑥) . (39)

By Lemma 4, it follows that

𝐻𝐻 − 𝐻2

𝐻2
> 0. (40)

Thus,

𝐻 > 0, (41)

and therefore for 0 ⩽ 𝑥 ⩽ 1/2, we have

𝐻(𝑥) ⩽ (1 − 2𝑥)𝐻 (0) + 2𝑥𝐻(
1

2
)

= (2 −
4

𝜋
) (−𝑥) + 1.

(42)

For the case 1/2 < 𝑥 ⩽ 1, since𝐻(1/2) = 2/𝜋,𝐻(1) = 1, and
𝐻 is concave up, it follows that

𝐻(𝑥) ⩽ 2 (1 − 𝑥)𝐻(
1

2
) + (2𝑥 − 1)𝐻 (1)

= (2 −
4

𝜋
) (𝑥 − 1) + 1.

(43)

Using (10) from (42) and (43), we have

𝑒𝑏
𝑛
= ∫
1

0

𝑥𝑛−2ℎ (𝑥) 𝑑𝑥 = ∫
1

0

𝐻(𝑥) (𝑥𝑛−1 − 𝑥𝑛) 𝑑𝑥

⩽ ∫
1/2

0

[1 − (2 −
4

𝜋
)𝑥] (𝑥𝑛−1 − 𝑥𝑛) 𝑑𝑥

+ ∫
1

1/2

[1 + (2 −
4

𝜋
) (𝑥 − 1)] (𝑥𝑛−1 − 𝑥𝑛) 𝑑𝑥

=
1

𝑛 (𝑛 + 1)
− (2 −

4

𝜋
)

2𝑛+2 − 𝑛 − 4

𝑛 (𝑛 + 1) (𝑛 + 2) 2𝑛+1

<
1

𝑛 (𝑛 + 1)
−

2 − 4/𝜋

𝑛 (𝑛 + 1) (𝑛 + 2)
.

(44)

This proves Theorem 2.
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