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Abstract

We study the stability properties of a class of time-varying nonlinear systems. We assume that non-strict input-to-state
stable (ISS) Lyapunov functions for our systems are given and posit a mild persistency of excitation condition on our given
Lyapunov functions which guarantee the existence of strict ISS Lyapunov functions for our systems. Next, we provide simple
direct constructions of explicit strict ISS Lyapunov functions for our systems by applying an integral smoothing method. We
illustrate our constructions using a tracking problem for a rotating rigid body.
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1 Introduction

The theory of input-to-state stable (ISS) systems plays
a central role in modern non-linear control analysis and
controller design (see (Sontag, 1998, 2001; Sontag &
Wang, 1995)). The ISS property was introduced in (Son-
tag, 1989) and an ISS Lyapunov characterization was
obtained in (Sontag & Wang, 1995). The ISS Lyapunov
characterization provides necessary and sufficient con-
ditions for time-invariant systems to be ISS, in terms of
the existence of so-called strict ISS Lyapunov functions;
see Section 2 below for the relevant definitions and (Ed-
wards et al., 2000) for an extension to time-varying sys-
tems. Strict Lyapunov functions have been used to de-
sign stabilizing feedback laws that render asymptotically
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controllable systems ISS to actuator errors and small ob-
servation noise; see (Sontag, 2001). Such control laws are
expressed in terms of gradients of Lyapunov functions
and therefore require explicit strict Lyapunov functions
in order to be implemented. This has motivated a great
deal of research devoted to constructing explicit strict
Lyapunov functions.

One obstacle to these constructions is that the known
strict Lyapunov functions from the existence theory are
optimal control value functions (see (Bacciotti & Rosier,
2001; Edwards et al., 2000; Sontag & Wang, 1995; Teel &
Praly, 2000)), and therefore are not explicit. Although
value functions can often be expressed as unique solu-
tions of Hamilton-Jacobi (HJ) equations subject to ap-
propriate side conditions, the usual techniques for com-
puting value functions in terms of HJ equation solu-
tions can be difficult to implement. For special kinds of
systems, strict ISS Lyapunov functions can be explic-
itly constructed by ad hoc means. On the other hand,
there are numerous important cases where it is straight-
forward to use backstepping or other known methods
to construct explicit non-strict ISS Lyapunov functions
(see our definitions of ISS and non-strict ISS Lyapunov
functions in Section 2 and Section 4 for an explicit ex-
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ample). For instance, applying the methods of (Jiang &
Nijmeijer, 1997) to tracking problems for nonholonomic
systems in chained form gives non-strict Lyapunov func-
tions. The constructions in (Mazenc & Praly, 2000) also
frequently give rise to non-strict Lyapunov functions.

This motivates the search for techniques for construct-
ing strict ISS Lyapunov functions for time-varying sys-
tems, in terms of known non-strict ISS Lyapunov func-
tions. This search is the focus of this note. For time-
varying systems with no controls, the paper (Mazenc,
2003) constructed strict globally asymptotically stable
(GAS) Lyapunov functions in terms of given non-strict
GAS Lyapunov functions. See (Angeli, 1999; Mazenc &
Nesic, 2004; Sontag & Teel, 1995) for constructions of
strict Lyapunov functions from nonstrict ones, which ap-
ply to autonomous systems, and which use totally dif-
ferent techniques from what we consider below. Here
we further develop the approach in (Mazenc, 2003). We
provide the necessary background on ISS systems and
Lyapunov functions in Section 2. We then introduce a
non-strict generalization of ISS in which the dissipation
rate depends on a non-negative time-dependent decay
parameter. The parameter can be zero along intervals of
positive length. However, when the parameter is iden-
tically one, our non-strict ISS property agrees with the
usual ISS condition. Under a mild non-degeneracy as-
sumption on this parameter, which is of persistency of
excitation type (see for instance (Loria et al., 2002) and
(Loria & Panteley, 2002) for definitions and discussions
of the concept of persistency of excitation), we show that
our non-strict ISS property is equivalent to the existence
of a strict ISS Lyapunov function and is therefore also
equivalent to the standard ISS condition. We prove these
equivalences in Section 3. They are proved by explicitly
constructing strict ISS Lyapunov functions. In Section
4, we illustrate our constructions using a tracking exam-
ple. Concluding remarks in Section 5 end the paper.

2 Preliminaries

Let K∞ denote the set of all continuous functions ρ :
[0,∞) → [0,∞) for which (i) ρ(0) = 0 and (ii) ρ is
increasing and unbounded. Let KL denote the set of all
continuous functions β : [0,∞) × [0,∞) → [0,∞) for
which (1) for each t ≥ 0, β(·, t) is strictly increasing and
β(0, t) = 0 (2) β(s, ·) is non-increasing for each s ≥ 0,
and (3) β(s, t) → 0 as t → +∞ for each s ≥ 0. We study
the stability properties of the system

ẋ = f(t, x, u), t ≥ 0, x ∈ Rn, u ∈ Rm (1)

where we always assume f is locally Lipschitz in (t, x, u).
Following (Mazenc, 2003), we also assume f is periodic
in t, which means there exists a constant T > 0 such
that f(t + T, x, u) = f(t, x, u) for all t ≥ 0, x ∈ Rn, and
u ∈ Rm. However, most of our arguments remain valid

if this periodicity assumption is weakened to requiring

sup{|f(t, x, u)| : (x, u) ∈ K, t ≥ 0} < +∞ (2)

where | · | is the usual Euclidean norm. The control func-
tions for our system (1) comprise the set of all measur-
able locally essentially bounded functions α : [0,∞) →
Rm; we denote this set by U . We let |α|I denote the es-
sential supremum of any control α ∈ U restricted to any
interval I ⊆ [0,∞). For each to ≥ 0, xo ∈ Rn, and α ∈ U ,
we let I 3 t 7→ φ(t;xo, to, α) denote the unique trajec-
tory of (1) for the input α satisfying x(to) = xo and
defined on its maximal interval I ⊆ [to,∞). This trajec-
tory will be denoted by φ when this would not lead to
confusion. We say that f is forward complete provided
each such trajectory φ is defined on all of [to,∞).

A C1 function V : [0,∞) × Rn → [0,∞) is said to be
of class UPPD (written V ∈ UPPD) provided it is uni-
formly proper and positive definite, which means there
exist α1, α2, α3 ∈ K∞ such that, for all t ≥ 0, x ∈ Rn,

α1(|x|) ≤ V (t, x) ≤ α2(|x|), |∇V (t, x)| ≤ α3(|x|). (3)

We say that V has period τ in t provided there exists
a constant τ > 0 such that V (t + τ, x) = V (t, x) for all
t ≥ 0 and x ∈ Rn; in this case, the bound on ∇V in (3)
is redundant. We assume α1 and α2 in (3) are C1, e.g.,
by taking α2(s) =

∫ s

o
α3(r)dr and minorizing α1 by a C1

function of class K∞. Given V ∈ UPPD, we set

V̇ (t, x, u) :=
∂V

∂t
(t, x) +

∂V

∂x
(t, x)f(t, x, u).

Notice that for each χ ∈ K∞, the mapping s 7→
sup{|V̇ (t, x, u)| : t ≥ 0, |x| ≤ χ(s), |u| ≤ s}+s is of class
K∞ (by (2)-(3)). We let P denote the set of all con-
tinuous functions p : R → [0,∞) that admit constants
τ, ε, p̄ > 0 for which∫ t

t−τ
p(s)ds ≥ ε and p(t) ≤ p̄ , ∀t ≥ 0. (4)

We write p ∈ P(τ, ε, p̄) to indicate that (i) p ∈ P and
(ii) τ, ε, p̄ > 0 are constants such that (4) holds. In par-
ticular, any continuous periodic function p : R → [0,∞)
that is not identically zero admits constants τ, ε, p̄ > 0
satisfying (4), but (4) also allows non-periodic p with
arbitrarily large null sets, e.g., for fixed r > 0, pr(t) =
(1 + e−t) max{0, sin3( t

r )}. The elements of P serve as
decay rates for non-strict Lyapunov functions as follows:

Definition 1 Let p ∈ P. A function V ∈ UPPD is called
an ISS(p) Lyapunov function for (1), provided there exist
χ ∈ K∞ and µ ∈ K∞ ∩ C1 such that

|x| ≥ χ(|u|) ⇒ V̇ (t, x, u) ≤ −p(t)µ(|x|) ∀t ≥ 0. (5)

An ISS(p) Lyapunov function for (1) and p(t) ≡ 1 is also
called a strict ISS Lyapunov function.
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Notice that (5) allows V̇ (t, x, u) = 0 for some t’s so V
can non-strictly decrease along solutions of (1).

Definition 2 Let p ∈ P. We say that (1) is ISS(p), or
that it is input-to-state stable (ISS) with decay rate p,
provided there exist β ∈ KL and γ ∈ K∞ such that for
all to ≥ 0, xo ∈ Rn, uo ∈ U and h ≥ 0,

|φ(to + h;xo, to, uo)| ≤ β
(
|xo|,

∫ to+h

to
p(s)ds

)
+γ

(
|uo|[to,to+h]

)
.

(6)

If (1) is ISS(p) with p ≡ 1, then we say that (1) is ISS.

Notice that ISS(p) systems are always forward complete.

Definition 3 Let p ∈ P. A function V ∈ UPPD is called
a non-strict dissipative Lyapunov function for (1) and
p, or a DIS(p) Lyapunov function, provided there exist
Ω ∈ K∞ and µ ∈ K∞ ∩ C1 such that, for all t ≥ 0, x ∈
Rn, u ∈ Rm

V̇ (t, x, u) ≤ −p(t)µ(|x|) + Ω(|u|) . (7)

A DIS(p) Lyapunov function for (1) and p(t) ≡ 1 is also
called a strict DIS Lyapunov function.

Remark 4 For systems without inputs, it follows from
(Loria & Panteley, 2002; Loria et al., 2005) that our hy-
potheses imply uniform GAS since p(t)µ(|x|) is δ-PE. In
contrast with (Loria et al., 2005), which deals mainly with
establishing stability, our work leads to simple, direct, ex-
plicit expressions for strict ISS Lyapunov functions for
general nonlinear systems, which are not provided by the
auxiliary function approach in (Loria et al., 2005).

We use the following elementary lemma whose proof we
leave as a simple exercise:

Lemma 5 Let τ, ε, p̄ > 0 be constants and p ∈ P(τ, ε, p̄)
be given. Then:
(i) 0 ≤

∫ t

t−τ

(∫ t

s
p(r)dr

)
ds ≤ τ2p̄

2 for all t ≥ 0 and

(ii) [0,∞) 3 h 7→ p(h) = inf{
∫ t+h

t
p(r)dr : t ≥ 0} is

continuous, non-decreasing, and unbounded.

3 Characterizations of Non-Strict ISS

We next relate the Lyapunov functions and stability no-
tions we introduced in the last section. We show that
ISS(p) is equivalent to the existence of an ISS(p) Lya-
punov function and the existence of a strict ISS Lya-
punov function. Our proof explicitly constructs a strict
ISS Lyapunov function for (1) in terms of a given DIS(p)
Lyapunov function. Moreover, if p ∈ P(τ, ε, p̄) and our
given DIS(p) Lyapunov function both have period τ ,
then our strict ISS Lyapunov function also has period τ .

Theorem 6 Let p ∈ P and f be as above. The following
are equivalent:
(C1) f admits an ISS(p) Lyapunov function.
(C2) f admits a strict ISS Lyapunov function.
(C3) f admits a DIS(p) Lyapunov function.
(C4) f admits a strict DIS Lyapunov function.
(C5) f is ISS(p).
(C6) f is ISS.

We prove: (C1) ⇒ (C2) ⇒ (C4) ⇒ (C1), (C3) ⇔ (C4),
(C2) ⇔ (C6), and (C5) ⇔ (C6). We assume τ, ε, p̄ > 0
are constants such that p ∈ P(τ, ε, p̄).
Step 1: (C1) ⇒ (C2). If (C1) holds, then we can find
an ISS(p) Lyapunov function V for f , and therefore
α1, α2 ∈ K∞ ∩ C1 satisfying (3) and χ ∈ K∞ and
µ ∈ K∞ ∩ C1 satisfying (5). Set

α̃2(s) := max
{

τp̄
2 , 1

}
(α2(s) + µ(s) + s),

w(s) := 1
4τ µ(α̃−1

2 (s)).
(8)

Then α̃2, α̃
−1
2 ∈ K∞ ∩C1. Since V (t, x) ≤ α̃2(|x|) for all

t ≥ 0 and x ∈ Rn, the following holds for all t ≥ 0:

|x| ≥ χ(|u|) ⇒ V̇ (t, x, u) ≤ −p(t)µ(α̃−1
2 (V (t, x))). (9)

Note too that w ∈ K∞ ∩ C1. We later use the fact that

0 ≤ w′(s) ≤ µ′(α̃−1
2 (s))

4τ max{ τp̄
2 , 1}(µ′(α̃−1

2 (s)) + 1)

≤ 1
2τ2p̄

(10)

for all s ≥ 0. Consider the UPPD function

V ](t, x) = V (t, x) + ξ(t)w(V (t, x)) (11)

with ξ(t) =
∫ t

t−τ

(∫ t

s
p(r) dr

)
ds. Then

V̇ ](t, x, u) = [1 + ξ(t)w′(V (t, x))]V̇ (t, x, u)

+
[
τp(t)−

∫ t

t−τ
p(r) dr

]
w(V (t, x))

follows from a simple calculation. When |x| ≥ χ(|u|),
condition (9) gives V̇ (t, x, u) ≤ 0 and therefore also

V̇ ](t, x, u) ≤ −p(t)µ(α̃−1
2 (V (t, x)))

+
[
τp(t)−

∫ t

t−τ
p(r) dr

]
1
4τ µ(α̃−1

2 (V (t, x)))

≤ −3
4p(t)µ(α̃−1

2 (V (t, x)))

−
(∫ t

t−τ
p(r) dr

)
1
4τ µ(α̃−1

2 (V (t, x)))

≤ − ε
4τ µ(α̃−1

2 (α1(|x|))) ∀t ≥ 0.

Since µ ◦ α̃−1
2 ◦ α1 ∈ C1 ∩ K∞, it follows that V ] is a

strict ISS Lyapunov function for (1).
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Step 2: (C2) ⇒ (C4). Assume (C2), so f admits a strict
ISS Lyapunov function V . Let µ and χ satisfy condition
(5) with p ≡ 1. Then the strict dissipative condition (7)
with p ≡ 1 follows by choosing any Ω ∈ K∞ satisfying

Ω(s) ≥ max
{t≥0,|x|≤χ(s),|u|≤s}

{V̇ (t, x, u) + µ(|x|)} ∀s ≥ 0.

Such an Ω exists by our assumptions (2)-(3) on f and
∇V . Thus, V is a strict DIS Lyapunov function for f .
Step 3: (C4) ⇒ (C1). Assume (C4), so f admits a strict
DIS Lyapunov function V . Let µ,Ω ∈ K∞ satisfy (7)
with p ≡ 1; then if |x| ≥ χ(|u|) := µ−1(2Ω(|u|)), then

V̇ (t, x, u) ≤ −1
2
µ(|x|), so V̇ (t, x, u) ≤ −p(t)

2p̄
µ(|x|)

for all t ≥ 0. Therefore, V is also an ISS(p) Lyapunov
function for f , so (C1) is satisfied.
Step 4: (C3) ⇔ (C4). Since p ∈ P is bounded, we
easily conclude that (C4) implies (C3). Conversely, as-
sume V ∈ UPPD is a DIS(p) Lyapunov function for f
and α1, α2, µ,Ω ∈ K∞ satisfy (3) and the DIS(p) re-
quirements. Define α̃2, w ∈ K∞ ∩ C1 and V ] by (8)
and (11). As before, when µ̃ = µ ◦ α̃−1

2 , we have, for all
t ≥ 0, x ∈ Rn, u ∈ Rm,

V̇ (t, x, u) ≤ −p(t)µ̃(V (t, x)) + Ω(|u|). (12)

It follows from Lemma 5(i) and (10) that

1 + ξ(t)w′(V (t, x)) ∈
[
1,

5
4

]
, ∀t ≥ 0, x ∈ Rn. (13)

Since w = 1
4τ µ̃, we deduce that

V̇ ](t, x, u) ≤ −p(t)µ̃(V (t, x)) + 5
4Ω(|u|)

+ τp(t)w(V (t, x))−
(∫ t

t−τ
p(r)dr

)
w(V (t, x))

≤ −εw(α1(|x|)) + 5
4Ω(|u|).

Since w ◦α1 ∈ C1∩K∞, it follows that V ] is the desired
strict DIS Lyapunov function.
Step 5: (C2) ⇔ (C6). The implication (C2) ⇒ (C6)
follows from (Khalil, 2002, Theorem 4.19, p.176). (In
(Khalil, 2002), the controls are bounded piecewise con-
tinuous functions α : [0,∞) → Rm, but the result from
(Khalil, 2002) can be extended to our general control
set U using a standard denseness argument (see e.g.
Remark C.1.2 and the proof of Theorem 1 in (Sontag,
1998)).) The converse was announced in (Edwards et al.,
2000, Theorem 1) and can be deduced from (Bacciotti
& Rosier, 2001) as follows. If f is ISS, then (Sontag &
Wang, 1995) provides χ ∈ K∞ such that the constrained
input system ẋ = fχ(t, x, d) := f(t, x, dχ−1(|x|)), |d| ≤
1 is uniformly globally asymptotically stable (UGAS);
i.e., there exists β ∈ KL such that for each to ≥ 0

and xo ∈ Rn and each trajectory y of fχ satisfying
y(to) = xo, we have |y(to + h)| ≤ β(|xo|, h) for all
h ≥ 0. By minorizing χ−1, we can assume it is C1.
This means the locally Lipschitz set-valued dynamics
F (t, x) = {f(t, x, u) : χ(|u|) ≤ |x|} is UGAS, as is
its convexification co(F ), namely (t, x) 7→ co{F (t, x)}
where co denotes the closed convex hull (cf. (Bacciotti
& Rosier, 2001, Proposition 4.2)). Since co(F ) is contin-
uous and compact and convex valued, and since we are
assuming f is periodic in t, (Bacciotti & Rosier, 2001,
Theorem 4.5) provides a time-periodic V ∈ UPPD such
that, for all x ∈ Rn, t ≥ 0, w ∈ F (t, x),

∂V

∂t
(t, x) +

∂V

∂x
(t, x)w ≤ −V (t, x).

Recalling the definition of F and assuming (without loss
of generality) that V satisfies (3) with α1 ∈ K∞ ∩ C1,

|x| ≥ χ(|u|) ⇒ f(t, x, u) ∈ F (t, x)

⇒ V̇ (t, x, u) ≤ −V (t, x) ≤ −α1(|x|)

for all t ≥ 0, so V is the desired strict ISS Lyapunov
function for f . This establishes (C6) ⇒ (C2).
Step 6: (C5) ⇔ (C6). Assuming (C6), there are β ∈ KL
such that for all to ≥ 0, xo ∈ Rn, uo ∈ U , and h ≥ 0,

|φ(to + h;xo, to, uo)| ≤ β(|xo|, p̄h) + γ(|uo|[to,to+h])

≤ β(|xo|,
∫ to+h

to
p(s)ds) + γ(|uo|[to,to+h]),

where φ is the trajectory of f we defined in Section 2.
Therefore, f is ISS(p) so (C6) ⇒ (C5). Conversely, if f is
ISS(p), then we can find β ∈ KL such that for all to ≥ 0,
xo ∈ Rn, uo ∈ U , and h ≥ 0,

|φ(to + h;xo, to, uo)| ≤ β
(
|xo|,

∫ to+h

to
p(s)ds

)
+ γ(|uo|[to,to+h]) ≤ β

(
|xo|, p(h)

)
+ γ(|uo|[to,to+h]).

By Lemma 5(ii) , β̂(s, t) := β(s, p(t)) ∈ KL, so (C5) ⇒
(C6), as desired. This proves Theorem 6.

Remark 7 Observe that if the functions V , α2, µ, p are
of class Ck, where k is a positive integer or ∞, then the
particular function α̃2 in (8) we have chosen implies that
the function V ](t, x) is of class Ck.

Remark 8 Our proof of Theorem 6 shows that if V is a
strict ISS Lyapunov function for f , then V is also a strict
DIS Lyapunov function for f . The preceding implication
is no longer true if our boundedness requirement (2) on
f is dropped, as illustrated by the following example from
(Edwards et al., 2000): Take the one-dimensional single
input system

ẋ = f(t, x, u) := −x + (1 + t)q(u− |x|),
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where q : R → R is any C1 function for which q(r) ≡ 0
for r ≤ 0 and q(r) > 0 otherwise. Then V (x) = x2 is a
strict ISS Lyapunov function for the system since |x| ≥
|u| ⇒ V̇ ≤ −x2 but does not satisfy (7) for any choices
of µ and Ω. This does not contradict our results because
(2) is not satisfied. This contrasts the time-invariant case
where strict ISS Lyapunov functions are automatically
strict DIS Lyapunov functions.

4 Illustration

We next use our results to construct a strict ISS Lya-
punov function for a tracking problem for the angular
velocity subsystem of the model of a rotating rigid body
(see (Crouch, 1984; Morin et al., 1995; Morin & Samson,
1997) for the background and motivation for this prob-
lem). Following (Astolfi & Rapaport, 1998), where dis-
turbance attenuation results are obtained through time-
invariant control laws and (Lefeber, 2000, p.31), we only
consider the dynamics of the velocities, which, after a
change of feedback, are

ω̇1 = δ1 + u1 , ω̇2 = δ2 + u2 , ω̇3 = ω1ω2. (14)

where δ1 and δ2 are the inputs and u1 and u2 are the
disturbances. We consider the reference state trajectory

ω1r(t) = sin(t), ω2r(t) = ω3r(t) = 0 (15)

but our method applies to more general reference tra-
jectories as well; see Remark 9 below. The substitution
ω̃i(t) = ωi(t)−ωir(t) turns (14) into the error equations

˙̃ω1 = δ1 + u1 − cos(t), ˙̃ω2 = δ2 + u2 ,

˙̃ω3 = (ω̃1 + sin(t))ω̃2 .
(16)

By applying the backstepping approach as it is applied in
(Jiang & Nijmeijer, 1997), or through direct calculations,
one shows that the derivative of the class UPPD function

V (t, ω̃) =
1
2

[
ω̃2

1 + (ω̃2 + sin(t)ω̃3)2 + ω̃2
3

]
(17)

with ω̃ = (ω̃1, ω̃2, ω̃3)> along the trajectories of (16) in
closed-loop with the control laws

δ1(t, ω̃) = −ω̃1 − ω̃2ω̃3 + cos(t)

δ2(t, ω̃) = −[1 + sin(t)ω̃1 + sin2(t)]ω̃2

−(2 sin(t) + cos(t))ω̃3

(18)

satisfies

V̇ = −ω̃2
1 − (ω̃2 + sin(t)ω̃3)2 − sin2(t)ω̃2

3

+ω̃1u1 + (ω̃2 + sin(t)ω̃3)u2

≤ −1
2 ω̃2

1 − 1
2 (ω̃2 + sin(t)ω̃3)2 − sin2(t)ω̃2

3

+ 1
2 (u2

1 + u2
2) ≤ −p(t)µ̃(V (ω̃)) + Ω(|u|)

(19)

with u = (u1, u2)> ∈ R2, p(t) = sin2(t), µ̃(s) = s and
Ω(s) = 1

2s2. Therefore V is a DIS(p) Lyapunov function
for (16) in closed-loop with the control laws (18). Ob-
serve that, in this case, p ∈ P(π, π/2, 1). Setting τ = π
and w(s) = 1

8τ µ̃(s) = s
8π , it follows that (13) also holds.

Therefore, Steps 3-4 from our proof of Theorem 6 show

V ](t, ω̃) = V (t, ω̃) +
[∫ t

t−τ

(∫ t

s
p(r)dr

)
ds

]
w(V (t, ω̃))

=
[
1 + π

32 −
1
32 sin(2t)

]
V (t, ω̃)

is a strict DIS Lyapunov function and also a strict ISS
Lyapunov function for the system (16) in closed-loop
with the control laws (18).

Remark 9 We chose to work with the reference tra-
jectory (15) because it leads to the simple error equa-
tions (16). However, one can easily check that a strict
ISS Lyapunov function can be constructed for any refer-
ence state trajectory (ω1r(t), ω2r(t), ω3r(t)) such that, for
some constants τ, ε > 0, supt |

∫ t

o
ω1r(s)ω2r(s)ds| < ∞

and
∫ t

t−τ
[ω2

1r(s) + ω2
2r(s)]ds ≥ ε , ∀t ≥ τ .

5 Conclusion

For ISS time-varying systems, we provided explicit strict
Lyapunov function constructions that can easily be per-
formed in practice. The knowledge of these Lyapunov
functions allows us to extend the well-known and useful
theory of ISS systems to a broad class of time-varying
nonlinear dynamics. We conjecture that a discrete-time
version of our main result can be proved.
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