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ABSTRACT: Conventional landfill design attempts to control the downward seepage of leachate by using low
permeability liners. The rate of leachate seepage into the underlying ground-water system can be controlled by
decreasing the permeability of soil liners and/or by using synthetic membranes to form an additional barrier to
leachate migration. However, loss of leachate from conventional landfills is likely to occur due to the inherent
limitations of natural materials and the inevitable imperfections of installing synthetic liners. The artesian landfill
liner system eliminates the downward seepage by reversing the direction of the hydraulic gradient so that seepage
occurs into, and not out of, the landfill. A conceptual cost model incorporates the trade-offs between the capital
cost of constructing robust liners and the operational costs of supplying recharge water and treating additional
leachate produced by the artesian hydraulics. In addition, a two-dimensional, transient finite-element flow model
demonstrates that the reverse hydraulic gradient limits the loss of leachate even if the integrity of the landfill
liner is imperfect or deteriorates over time.

INTRODUCTION

A major environmental problem is the safe and secure dis
posal of solid and hazardous wastes. One common alternative
is "sanitary landfilling" -the practice of burying waste ma
terials in depressions or excavations in the ground. This prac
tice includes the direct land disposal of unprocessed wastes
and the ultimate land disposal of residues or residuals of pro
cessed wastes. Because of the prevalence of such wastes and
the lack of economical, reliable, or socially acceptable disposal
alternatives, the practice of waste landfilling is likely to con
tinue.

Given that waste landfills exist and will continue to be built,
the environmental problems associated with conventional
landfill design will remain. The most severe of these problems
is often regarded as being the seepage of leachate through the
wetted perimeter of the landfill base. This contaminated leach
ate is known to be responsible for the pollution of ground
water. Hence, a major issue in landfill design is the contain
ment or control ofleachate. The term "secure landfill" is used
to describe a landfill in which leachate migration out of the
landfill does not occur. In fact, conventional landfills are not
secure in this sense. Landfill liners are never completely im
pervious. There is a lower limit to the permeability of soils as
there is a practical upper limit to the thickness of liners. More
over, natural soil liners, mechanically placed over large areas,
are inevitably nonuniform. Similarly, thin synthetic liners,
which are sometimes used to replace natural liners or in com
bination with them, may be subject to a loss of integrity
through their installation over uneven soil surfaces, faulty
seams between panels of the membrane, the movement of
heavy equipment over the membrane, and environmental fac
tors.

The end result of conventional landfill design practice is a
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significant probability of loss of leachate through the landfill
liner system. Although the rate of leachate flow and its com
position is uncertain, conventional sanitary landfills cannot be
considered as a safe, secure, and acceptable waste disposal
alternative. As an alternative, the artesian landfill concept is
introduced, a cost optimization model is developed for its pre
liminary design, and a numerical model is presented to de
scribe its behavior under normal operating conditions and pos
sible failure modes.

ARTESIAN LANDFILL SYSTEM

Conventional landfill systems fail because they do not elim
inate the basic problem-namely, the hydraulic potential of
leachate acting on the liner. As long as this potential exists.
leachate leakage will inevitably occur. Rather than working
against nature, the artesian landfill system utilizes the same
hydraulic forces to reverse the direction of leachate migration,
thereby eliminating leakage from the landfill. Similar concepts
for the control of leachate seepage have been advocated by
Matich and Tao (1984), Sallfors and Peirce (1984), Amos
(1985), and Adams and Karney (1988) and more recently in
work on the "hydraulic trap" by Rowe et al. (1995).

In applying the upflow concept to the design of solid waste
landfills, the hydraulic potential is not eliminated. Rather, the
direction of the gradient, and hence the direction of leachate
migration, is reversed. To accomplish this, a multilayered liner
system (see Fig. 1) is constructed with the following four el
ements (Sallfors and Peirce 1984): (1) A leachate collection
system; (2) a compacted clay liner with a low hydraulic con
ductivity (upper liner); (3) a porous "artesian" layer consist
ing of sand and gravel, in which drain pipes are installed; and
(4) a lower liner consisting of either compacted clay or syn
thetic material, or both.

The artesian landfill system is essentially the same as the
conventional landfill system above the upper impermeable
liner. The key difference is the lower impermeable liner and
the granular fill between the two liners that forms a confined
aquifer. A piezometric surface can be maintained in this aq
uifer by the addition of water from recharge wells on the sur
face. When this piezometric surface lies above the upper liner,
the aquifer becomes artesian, hence its name. This difference
in piezometric surfaces, or pressure differential, prevents the
downward flow of leachate through the upper liner. In fact,
this pressure differential causes an upward flow from the ar
tesian layer to the drainage layer through the upper liner. The
upward flow rate is a function of the magnitude of the pressure
differential. Operationally, the goal is to limit recharge to a
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FIG. 1. Artesian Landfill System: (a) Functional Sketch; (b) Hydraulic Sketch

rate that causes a minimal pressure differential and, hence, a
minimal upward flow rate.

The artesian landfill may be more expensive than the con
ventional sanitary landfill since it consists of two additional
elements-a lower liner and a granular drainage layer. The
granular drainage layer may be equipped with drain pipes,
which would permit both the adjustment of pressure differ
entials and the sampling of the recharge water that creates the
pressure differential. These features represent both larger ex
cavation and material costs that are to some extent offset by
less robust liners than would be required in conventional land
fill design. However, these costs may be justified when con
sidering the environmental benefits of improved leachate con
tainment (Adams and Karney 1988) and the possible public
acceptance of landfilling as a viable long-term waste disposal
method (Sallfors and Peirce 1984). Moreover, multilayer
leachate containment systems are often advocated in any case.
In fact, it is possible to operate the artesian landfill system
exactly as a conventional landfill system until the first break
through of contaminants occurs through the upper liner. After
this breakthrough, operation in the artesian mode can begin.
The remainder of this paper concentrates on the unique fea
tures of the artesian system.

In addition to the trade-offs between the conventional and
the artesian landfill liner systems, there are trade-offs within

the design of the artesian landfill liner system. For example,
the permeability of the upper and lower liners are design var
iables. The greater the permeability of both liners, the greater
the flux rate of recharge water both upward through the upper
layer and downward through the lower layer; thus, the greater
the volume of recharge water required. The flux rate of re
charge water flowing upward through the upper liner is di
rectly proportional to its permeability for a given pressure dif
ferential across the liner. When the marginal cost of decreasing
the liner permeability exceeds the marginal cost of collecting
and treating leachate, it is more economical to manage the
greater leachate quantities than to decrease the permeability of
the upper liner and vice versa. Thus, there is a trade-off be
tween the capital cost of a more robust liner and the opera
tional cost associated with leachate collection and treatment.
These economic trade-offs are explored quantitatively in detail
in the next section. Note, however, that the trade-offs within
the artesian design are of a quite different nature than those
associated with conventional landfill design. In a conventional
design, reduced capital costs in the design must be traded-off
against an increased environmental risk associated with liner
failure and leachate loss; in the artesian system, the designer
trades-off capital costs against operating costs, within the con
text of a secure containment system.
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in which pc. and Pel = present value of the material cost of
the upper and lower liners, respectively, per unit area; and Cc

= cost of placing the liner material per unit volume. As the
upper liner becomes thicker, the volume of additional leachate
from the artesian zone that must be collected and treated de
creases. Using (1), the annual cost of collecting and treating
this additional leachate, C/o is

(9)

GEOMETRIC PROGRAMMING

There is another potentially important trade-off involved in
the implementation of the artesian landfill system. High per
meabilities of both the upper and lower liners, K. and K" re
spectively, translate to a high flux rate of recharge, Q. and Q"
through both liners; hence, high liner permeabilities are as
sociated with a greater volume of recharge water required.
Thus, a trade-off exists between the capital cost of providing
robust upper and lower liners and the operational cost of sup
plying recharge water. Mathematically, the cost of providing
recharge water can be formulated in a similar manner to that
for the cost of treating leachate. Let C2 represent the constant
that converts flux rates to the total annual cost of recharge per
unit area of landfill. If C2 is relatively constant over time, the
present worth Y2, of supplying recharge water to the landfill
per unit area can be summed to

[ H, H.] I + r
Y2 =C2 K, B

I
+ K. B. -r- (6)

Finally, the cost of placing a liner with high hydraulic con
ductivity is usually lower than that for placing a liner with low
hydraulic conductivity. The increase in cost is assumed mainly
due to the intrinsic properties of the material as well as the
quality of work in placing the liners. The capital cost of plac
ing a liner with a certain hydraulic conductivity per unit vol
ume, Cb is formulated as

Ck =C3K-b (7)

in which C3 and b =constants relating the hydraulic conduc
tivity to the capital cost of placing the liner per unit volume.
Then, the present worth, Y3, of placing the upper and lower
liners with specific hydraulic conductivities per unit area is

Y3 =CkB. + CkBI =C3K;/B. + C3KibBI (8)

In constructing the artesian landfill, one of the objectives
remains to minimize the total cost of the facility. This mini
mization can thus be presented as the summation of the ma
terial cost of the upper and lower liners, pc. and Pc" respec
tively, the operational cost of collecting and treating the diluted
leachate, the cost of supplying the recharge water to the ar
tesian layer, and the cost of placing the upper and lower liners
with specific hydraulic conductivities. Thus, the present value
of all costs, y, per unit area is as follows:

y =CcBu + CcB, + C3K;/B. + C3 KibB,

It is assumed that other costs involved in the construction and
operation of the landfill are constant and cannot be further
minimized.

A considerable amount of work has been done to optimize
the performance of various ground-water systems ranging
from simple linear programming applications [e.g., Ahlfeld
and Heidari (1994)] to complex nonlinear optimization tech
niques [e.g., Jones et al. (1987) and Ahlfeld and Hill (1996)].
In the current context, linear programming is clearly inappro
priate for (9) since it is nonlinear. However, the technique of
geometric programming is a powerful nonlinear programming
technique well suited to this kind of problem and can account
for linear and nonlinear constraints. With this method, the op
timal cost (indicated with a superscript *) of a design is first
determined. If acceptable, a further calculation yields the op
timal values of design variables and provides a sensitivity
analysis (Woolsey and Swanson (1975). Since they are central
to this paper, these techniques are briefly reviewed.

(1)

(3)

(2)

(5)

N

2: 1 l+r---=--,_0 (1 + r)' - r

Conceptual Cost Model

Although the actual conditions within the artesian landfill
system are complex, a simple conceptual model allows the
trade-offs between operating and capital costs to be investi
gated. The basic assumption is that the portion of the landfill
above the upper liner, specifically the leachate collection sys
tem, is properly designed to maintain a reasonable head on the
upper surface of the upper liner. Since such a leachate collec
tion system is required for even the conventional landfill sys
tem, this assumption seems justified.

If leachate flow conditions are approximately steady, the
seepage flux from the artesian layer into the landfill can then
be estimated by Darcy's law as

where Q. = specific discharge through the upper liner (m/s);
K. = average hydraulic conductivity of the upper liner (m/s);
H. = average difference in hydraulic potential acting across
the upper liner (m); and B. = upper liner thickness (m). The
design variables are the selection of upper and lower liner
thicknesses, B. and B/o respectively, the choice of liner mate
rials and their associated hydraulic conductivities, K. and K"
and the operating hydraulic potential difference acting across
the upper liner, H•. The operating potential in the artesian layer
is chosen to ensure that a minimum positive gradient exists at
all locations in the upper liner. Thus, the gradient would be
determined by geometrical factors to account for the slope of
the drainage system and its piezometric surface. The operation
and control of the artesian layer recharge system is largely
determined by the minimum acceptable value of potential dif
ference.

The selection of the thickness of the liners represents a com
promise between operating and capital costs. As the thickness
of the liners increases, the capital material cost PI can be ex
pected to increase in an approximately linear fashion. Thus

in which C1 =constant converting flux rates into total annual
collection and treatment costs.

Eqs. (2) and (3) can be combined to form the following:
N N

'" C, =C B + C B + '" C\K.(H.IB.)
Yl = pc. + Pc, + ~ (1 + r)' c. c I ~ (l + r)'

(4)

in which Yl = total present value of upper and lower liner
placement costs plus additional leachate collection and treat
ment cost per unit area of landfill; r = annual discount rate;
and N =period of analysis in years. The water flowing through
the lower liner is not considered here in the collection and
treatment costs since it need not be treated. If the cost is ap
proximately constant and the period of analysis is sufficiently
long, the geometric series can be summed to yield
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The general mathematical statement of the posynomial ge
ometric programming problem is as follows (Beightler and
Philips 1976):

By combining (12) and (15). the first derivative of the objec
tive function is transformed to

By definition, these weights must satisfy the normality con
dition by adding up to unity

where costs M, = positive numbers; ~ = (Xl. X2 • ...• XN) =
decision variables; and functions P,(~) are defined as follows:

(20)

(21)

y* =fI (M~)W:
,_1 W,

and, thus

The change of focus from determining the values of the
independent variables in the posynomial to determining the
values of the weights in effect changes the problem to a linear
form. Recall that the dual geometric programming problem is
given as [from (20)]

T ( )w.
maximize d( W) = TI ~

,_t I

The dual problem is therefore reduced to finding an optimum
point for a concave objective, z( W), subject to a set of convex
constraints. From the principles of calculus, this function has
a global maximum. Thus, the global minimum for the primal
problem is equivalent to the global maximum of the dual func
tion, subject to the normality and orthogonality equations.

But, recalling (17) and (18), y* is simplified as follows:

TNT N

TI [P,(x*)W: =TI TI (x:t,·w: =TI (x:)};i., •••w: = 1 (19)
,_I n-t t_t n_t

Hence, the optimal cost y* can be obtained if the values of
the coefficients M, and the values of the optimal weights W:,
in the objective function are known. The optimization problem
thus becomes one of finding the optimal values of the weights,
which is accomplished by solving the dual function (20). The
dual must be maximized to obtain the optimal weights; how
ever, if the degree of freedom is greater than zero, the dual
function is not readily solved.

Maximizing Dual Function

subject to (13) and (17); that is, the weights must sum to one
and the weight functions are orthogonal and must satisfy the
nonnegativity condition W, ~ O.

The dual constraint set forms a convex region since all con
straints are linear. Rather than working with d( W), the dual is
sometimes transformed to its logarithmic equivalent: z( W) =
In[d(W)]. This transformation is valid since the weights W, lie
between 0 and 1, and since the logarithmic function is mon
otonic in the dual variables (Beightler and Philips 1976).
Hence, the objective of the dual function becomes

maximize z( W) = In fI (M
W

') w. = -±W, In (:') (22)
/_1 I r_l I

(10)

(II)

(12)

(13)

(14)

(15)

(16)

N

P,(~) =TI x:".-1

T N

2: M,a'k TI x:'" =0
/_1 n_t

T

minimize y(X) =2: M,P,(X)
,-I

* M,P,(X*)
W, = . t = 1, ... , T

y*

T

2: a,.W~y* =O. n = 1, ... , N
,-I

The weights must also comply to an orthogonality condition
obtained by setting the first derivative of the objective function
with respect to the independent variables to zero

oy ~ ••• -1 TI ."- =LJ M,a'kXk x. =0, k = 1•...• N
OXk '_1 "'k

Since all x. > O. these equations are reduced to

and, since y* must be positive

where exponent a,. = known real number. Should the poly
nomial have negative coefficients and/or have exponents that
are positive integers only. a similar technique called signomial
geometric programming could be used to optimize the func
tion.

Posynomial geometric programming seeks the optimal way
to distribute the total cost among the various terms of the
objective function. To do so. the concept of optimal weights
W~ is introduced using the minimum cost y*(~*) and the
optimal values of the independent variables ~* as follows
(Beightler and Philips 1976)

which is the simplified form of the orthogonality condition.
From (13) and (15), it is apparent that the problem has T

unknowns, one for each term in the objective function. Also,
the optimization is now written as a system of (N + 1) si
multaneous linear equations, one equation arising from the
normality condition, and N orthogonal equations arising from
each variable x•. The degree of freedom for solving the prob
lem is T - (N + 1). Clearly, the degree of difficulty in solving
the problem is greatly magnified as its degree of freedom in
creases. Once the weights are determined, the optimal cost y*
can be obtained from the following (Beightler and Philips
1976):

T

2: a,.W~ = 0, n = 1, ... , N
1-1

(17)
Inequality Constraints

Linear or nonlinear constraints arise from physical limits,
from economic and financial considerations, or from environ
mental concerns. These can be incorporated in the geometric
programming solution provided that they are of the following
form (Beightler and Philips 1976):

T. N

8m(X) =2: Km , TI x:·" ::5 1, 1, 2, ... , M (23)
t_1 nat

There are now N + M posynomial expressions (N terms in the
objective function and M terms in the inequality constraints).
The addition of constraints to a given problem does not affect
the number of simultaneous linear equations to be solved,
since this is determined by the number of independent varia-
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COST OPTIMIZATION OF ARTESIAN
LANDFILL SYSTEM

M T.

2: 2: a"'nW.,, = 0, n = 1,2, ... , N (26)
m_1 ,.1

The normality condition (25) is formulated with respect to the
number of posynomial terms in the objective function (first
subscript of zero). Eq. (26) indicates that the number of un
knowns is equal to the number of posynomial terms in both
the objective function and the constraint equations. On the
other hand, (27) shows that for each constraint having more
than one posynomial term, the total weight for each constraint
WmD must be included in the term within parentheses in (24).
Once the normality and orthogonality equations are known,
the solution for an engineering problem with inequality con
straints is found as before. For a more detailed description of
posynomial geometric programming, the reader is referred to
standard references such as Beightler and Philips (1976).

(34)

(33)

(36)

(35)

(37)

Value
(2)

$0.90/m'
$0.25/m'

0.045
$2.0/m'
$2.0 s/m'

2.0
$13.35 s/m'
$5.81 s/m'

1 - 2W*W* _ 6

3 - 2b

W* _ w:
, - b

1 - 2W*
W* - 6, - 2

Item
(1 )

Cost of collecting and treating leachate, C,
Cost of recharge water, C2

Discount rate, r
Material cost, C =M, =M2

Workmanship cost, C, = M, = M,
Material exponential coefficient, b
Derived parameter: M, = (C, + C2)H.[(1 + r)/r]
Derived parameter: M. = C2H,[(1 + r)/r]

Wf + M' + wt + wt + W~ + wt = 1 (28)

Wf + wt - W~ = 0 (29)

wt + wt - W: =0 (30)

-bWt + W~ =0 (31)

-bWt + W: =0 (32)

There is one degree of freedom in this problem. Hence,
these constraints of the dual problem can be solved explicitly
in terms of one of the variables, say wt:

1- 2W: ( I)Wf= 2 I-I;

wt=W:(I-i)

tentials, H. and Hit are set at an average value of 0.5 and 1.0
m, respectively. The optimal design parameters are calculated
by applying the geometric programming method to (9). The
associated normality and orthogonality conditions from (13)
and (17) are given by

TABLE 1. Economic Analysis Parameters

(24)

(25)

(27)

To

subject to 2: Wo, = 1
,-\

T.

W.,o =2: W.,,, m =I, 2, ... , N,_I

bles (N + I). However, the total number of unknowns will
increase to N + M, since these are dependent on the number
of posynomial terms in the mathematical statement of the
problem. The number of terms in the normality condition (13)
is not affected.

With the addition of constraints, the coefficient of each term
is double subscripted (a first subscript of 0 indicates that the
coefficient originates in the objective function, a value of 1
indicates that the coefficient originates in the first constraint,
etc., and the second subscript refers to the posynomial term in
question). The exponent is not triple subscripted: The first two
subscripts are similar to those used for the coefficient, while
the third subscript indicates the variable. The dual function
now has the following form (Beightler and Philips 1976):

M T. ( )w.,. . K."W."
maXImIze d( W) =TI TI ---

m-O ,_I Wmt

In designing an artesian landfill, the basic decisions are to
select the upper and lower liner thicknesses, to choose the liner
material, and to determine the operating hydraulic potential in
the artesian layer. Initially, the geometric programming model
is applied to the artesian landfill system with the upper and
lower liner thicknesses and hydraulic conductivities as varia
bles. A sensitivity analysis indicates the relative importance of
each cost estimate. Subsequently, the upper and lower hydrau
lic potentials are added to the set of decision variables, which
demonstrates the incorporation of inequality constraints into
the optimization model. If several types of construction ma
terials are available, iteration of the optimization procedure is
necessary to identify the lowest cost scenario that maintains
the required hydraulic conditions.

Variables: Liner Thicknesses and Hydraulic
Conductivities

With the liner thicknesses and hydraulic conductivities as
decision variables, the hydraulic potential differences across
the liners are assumed to be known. The potentials are deter
mined from the operating hydraulics of the landfill. Cost es
timates for the liner materials, the collection and treatment of
leachate, the recharging of water, and placing liners with spe
cific hydraulic conductivities are assumed available for the
site, as shown in Table 1. The upper and lower hydraulic po-

The dual (20) can then be written as

d =(~r)~ (~;)*i (~;)~ (~;)~ (~;)~ (~;)~ (38)

where M 1 = M 2 = Cc; M 3 = M 4 =C3 ; M s = (C, + C2)H.(1 +
r)/r; and M6 = C2H/(1 + r)/r. By using the expressions deter
mined for the optimal weights [(33)-(37)] (38) can be trans
formed to its logarithmic form (22) to yield

,. -e -221ft) (1 _ ~) m[, - 22W~~1
- ~)]

(
w: (I - i))

- W: (I - i) In M
2

(

I - 2W:) (W:)_ (1 - 2w:) In 2b _ W: In b
2b M 3 b M 4

-e-22
1ft) In (' -.C) -1ft In (::)
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where A' = transpose of A and the minus one superscript
indicates the inverse function. The change in W;" (i.e., dW;")
can now be found as

For convenience, a 6 X 6 diagonal matrix W* is introduced
with the known optimal weights (wt, W~, etc.) as the diagonal
entries. An intermediate matrix S is then formed to find the
change in W;" (Theil 1972) as follows:

Cl,HII

_ .... C3

-r---:::=-- C2
_- .....-- 6 --6 H,.....................-6------

:::::::.oQ _ oQ-_ ~ Cc

..........
...........0.••

~·· ~·~o()· o·· · o r

40

or 36
E
!! 30......

26

! 20
'iii
E 16!

10

5 -60

where
T

d[ln M,] =d[ln M,] - 2: Wt d[1n M k], t = 1, ... ,T (44)
k_t

T

dW;t' =W;"d[ln M,] - 2: Stjd[ln M)], t = I, ... ,T (43)
)-1

The new values of W;" equal W;" + dW;". By altering the
values of the parameters listed in Table I, different values of
y*, K:, Kf, B:, and Bf can be obtained. For example, by
changing the value of Ct from 0.9 to 1.8, the new set of so
lutions can be obtained immediately. Finally plotting these val
ues allows the complete sensitivity analysis to be clearly dis
played. For completeness, a thorough sensitivity analysis is
performed by observing the effect of varying each coefficient
of (9) on the optimal cost and liner thicknesses. However, most
of the observed trends can also be inferred by comparing the
relative weights of each term in (9).

Fig. 2 shows that an increase in the material cost of the
liners, in the hydraulic potentials, in the cost of supplying the
recharge water, in the cost of collecting and treating leachate,
and in the cost associated with placing a liner with specific
hydraulic conductivity is translated to an increase in the op
timal cost of the artesian landfill system and vice versa. It is
also revealed that changes in the parameters associated with
the hydraulic potential difference across the upper liner have
a greater effect on the optimal cost. Conversely, Fig. 2 shows
that an increase in the discount rate decreases the optimal total
cost of the landfill although it does not vary the weights of
each posynomial term in the objective function. In fact, the
discount rate appears in the objective function to give an
equivalent present value to the operational costs associated
with the supply of recharge water and the dilution of the leach
ate. Since a higher discount rate is equivalent to a lower pres
ent value for the operational costs, the optimal linear thick
nesses decrease with an increase in the discount rate, as it is
more economical to treat leachate and to supply more water
in the future than to construct robust liners. Clearly the choice
of the discount rate is crucial to the optimization model.

Figs. 3 and 4 indicate that the greater the material costs of
the liners, the lesser their optimal thicknesses. On the other
hand, an increase in the cost of supplying the recharge water,
in the cost associated with the dilution of the leachate, and in
the cost associated with placing a liner with specific hydraulic
conductivity is translated to an increase in the optimal thick
nesses. This was expected from the formulation of the objec
tive function, which identified a trade-off between the material
cost of construction the upper liner and the cost of treating
additional leachate, between the material cost of constructing
the liners and the cost of supplying recharge water, and be
tween the material cost of constructing the liners and the cost
of having a liner with lower hydraulic conductivity. Hence, for

o 100 200 300 400
Percent Change In Par__r

FIG. 2. Sensitivity Analysis of Optimal Cost (Unconstrained
Problem)

(41)

(42)

[

all
a21

A = a31

a41

aSl

a6t

The global optimum for this dual function can be found by
setting the first derivative of (39) with respect to the variableW6 to zero. Performing this operation and rearranging gives

2ln C-W~W6) =(1 -~) In (2~1) + ~ In (2:j

+ In (2:j (40)

When the constants of the right-hand side of (40) are known,
the weights are determined by first solving for W6 and then by
using this result in (33)-(37) to determine the other weights.
The optimal variables (liner thicknesses and hydraulic con
ductivities) are evaluated using (12).

If economies of scale occur in the construction of the upper
and lower liners, the first and third terms of (9) will be of the
form CclB~+o., where the coefficient (1 + ex) lies between zero
and 1 (Forgie 1983). In this case, the term (1 + ex) appears as
the coefficient of wt and Wr in (13) and (17), which are
otherwise handled in the same manner as previously described.

The optimal weights of the artesian landfill cost equation
are determined by substituting parameter values from Table 1
into (40) to produce In«1 - 2W6)IW6 ) = 1.498. Solving this
equation gives wt = 0.155. The other optimal weights follow
from (33) to (37): wt = 0.115, W~ = 0.052, Wr = 0.230,
WI = 0.103, and W;" = 0.345. Next, the optimal cost is ob
tained from (20) and the optimal liner thicknesses from (12).

The posynomial geometric programming technique offers
several advantages for cost optimization. For instance, the cal
culated optimal weights reveal the distribution of capital to
keep costs at a minimum. In the present example, the material
cost of construction of the upper and lower liner should be 5.8
and 2.6% of the optimal total cost, respectively. The parameter
values used yield optimal thicknesses of 1.104 and 0.494 m
for the upper and lower liners, respectively; optimal hydraulic
conductivities of 2 X 10-8 mls for both upper and lower liners;
and optimal total cost of $19.181m2

•

Sensitivity Analysis

Although preliminary cost parameters are often crudely es
timated, sensitivity analysis may reveal which coefficients
most significantly affect the optimal cost of the design and
ultimately the thicknesses and hydraulic conductivities of the
liners. With this information, a greater effort in the estimation
of the significant cost parameters can be subsequently ex
pended. A set of expressions used to achieve this task was
originally developed by Theil (1972).

By comparing (9)-(11), the values of a,. are given in matrix
form as
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FIG. 4. Sensitivity Analysis of Optimal Lower Liner Thickness
(Unconstrained Problem)

(45)

(46)

(47)

(48)

(49)

(50)

W,f, - Wtl = 0

Wtt-Wtl=O

/C3

,//,., ,./

~~C2'Hl
e "'......... e e e Cl,Hu

~ ••• ··:~:::~·· ..• ···'O·..•..•• • 'O • "O r
••••-.. •••••••• Cc

W,f\ + W.fz + W,f3 + W!l4 + wts + wtt =1

2.5
.!!

l~ 2.0

I-
~~ 1.5

It 1.0

'illE8 0.5
R
0

0

H,.mJn :S I
HI

The number of unknowns in this case is equal to the number
of posynomial terms in both the objective function and the
constraint equations. The normality equation is formulated
with respect to the number of posynomial terms in the objec
tive function (25) as follows:

In total, the normality and orthogonality conditions provide
seven equations and eight unknowns. All of the other optimal
weights can be written in terms of W<t.s. The first five expres
sions are identical to (33)-(37) with Oi substituted in place of
the subscript i; the final two expressions are given by

W* _ 1 - 2W<t.s
11- 2

Notice that this expression is identical to (28) except that
the subscript changes from i to Oi. Similarly, the first four
orthogonality conditions can still be written as (29)-(32) by
changing the subscripts from i to Oi. The last two orthogonality
conditions are

·50 0 100 200 300
Percent Change In Parameter

FIG. 6. Sensitivity Analysis of Optimal Hydraulic Conductivity
of Lower Liner Thickness (Unconstrained Problem)

Variables: Liner Thickness, Hydraulic Conductivities,
and HydraUlic Potentials

Posynomial geometric programming is capable of handling
linear and nonlinear constraints. To demonstrate the treatment
of inequality constraints, the decision variables in the objective
function can be chosen as the liner thicknesses, the hydraulic
conductivities, and the hydraulic potentials. These constraints
can be written in the following form [from (23)]:Cl,Hu

e e el,Hu

..... C2.....................
/~ __-4C3

/ -.-;.----:::.-.--

o

.._---r---...... C3

~---- __--- C2
~~i;)~.-=-:I!=---::=:1;::"----o-----~ H,

·~~::::::::::::g::::::::::::::g-:::::::::::.::-OCc

E 3.15•..
ll:l 3.0

! 2.5

~ 2.0

~ 1.15:::J

I 1.0
:;)

'iI 0.5
E
~ 0

·500

E 1.8~---------------------,.-
ll:l 1.6

j 1.4

j! 1.2
~ 1.0

! 0.8
:::J

..9
1 0.8

0.4

~ 0.2
~ Ol.--L__..L-_---IL..-_..=!I!:==:oCu__~!:...-......J

o ·50 0

a greater material cost, it is economically advantageous to con
struct thinner liners, thus allowing more recharge water to seep
through the liners and requiring additional leachate to be col
lected and treated.

Figs. 5 and 6 indicate that the greater the material cost of
the liners, the lesser the optimal hydraulic conductivities. Con
versely, an increase in the cost of building a liner with low
hydraulic conductivities leads to an increase in optimal hy
draulic conductivities. Again, there is a trade-off between the
hydraulic conductivities of the liners and their material cost.

The sensitivity analysis also gives an indication of design
criteria for the hydraulic potentials. Once the material has been
fixed, Fig. 4 reveals that the higher the hydraulic potential
applied to the artesian layer, the greater is the optimal thick
ness of the upper liner; therefore, the greater is the optimal
cost. This is not surprising, since a larger applied potential (for
a constant thickness) would cause more water to leak through
the liner and mix with the leachate. Although the design must
account for fluctuations in the upper potential, hydraulic po
tentials should always be kept at their minima to minimize
total cost.

100 200 300 400
Percent Change In Parameter

FIG. 3. Sensitivity Analysis of Optimal Upper Liner Thickness
(Unconstrained Problem)

Wtl = W!ft, (51)

By using (24)-(27), the dual function is formed. Again, by
setting the first derivatives of the logarithm of the dual func
tion to zero, the weight Wr can be found. If the cost estimates
from Table 1 are used and the minimum hydraulic potential is
equal to 0.3 m, the optimal thicknesses for the upper and lower
liner are 0.855 and 0.270 m, respectively; optimal hydraulic
conductivities for the upper and lower liner are both 2 X 10-8

m/s; the optimal cost is $13.5l1m2
, and the optimal hydraulic

potential difference is equal to the minimum desirable values.

Sensitivity Analysis

Another set of procedures has been developed by Dinkel
and Kochenberger (1974) to perform the sensitivity analysis

~ Cl,Hu

1.6
,g 1.4

~~ 1.2
~• 1.0
!~

:::J • 0.6

If 0.6
:;)~

'ill 0.4
E8

0.2~
0

0
·50 o 100 200 300 400

Percent Change In Parameter

FIG. 5. Sensitivity Analysis of Optimal Hydraulic Conductivity
of Upper Liner Thickness (Unconstrained Problem)
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(54)

The present algorithm solves a heterogeneous anisotropic
coupled saturated-unsaturated flow equation using Galerkin's
finite-element method [e.g., Istok (1989)]. The finite-element
code was verified with a block-centered finite-difference code
for simple flow conditions and showed good agreement with
analytical flow solutions (Seneviratne 1991). The two-dimen
sional equation governing flow in the landfill is given as fol
lows (Bear 1972; Freeze and Cherry 1979):

120

_ .... C3
_ ........- C2

- Cl_...;;;;";;:-:;;:':~...;;;..==....._"-' Cc

..............0.

..............0 0

0

r

·30 0 30 80 90
Percent Change In Parameter

~\
.....,

"''0

" .......'---'-

·80

22

~
20

18
•...

18

l 14

l 12!.
0

10

8

APPLICATION OF CONCEPTUAL COST MODEL

FIG. 7. Sensitivity Analysis of Optimal Cost (Constrained
Problem)

on constrained problems. In this approach, developed by Theil
(1972) for the unconstrained problem, the optimal weights,
W:::" for the initial values of the parameters are adjusted by
changing the value of anyone of the parameters. After this,
new values of y*, B:, B"t, H:, and H"t can be obtained. Results
of the sensitivity analyses are summarized in Fig. 7 for optimal
cost. The sensitivity analyses of other design parameters, Bu ,

B" Ku , and K" are given in Cormier (1990). However, the
results are similar to those of the unconstrained problem ex
cept that they also reveal that the optimal hydraulic potentials
are equal to the stipulated minima.

in which C(I\!) = specific moisture capacity; 6' = degree of
saturation; So = specific storage; K(I\!) = unsaturated hydraulic
conductivity; I\! = pressure head; x and y = space variables;
and t = time. In the unsaturated zone, the compressibility ef
fects of the soil matrix and the pore water are assumed insig
nificant; hence, C(I\!) dominates the left-hand side of (54). In
the saturated zone C(I\!) = 0, and the specific storage term
dominates while K(I\!) becomes equal to the saturated hydrau
lic conductivity. The associated finite-element equations used
to represent transient ground-water flow are given in Istok
(1989) while Lai (1994) provides detailed descriptions of the
application of the finite-element method to the current prob
lem.

To simulate the flow within an artesian landfill system, it is
necessary to define the boundary conditions and the geometry
of the landfill. Fig. 8 depicts a symmetric half of the landfill
domain. (For reference, the 240-element grid for the finite
element solution is depicted in Figs. 10 and 11.) In this case,
the property of symmetry is used to reduce the number of
elements and, hence, the computational time. However, such
a simplification can slightly distort reality, particularly when
failure conditions are analyzed, because it conservatively as
sumes that a given failure such as a rupture in the top liner
has occurred on both sides symmetrically. The landfill domain
is modeled as an initial-boundary value problem. The bound
ary conditions and system geometry are as follows: The bot
tom surface in contact with the soil is a Dirichlet boundary
with a negative pressure of 0.002 m; the central boundary of
symmetry is a no-flow boundary and the top surface is a New
mann boundary with an infiltration rate of 0.006 m/day; water
is ponded at the top edge of the sloping artesian layer; the
confining material is clay and the artesian material is sand;
and the drain slope is 4% while the side slope is 45°.

(52)

(53)

The preceding examples demonstrate the procedures of per
forming the optimization and sensitivity analysis techniques.
During the discussions, the hydraulic potential differences
across the upper and lower liner are assumed to be known and
can be controlled by the rate of water supplied by the recharge
well. The piezometric head along the artesian layer generated
by the water supplied by the recharge well is called the op
erating head, Ho • The hydraulic potential differences across the
upper and lower liner are functions of the operating head. Un
der normal operation, it is assumed that the piezometric head
along the lower boundary of the lower liner and that along the
upper boundary of the upper liner are close to atmospheric
pressure. Referring to Fig. 1, the relationships between the
operating head and the hydraulic potential differences are

in which Hu and HI = hydraulic potential differences across
the upper and lower liner, respectively; Bu and BI =thicknesses
of the upper and lower liner, respectively; H o = operating head;
and A = thickness of the artesian layer (A = 0.75 m here).
Therefore, in applying the optimization technique, instead of
having the hydraulic potential differences as the variables, the
operating head is the variable. By specifying a proper value
of the operating head, the optimal design is determined by
combining the preceding optimization technique with (52) and
(53). An example used to illustrate this procedure is discussed
in Lai et al. (1995).

NUMERICAL ANALYSIS WITH FINITE-ELEMENT
MODEL

The flow patterns in an artesian landfill system can often be
complex-particularly under abnormal operating conditions
such as those caused by a liner rupture or a clogged drain. In
the design of an artesian system, it is important to know the
behavior of the system under such situations and a numerical
approach is developed for this purpose.

E,..--- ......

BOUNDARY CONDITIONS:

AB < BC < CD: Dirichlet boundaries
DE: Neumann boundary
EA: No flux boundary (symmetry line)
Drain slope: 4%
Side slope: 46

Node 4 Drain

Upper liner

Node 3 .....----------'
Artesian layer

Lower liner

A B

FIG. 8. Symmetric Half of Artesian Landfill: Boundary Condi
tions
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SYSTEM PERFORMANCE

For an artesian landfill to work properly, the potential dif
ference across the upper liner must be maintained above a
desired value. This can be controlled by altering the operating
head. If the system fails due to the rupture of the top liner or
the clogging of the drains, the failure can be detected imme
diately by knowing the hydraulic potential difference across
the upper liner. Therefore, under normal and abnormal oper
ating conditions, a simple monitoring program can be used to
maintain automatically the potential difference across the up
per liner within a desirable range by increasing the operating
(or ponding) head when necessary. Similar adaptive strategies
have been recommended by others for different applications
[e.g., Jones (1992)].

The procedure for maintaining the artesian system is quite
simple: The operating system monitors the head difference at
critical nodes and determines whether the head difference is
adequate; if the head difference is too small, the operating
head is increased and vice versa. In all situations considered
herein, the minimum hydraulic potential difference occurs on
the far left-hand side of the flow system near the axis of sym
metry. This is because the upper boundary of the upper liner
is sloping downward towards the drain. Under normal opera
tion, the pressure head along the upper boundary of the upper
liner is close to atmospheric pressure. Therefore, the piezo
metric head is largest at node 4 (see Fig. 8). Moreover, when
the water is flowing from the supply on the right-hand side
through the artesian layer the piezometric head is smallest at
node 3 since the head decreases in the flow direction. Hence,
the upward hydraulic potential difference is smallest across
nodes 3 and 4. By monitoring the hydraulic heads at nodes 3
and 4, the minimum desirable hydraulic potential difference
across the upper liner can be maintained. A physically reason
able minimum value is assumed to be 0.3 m here. Before the
optimum value of the operating head has been determined, the
system is first simulated with an arbitrarily chosen value of
the operating head. If, dUring the simulation, the operating
head is found to be insufficient to provide the desired hydrau
lic potential difference across the upper liner, the operating
head is increased by a predetermined amount (taken here as
0.04 m). This operation is illustrated in the following exam·
pIes.

Normal Operating Condition

The boundary conditions and the geometry of the landfill
have been described earlier. The desired average hydraulic po
tential difference across the upper liner is set to 0.30 m. The
thickness of the artesian layer is assumed to be 0.75 m, and
its hydraulic conductivity is 4.8 X 10-3 m/s. The thicknesses
of the liners, their hydraulic conductivities, and the operating
head can then be determined using the cost optimization tech
nique described previously. The resulting optimal thicknesses
for the upper and lower liners are 0.855 and 0.815 m, respec
tively. The optimal hydraulic conductivities are both 2 X 10-8

mis, and the optimal operating head, as measured above the
base of the lower line, is 2.72 m.

These design variables are average values only and are
based on the steady-state optimization model. Thus, for ex
ample, the "optimal operating head" of 2.72 m refers to the
average hydraulic potential difference acting on the upper liner
and does not explicitly account for hydraulic losses in the ar
tesian system. If this value is incorrectly interpreted as the
applied operating head instead of its average net (after losses)
value, the numerical model predicts a steady-state hydraulic
potential across nodes 3 and 4 of only 0.13 m. To find an
appropriate operating head, an initial estimate of 3.3 m was
chosen. Simulation showed that although an operating head of

2.801-----------;::=======1

2.76 C--------------'
At node 3

2.56

2.60 L-..L-*....!..-+.,......J'--::~-L-_==_--I.......,-:!,."._L..-:~.....L..~=___"__:_l:::__'o ~ 80 80 100 1ro
Time After Equilibrium (days)

FIG. 9. Head versus Time under Normal Operation with Adap
tive Control

3.3 m is sufficient to prevent downward flow for the first 170
days, a larger head value will be needed shortly. Thus, the
simulation was repeated with adaptive control on the operating
head, as shown in Fig. 9. The adaptive approach maintains the
hydraulic potential difference across nodes 3 and 4 at all times
above the desirable value. At a time equal to 170 days, the
operating head needed is 3.46 m. Fig. 10 depicts the flow
velocity field at 170 days and is typical of the artesian system
in normal operation.

Of course, achieving a desirable flow distribution like that
shown in Fig. 10 for normal operation is important, but it does
not guarantee that other problems will not arise. In this paper,
two kinds of "failures" are investigated: (1) The failure of the
hydraulic integrity of the upper liner; and (2) the clogging of
a drain pipe. These numerical studies demonstrate the robust
nature of the artesian design relative to the conventional land
fill system.

Rupture of Upper Liner

The top liner of an artesian landfill could conceivably rup
ture for different reasons. Thus, it is prudent to test the artesian
system for its behavior when subject to this kind of failure.
For this purpose, the finite-element simulation is run for a
period of time to achieve steady-state operation, and then a
significant rupture is initiated in the upper liner. Clearly, only
a significant rupture need be considered since any small ad
justment in hydraulic conductivity over a limited area has a
negligible effect on the hydraulics of the artesian system.

Failure conditions are simulated by inserting elements into
the top liner with a relatively higher hydraulic conductivity.
In this case, four elements are ruptured starting with the third
element from the right edge of the top clay liner (Fig. II).
The hydraulic conductivities of the ruptured elements are 1.2
X 10-6 mis, an increase of two orders of magnitude from their
previous values. The velocity distribution one day after failure
is shown in Fig. 11, while Fig. 12 shows the heads at nodes
3 and 4 both with and without adaptive control. Clearly, these
figures indicate that without adaptive control the system fails
as early as I day after the rupture occurs. Fig. 12 shows that
with adaptive control the system still fails after 1 day, but that
the adaptive function is soon able to restore artesian operation.
In fact, due to the loss of water through the failure, the pres
sure in artesian layer drops substantially, and it takes about 6
days to restore the system and correct the failure. The adaptive
increase in operating head under such failing condition is not
large enough to correct instantly for the loss in pressure. How
ever, if the adaptive increase in operating head is doubled to
0.08 m, the system can be restored in 4 days. The final op-
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FIG. 10. Velocity Diagram at 170 days under Normal Operation
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FIG. 11. Velocity Diagram at 1 day after Rupture

12

erating head needed at 170 days is 5.14 m, which produces a
net operating head at node 3 of 3.15 m as shown in Fig. 12.

The rupture of the upper liner can impose a significant effect
on the artesian design. If the liner failure is dramatic and
covers a substantial area, the landfill will respond quickly to
this kind of failure. However, the adaptive control system can
restore the system to normal operating conditions within sev
eral days. The artesian landfill design currently allows a so
lution to this kind of failure that is not possible in a conven
tional landfill design.

Clogging of Drains

In the following analysis, a scenario is modeled in which
the drains become clogged causing the hydraulic potential to
build up on the upper liner. This is a failure mechanism that
is particularly severe for a conventional landfill design because
the rate of leachate loss tends to increase significantly as the
hydraulic driving force increases. However, the artesian sys
tem behaves robustly for this kind of operational problem.

Under normal operating conditions, the drain is treated as a
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FIG. 13. Head versus Time
without Adaptive Control

SUMMARY AND CONCLUSIONS
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Dirichlet boundary with atmospheric pressure being its mag
nitude. The clogging is simulated by removing this boundary
condition and treating the "drain node" as a regular node. The
procedure is to simulate the system under normal conditions
until equilibrium is achieved and then to introduce the clog
ging event. This scenario was again simulated both with and
without the adaptive operating head. With a constant operating
head of 3.3 m, the system does not fail hydraulically at 170
days after clogging (Fig. 13). With the adaptive operating
head, the hydraulic potential difference across nodes 3 and 4
is maintained above the desirable value (Fig. 13). The oper
ating head needed to maintain the system at 170 days is 3.51
m. Thus, unlike the conventional system, the artesian landfill
reacts slowly and controllably to this kind of failure.

The artesian landfill system differs from conventional san
itary landfill design in that it contains both a lower semiper
meable liner and a granular recharge (artesian) layer. Its mul
tilayered construction permits the creation of an artesian
potential, controlled through the supply of recharge water.
Hence, the hydraulic potential on its upper liner is reversed
with respect to the conventional landfill: The flow is inward
from the artesian layer through the upper liner. A hydraulic
potential also moves water downward through the lower liner.

In presenting a conceptual model of the artesian landfill sys
tem, economic trade-offs were identified between the capital
costs of constructing a robust upper liner and the operational
costs associated with the collection and the treatment of a di-
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APPENDIX II. NOTATION

The following symbols are used in this paper:

A = artesian layer thickness;
A matrix of exponents on decision variables;

a,b a,n, am'n exponents on decision variables;
Bu , B, = upper and lower liner thicknesses, respectively;

b hydraulic conductivity cost exponent;
C(1jI) specific moisture capacity;

Cc = construction cost of placing liner material per unit
volume;

Ct = capital cost of placing liner with certain hydraulic
conductivity per unit volume;

C, = cost of collecting and treating additional leachate;
Ch C2 , C3 = constants converting flux rates to costs;

d(W), d = dual function or dual objective function;
gm(X) = mth constraint function;

HI, min , Hu,mln minimum hydraulic potential difference across
lower and upper liners, respectively;

Ho = operating head;
H u , HI = hydraulic potential differences acting across upper

and lower liners, respectively;
K, Ku ' KI = hydraulic conductivities (single subscript);

K(IjI) = unsaturated hydraulic conductivity, where (1jI) is
pressure head;

Kml = cost coefficient on mth constraint;
M, = cost coefficient on tth term of objective function;
N = number of component terms in objective function;
N, = number of years of landfill operation;
PI = total construction cost of placing upper and lower

liner material per unit area;

P,(X) = tth polynomial term of objective function;
Qu, QI = specific discharge through upper and lower liners,

respectively;
r = annual discount rate;
S = matrix used to determine change in weight terms

in sensitivity analysis;
So = specific storage;
W = matrix of weights of unconstrained objective

function;
Wm, = weight in dual/constraint function and weight in

unconstrained objective function (m "# 0) and (m
=0), respectively;

W, = weight of tth term of unconstrained objective
function;

X = vector of decision variables (Xh ... , xn);
Xn = nth decision variable;

y(,!), y = objective function (y = value);
Yt = present value of upper liner, leachate, and treat

ment cost;
Y2 = present value of cost of supplying recharge water;
Y3 = present value of upper and lower liner per unit

area;
z(.l£), z = logarithm of dual function (z =value);

ex = material cost exponent;
9' = degree of saturation; and

at, aljl = time increment and pressure head increment, re
spectively.

Subscripts

k, n = indices for decision variables, k, n = 1, ... , N;
m = index for constraint function m = 1, ... , M; m =

0, for objective function;
min = index for minimum of constraint level;

t = index for polynomial terms t = 1, ... , T;
U, l = index for upper and lower liners, respectively; and
x, Y = horizontal and vertical coordinate directions, re

spectively.

Superscripts

* = optimal value of variable or function.
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