Architectural Mismatch in Service-Oriented Architectures

Kevin Bierhoff

Institute for Software Research, Carnegie Mellon University

Pittsburgh, PA 15213
kevin.bierhoff@cs.cmu.edu

Abstract

Architectural mismatch results from implicit and con-
flicting assumptions that designers of components make
about the environments in which these components should
operate. While architectural mismatch was extensively
studied in monolithic and distributed applications, it has
not been applied to Service-Oriented Architectures (SOAs).

A major contribution of this paper is the analysis of how
architectural mismatch affects SOAs. We study how implicit
and conflicting assumptions that designers make about web
services and their compositions affect the quality of result-
ing SOA-based systems. We support our analysis with em-
pirical data that we collected from a large-scale SOA-based
project within Accenture and other smaller projects.

1. Introduction

Architectural mismatch results from implicit and con-
flicting assumptions that designers of components make
about the environment in which these components will op-
erate [9]. Architectural mismatch impedes constructing ap-
plications from third-party reusable components that, on
a superficial level, appear compatible. Even if compo-
nents are written in the same programming language, run
on the same platform, and are intended for reuse, soft-
ware engineers can encounter significant problems in get-
ting components to work together. Engineers may have to
re-implement existing functionality, provide glue code to
mediate between components, or even change component
implementations in order to overcome mismatch. The re-
sulting systems can be intolerably large and slow [9].

As a concrete example, Garlan et al observed a mismatch
between message data models of two components they used
in constructing an interactive modeling environment. One
component assumed that messages would be passed as heap
data structures while another component expected character
strings. Even though this mismatch was discovered early,
non-trivial message conversions were necessary to make
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the two components interoperable. The conversion routines
represented a significant engineering effort and seriously af-
fected the performance of the resulting system [9]. This pa-
per will show that this and other problems of architectural
mismatch are still relevant in developing Service-Oriented
Architectures.

Service-Oriented Architectures (SOAs) define how soft-
ware components called services are organized into struc-
tures to support business requirements [12]. Web services
are software components that exchange information (i.e.,
interoperate [2]) in heterogenous environments including
the Internet. They currently gain widespread acceptance
partly because of the business demand for applications to
exchange information [8]. SOAs and web services enable
organizations to automate business processes by increasing
the speed and effectiveness of information exchange.

Architectural mismatch offers a taxonomic framework
for understanding challenges in building applications out
of re-usable components. This framework was extensively
studied for monolithic and distributed applications, how-
ever, it has not been applied to SOAs. A major contribution
of this paper is our analysis of how architectural mismatch
affects SOAs. We study how implicit and conflicting as-
sumptions that designers make about web services and their
compositions affect the quality of resulting SOA-based sys-
tems. We support our analysis with empirical data that we
collected as part of Tarpon, a large-scale SOA-based project
within Accenture, and other smaller projects.

We show that architectural mismatch is not only help-
ful in categorizing and understanding practical challenges
in building SOAs. It turns out that all originally described
constituents of architectural mismatch are still relevant in
the context of SOA. Two primary concerns for architectural
mismatch in SOAs are messaging overhead and incompati-
bilities between SOA platform vendors.

2. Categories of Architectural Mismatch

Architectural mismatch provides a taxonomic frame-
work for understanding how conflicting assumptions arise.



The following categorization of causes for architectural
mismatch is based on Garlan et al’s original taxonomy [9].

1. Assumptions about the nature of components can be
divided into four sub-categories.

e Functionality supply. Components provide func-
tionality that may not be needed in the final as-
sembly, leading to excessive code size of result-
ing applications.

o [nfrastructure expectations. Components may
assume the presence of certain resources (e.g., li-
braries or hardware) that may not be available,
rendering these components non-usable.

e Control model. Designers assume that their com-
ponents will own the main thread of control that
contains an infinite event processing loop. Coor-
dinating these event loops is non-trivial and may
require change to component implementations.

e Data manipulation. Designers make assump-
tions about how clients manipulate component
data structures.

2. Assumptions about communication between compo-
nents can be divided into two sub-categories.

e Asynchronous communication. Asynchronous
messaging can force conceptually single-
threaded applications to be implemented with
multiple threads.

e Message data model. Incompatibilities in the
formats of messages that components exchange
can lead to massive performance overhead due to
costly message conversions.

3. Global architecture structure. Designers assume
that different clients of a component operate indepen-
dently. However, clients may delegate tasks to each
other, violating the independence assumption. Such
dependencies may be subtle, for example, when two
components access the same resource.

4. Construction process. Designers assume an order
in which components should be constructed and how
these components are combined into the system. Con-
flicting order assumptions can complicate the applica-
tion’s construction process.

The following four section discuss how these categories
of architectural mismatch affect SOAs. Afterwards we sum-
marize empirical evidence for our findings.

3. The Nature of Services

From an architectural point of view, a service provides a
logically coherent piece of functionality to its clients. Mis-
match can occur when designers of services define their na-
ture in ways that make it difficult to use these services.

3.1. Functionality Supply

Problems with functionality supply exist in SOA both for
individual services and because of the employed SOA in-
frastructure. Individual services are designed to be reusable
and will therefore provide a certain flexibility in the way
they can be used. This can lead to oversized services with
bloated interfaces. For example, the interest payment calcu-
lation service could be used for home mortgages, auto and
credit card loans. The rules of calculation are somewhat
different for different loan-types. Thus, the service’s incom-
ing and outgoing messages now have to include the type of
loan as well as different regulatory and location parameters
needed for some calculations, regardless of whether clients
actually exercise this flexibility. Thus mismatch in func-
tionality supply can lead to oversized messages.

Another source of mismatch in functionality of individ-
ual services is the level of service granularity of an SOA.
While many SOA experts advocates the use of business pro-
cesses to define the scope and granularity of the underlying
services, the problem of granularity mismatch does not go
away because many business processes can be further de-
composed into smaller process steps. If processes are too
fine-grained making the services too small then messag-
ing overhead becomes overwhelming. If services are too
large then messages can become big and cause services to
respond slowly.

This messaging overhead directly impacts the perfor-
mance of the service. Studies have shown that XML mes-
sages are typically 10 to 50 times larger than their binary
counterparts and that XML-related tasks such as parsing,
transformation and serialization consumed over 93% of to-
tal processing of typical XML documents [4]. Thus, a single
highly used service with oversized messages can impact an
entire SOA infrastructure.

Additionally, SOA middleware commonly addresses
non-functional concerns such as security. In order to ad-
dress these concerns, the middleware commonly expect that
services expose certain interfaces. However, despite hav-
ing standards like WS-Security, these interfaces may dif-
fer between middleware vendors, leading to mismatches
in critical areas such as security or reliability (see sec-
tion 7.1.1). While mismatches between individual services
could potentially be corrected by changing service imple-
mentations, mismatches between SOA middleware imple-
mentations from different vendors cannot be addressed di-



rectly.
3.2. Infrastructure Expectation

Many traditional component technologies use late bind-
ing, i.e. components are not connected until they are exe-
cuted. Essentially, lately bound components only depend on
the interfaces of other components and not on their imple-
mentation. This introduces additional flexibility, in particu-
lar the ability to change the implementation of one compo-
nent without the need to re-compile other components. On
the other hand, late binding causes brittleness if a compo-
nent disappears that other components depend on.

In traditional component development, early binding is a
prevalent way to couple components at compile time. Be-
cause independence of services is highlighted in the con-
text of SOA we suspect that changing service interfaces and
service disappearance may be a more common phenomena
in SOAs. Loose coupling between services is one of the
promises and advantages of SOA but it requires more work
in controlling the dependencies between services and across
versions of a service. Service directories currently begin to
address this issue.

3.3. Control Model

Control model mismatch is a smaller problem in SOAs.
Services are assumed to be autonomous and they typi-
cally run on independent machines or in different processes.
They are orchestrated asynchronously in a workflow-like
manner. The orchestration engine owns the “logical” thread
of control that drives the overall application. Therefore, the
competition for the main thread of control (as found to be
a problem with traditional components) is not a significant
issue for the services in SOA.

The control mechanism inside an orchestration engine
can be fairly complicated. For example, in systems with a
federated topology, an orchestrated set of services can be
exposed as a "logical” service to a higher-level orchestra-
tion engine - thus creating a hierarchy of orchestrations.
Furthermore, there are cases where a number of orchestra-
tion engines may have to cooperate in a peer-to-peer man-
ner across organizational boundaries to accomplish a set of
tasks (see section 7.1.2).

3.4. Data Manipulation

Data manipulation problems are less problematic in SOA
than with traditional components. Services typically cannot
expose internal data to clients, and therefore clients cannot
manipulate this data directly. However, if services are state-
less, the entire conversational state may be required to be

sent back and forth between client and service thereby ex-
posing internal data to external clients.

As with internal data of traditional components, it is con-
ceivable that clients are only allowed to modify certain parts
of the conversational state received from the service. If
a service is implemented carelessly unexpected manipula-
tions of conversational state by clients could lead to incon-
sistent data and ultimately service malfunctioning. Thus ar-
chitectural mismatch due to restrictions on data manipula-
tion by clients does exist and can lead to various problems
as described in Section 7.2.

4. Communication Between Services

Communication between applications and services par-
ticipating in an SOA is typically handled by messaging mid-
dleware. Messages are typically exchanged in XML format
and routed through a message bus that connects to all appli-
cations and services. Messaging follows an asynchronous
model and some services will even publish notification mes-
sages without knowing which other services receive these
notifications.

4.1. Asynchronous Communication

In theory, services in SOA should be autonomous and
the communication among services should be done asyn-
chronously. In reality however, services are rarely com-
pletely autonomous and they do not communicate solely
through asynchronous means. Asynchronous communica-
tion makes it difficult for developers to implement con-
ceptually sequential applications using asynchronous ser-
vice invocations. Seemingly single-threaded applications
are forced into multi-threaded implementations with call-
back routines in order to process asynchronous replies from
services. This can be a significant complication in imple-
menting even simple applications.

On the positive side, asynchronous communication can
often be used transparently in a synchronous fashion. More-
over, service orchestration engines are specifically designed
to facilitate taking advantage of asynchronous communica-
tion without burdening developers with traditional problems
of multi-threaded software.

4.2. Message Data Model

Services typically communicate through XML and
therefore require support for accessing and manipulating
XML. XML messages are difficult to parse and relatively
verbose. Thus messaging overhead is a considerable factor
in designing an SOA even before mismatch occurs [7].

Mismatch in message data models essentially means that
messages from one service do not fit the expectations of an-



other service. Consider the case where output of one service
is used as part of the input to another service. If the two ser-
vices use different message formats then the first service’s
output needs to be converted so that it matches to the second
service’s expectations.

It has been pointed out that such conversions quickly be-
come a performance bottleneck in SOAs [7]. This is be-
cause XML is not only difficult to parse and therefore dif-
ficult to convert but also because the stateless model of ser-
vices requires messages to carry the entire conversational
state, leading to very large messages. Therefore it appears
that mismatch in message data models can become a serious
problem in SOA-based infrastructures.

5. Global Architecture Assumptions

Architectural mismatch due to global architecture as-
sumptions may be comparable between SOA and traditional
components. When services are orchestrated using a control
layer in SOAs, their dependencies may be implicitly coded
in the orchestration mechanism. Revealing these dependen-
cies is as difficult as in non-SOA-based systems.

6. Construction Process

At first glance it appears that mismatching component
assumptions about the construction process are eliminated
in SOA. This is because services are developed and built in-
dependently. By “building” we mean compiling and linking
the service implementation. While the situation is certainly
much better than with traditional components it appears that
managing the build process can still be difficult because ser-
vices can depend on the interface of other services.

Consider the case where service A depends on service
B. One way of building service A is to obtain B’s interface
definition and use it for generating glue code for communi-
cating with B. If B (directly or indirectly) happens to depend
on A’s interface as well then it can be challenging to build
A and B fully automatically.

In SOA there is another complication: Services also have
to be deployed to on a SOA middleware in order to make
them available. This can complicate testing of indepen-
dently constructed services that invoke each other when an
expected service is not (yet) available. Techniques similar
to unit testing are needed that essentially simulate the pres-
ence of other services with “mock services”.

7. Empirical Evidence

In this section, we provide empirical evidence and show
models that describe how architectural mismatch surfaces
in SOAs. We review the issues of architectural mismatch

in an Accenture project and in message exchanges between
services.

7.1. Tarpon

Project Tarpon is an SOA R&D initiative within Accen-
ture to explore the promises and pitfalls of SOA. The initia-
tive will test everything from security to performance, de-
livering a realistic evaluation of the feasibility and benefits
of separating cross-enterprise processes from applications
that implement the processes.

7.1.1 Basic Messaging

As the first step in this evaluation process, Tarpon per-
formed a series of basic messaging interoperability tests
across select SOA platforms from vendors like Microsoft,
IBM and Oracle. The test that we performed is a superset
of what was published by the WS-Interoperability organiza-
tion [1]. The idea is to measure the effectiveness of various
web services standards such as SOAP, XML and WSDL
in alleviating the differences of communication protocols
across multiple platforms [14].

We found that even with these established standards,
cross-platform interoperability continues to be a challenge.
Specifically, we found that:

e different vendors are adopting standards at different
pace;

e different vendors are adopting different parts of a stan-
dard, and

e complex dependencies among standards further exac-
erbate confusion in implementation.

Speed of adopting standards. Because standardization
is typically a multi-year process, by the time a specifica-
tion becomes a standard, that standard may be succeeded
by a new and better specification. That is exactly what hap-
pened to WS-Reliability, a reliable messaging standard that
is published by OASIS. By the time it became a standard
it was already superseded by a new—and by many measures
superior—specification: WS-ReliableMessaging (WS-RM).

The vendors are left with a dilemma of which one to
adopt: a published standard or a better specification. To
make things worse, the two are completely incompatible.
While it is not surprising that some vendors chose to im-
plement the published standard, those that chose the better
specification worked hard to ensure that the specification
becomes a standard. In the meanwhile, this left users baf-
fled as they had to absorb this incompatibility at their own
expense.

Partial adoption of standards. WS-Security is another
standard from OASIS that addresses, among other concerns,



encryption and authentication of messages. As a fairly com-
plicated standard it contains multiple parts, some of which
are optional. For example, WS-Security specifies a num-
ber of authentication protocols such as username-password
pair, X.509, Kerberos and SAML. Except for the username-
password pair, it is up to the vendor to choose which other
protocols to implement.

This implies that while two products can claim that they
support one standard, WS-Security, they may implement
two different sets of protocols. For example, one vendor
supports Kerberos and the other supports SAML. This com-
plicates cross-platform interoperability. Users have to be
aware of these variations and are often times left with the
least common denominator.

Complex dependencies among standards. Many stan-
dards do not stand alone. They depend on other existing
standards. Take for example X.509, a decade-old stan-
dard for public key infrastructure published by International
Telecommunication Union (ITU). One of its essential com-
ponents is the key certificate. The format of this certificate
is defined by other standards such as RSA Data Security’s
Public Key Cryptography Standard (PKCS). There many
versions of PKCS—most notably PKCS #8 and #12. While
it is possible to convert one certificate format to another, the
process is non-trivial [11].

As each standard evolves independently, keeping track of
the dependencies and compatibilities is a serious and time-
consuming exercise. The situation is worsened by the fact
that the number of standards organizations involved in this
area continues to grow due to the popularity of web services
and SOA. For example, the World Wide Web Consortium,
OASIS, Liberty Alliance, Internet Engineering Task Force,
Data Management Task Force are all involved in standard-
izing security and identity management. As such, it is in-
evitable that they will create multiple conflicting standards.

7.1.2 Control Model

Business process orchestration is a key component of SOA
that distinguishes SOA from JBOWS (just a bunch of
web services). The idea is that each service in SOA is
autonomous and message exchanges across services are
handled through one or more orchestration engines in a
workflow-like manner. This way, service invocation is en-
tirely controlled by orchestration engines.

We found that this control model is too constraining for
cross-enterprise scenarios. Take for example electronic pre-
scribing: a doctor creates an electronic prescription. Before
a prescription can be forwarded to a pharmacy, it has to go
through several organizations including the insurance com-
pany that checks for drug coverage under an insurance plan.
Since there are many independent organizations involved, it
is not clear where service orchestration should reside and

how the invocation of services should be strung together.

This calls for an event-driven business process orchestra-
tion (or event-driven architecture) [6]. The idea is to move
from a static control flow structure—similar to what is typ-
ically found in a console program—to an event-based flow
as found in many GUI environments. We found that many
SOA platforms today do not support this type of control
model.

7.2. Errors In Exchanging XML Data

It is conservatively estimated that the cost of program-
ming errors in component interoperability just in the capital
facilities industry! in the U.S. alone is $15.8 billion per year.
A primary driver for this high cost is fixing flaws in incor-
rect data exchanges between interoperating components [3].
An instance of this problem is described in a case study of
a large-scale project conducted at KLLA-Tencor Corp. [10].

We use a basic model shown in Figure 1 to describe how
services interoperate. In this model, J and C are services
that interact using XML data D,. Service J reads in data Dy,
modifies it, and passes it as data D, to C. Service C reads in
the data D, expecting it to be an instance of some schema S.
Since J outputs data Dy before C accesses it, concurrency
is not relevant. However, because of design or program-
ming errors, service J outputs the data D, as an instance of
a different schema S’ , which is not explicitly stated in any
design documents. Since S’ is different from S, a runtime
error may be issued when C reads in Dj.

g8-8-8-

Figure 1. A model of service interoperability.

There are different reasons why programmers make such
mistakes when they write the services J and C. Based on our
participation in large-scale projects, we observe that pro-
grammers often make wrong assumptions about schemas.
Given that many industrial schemas contain thousands of
elements and types, it is easy to make mistakes about names
of elements and their locations in schemas. The other
source of errors lies in the complexity of platform API calls
that programmers use to access and manipulate XML data.
XML parsers export dozens of different API calls, and mas-
tering them requires a steep learning curve.

Programmers often lack the knowledge of the impact
caused by changing the code of some component on other
components that interoperate using XML data. This lack
of knowledge is an effect of the Curtis’ law that states

LA capital facility is a structure or equipment which generally costs at
least $10,000 and has a useful life of ten years or more.



that application and domain knowledge is thinly spread
and only one or two team members may possess the full
knowledge of a software system [5]. The effect of this law
combined with the difficulty of comprehending large-scale
XML schemas and high complexity of platform API calls
result in components producing XML data that is incom-
patible for use by other components.

The other source of errors is the disparity in evolving
XML schemas and components. Database administrators
usually maintain schemas, and programmers maintain com-
ponents that interoperate using XML data that should be
instances of these schemas. If a database administrator
modifies a schema and does not inform all programmers
whose services are affected by this change then some ser-
vices will keep modifying XML data according to the obso-
lete schema.

The problem of mismatch between XML data and
schemas is typically addressed by using schema validators
that are parts of many XML parsers. In our model shown
in Figure 1, an XML parser can validate that the data D, is
an instance of the schema S when J produces this data. If
the data is not an instance of this schema, then the parser
throws a runtime exception. Obviously, it is better to pre-
dict possible errors at compile time rather than to deal with
them at runtime.

In reality, the situation is even more complicated. Using
schemas for validating XML data is often not attempted be-
cause it degrades components performance [15, 13], and it
even leads to throwing exceptions when there may not be
any runtime errors. Suppose that the service J deletes all
instances of some data element thus violating the schema S
that requires at least one instance of this element be present
in Dy. If either of services J and C validates this incorrect
data D, against the schema S, then a runtime error will be
issued. However, when executed, C may never attempt to
access the deleted data element, and therefore, no exception
will be thrown if the validation step is bypassed. It is im-
portant to know what data elements services J and C access
and modify, and if no data element accessed by C is modi-
fied by J, then J and C may still interact safely even if the
data D, is not an instance of the given schema S.

8. Conclusion

In this paper we apply a taxonomic framework for under-
standing how conflicting assumptions arise to Service Ori-
ented Architectures (SOAs). A major contribution of this
paper is the analysis of how architectural mismatch affects
SOAs. We study how implicit and conflicting assumptions
that designers make about web services and their compo-
sitions affect the quality of resulting SOA-based systems.
We support our analysis with empirical data that we col-
lected as part of Tarpon, a large-scale SOA-based project

within Accenture and other smaller projects. We show that
architectural mismatch is not only helpful in categorizing
and understanding practical challenges in building SOAs. It
turns out that all originally described constituents of archi-
tectural mismatch are still relevant in the context of SOA.
Two primary concerns for architectural mismatch in SOAs
are messaging overhead and incompatibilities between SOA
middleware vendors.
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