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Abstract— A new simulation-based method to evaluate the
information rates of multidimensional front-ends applied to
digital storage channels with transition noise is presented. First,
we propose an algorithm which extends recent work on the
information rates of magnetic recording channels affected by
colored Gaussian thermal noise, intersymbol interference and
signal-dependent transition noise, by using linear prediction and
state reduction techniques. Moreover, following a previous study
on statistical sufficiency, we extend this algorithm to magnetic
channels with a multidimensional front-end. The results suggest
that significant gains may be achievable by multidimensional
signal processing techniques in transition-noise limited digital
storage channels.

I. INTRODUCTION

The computation of the capacity of a magnetic recording
channel has been an interesting challenge and open problem
for some time. Storage systems, such as magnetic or optical
recording channels, are essentially communication systems
characterized by a great amount of intersymbol interference
(ISI), colored Gaussian thermal noise and a kind of noise
induced by the interaction between transitions in the infor-
mation sequence stored on the medium. This kind of noise,
also known as media noise or transition noise, increases with
storage density and can be modeled as data-dependent. In [1],
a simulation based method to compute the information rates
of ISI channels with additive white Gaussian thermal noise
(AWGN) is presented. In [2], this algorithm is extended to a
channel with colored thermal noise and transition noise. The
impact of transition noise on the information rates of magnetic
longitudinal recording channels is also studied in [3] and [4].

In this paper, we first extend the algorithm in [2]. In
order to evaluate the information rates of storage systems,
e.g., of longitudinal and perpendicular magnetic recording
channels, we propose a new method based on linear prediction
and reduced-state techniques. In [5], it was shown that the
presence of transition noise yields a multidimensional front-
end with a number of filters proportional to the degree of
description of the transition noise process. Assuming that
transition noise can be characterized only by a jitter noise
term, the need for sufficient statistics yields a front-end based

on two matched filters only. For this channel model, the linear-
prediction method is extended to a bidimensional scenario.
The achievable information rates with a bidimensional front-
end for longitudinal and perpendicular recording systems are
investigated.

II. SYSTEM MODEL

In order to describe the proposed algorithm, we consider a
magnetic recording channel modeled by a first-order position
jitter and width variation [6], but our results can also be
extended to optical and magneto-optical recording systems
affected by transition noise. Moreover, the proposed algorithm
can be applied to a high-order channel model in a straightfor-
ward manner. Let h(t, w) denote the response to an isolated
transition recorded in magnetic or optical media, where t is
time and w is a parameter characterizing the pulse width. Let
ak ∈ {±1} be the information bits to be stored. Assuming
that transition noise can be decomposed into position jitter and
width variation [6], the read back waveform r(t) corrupted by
additive white Gaussian thermal noise η(t) with power spectral
density N0/2 can be expressed as

r(t) =
∑

k

bkh(t + ∆tk − kT, w + ∆wk) + η(t) (1)

where bk = ak − ak−1 ∈ {0,±2} denote transition symbols,
∆tk and ∆wk, modeled as independent Gaussian random
variables with standard deviations σ∆t and σ∆w, represent the
effect of position jitter and width variation noise, respectively,
and T is the symbol period. Obviously, when σ∆t = 0 and
σ∆w = 0, the model reduces to a recording channel without
transition noise. For the pulse response h(t, w) we adopt
the well known Lorentzian approximation [7] for longitudinal
magnetic recording, i.e.

h(t, w) =
1

1 + (2t/PW50)
2

where PW50 = 2w is the pulsewidth at half the maximum
amplitude. For perpendicular recording systems we adopt the
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Fig. 1. Channel model with first-order media noise and additive white
Gaussian thermal noise.

approximation [8], [9]

h(t, w) = erf

(√
ln 2 t

w

)
= erf

(
2
√

ln 2 t

PW50

)

where PW50 is defined as the pulsewidth at half the max-
imum amplitude of ∂h(t, w)/∂t. We define the parameter
D = PW50/T as the normalized density and assume T = 1.
According to the first-order channel model, the read back
impulse can be approximated as

h(t + ∆tk, w + ∆wk)

� h(t, w) + ∆tk
∂h(t, w)

∂t
+ ∆wk

∂h(t, w)

∂w
. (2)

Defining the impulse response of the filters modeling the
position jitter and width variation noise processes as1

ht(t) =
∂h(t, w)

∂t
hw(t) =

∂h(t, w)

∂w

and using this first-order approximation (2) in (1), the wave-
form at the output of the channel due to transition noise can
be written as

y(t) =
∑

k

bk

[
h(t−kT )+∆tkht(t−kT )+∆wkhw(t−kT )

]
.

A block diagram descriptive of the channel model is shown
in Fig. 1.

III. INFORMATION RATES OF ISI CHANNELS WITH
TRANSITION NOISE AND LINEAR PREDICTION

In [1], the information rates of i.i.d. binary input intersymbol
interference channel with additive white Gaussian thermal
noise were computed by the forward recursion of a BCJR
algorithm [10]. In [2], the same simulation method was applied
to an ISI channel with colored Gaussian thermal noise and also
signal-dependent transition noise. In this section, we begin
by reviewing this method and introducing the used notation.
We then extend the method applying linear prediction and
state reduction techniques. Let us focus on a longitudinal
magnetic channel model (similar considerations can be applied
to perpendicular magnetic or optical recording): considering a
front-end based on a matched filter h(−t, w) and a sampler at

1The subscript denotes the variable of differentiation.

symbol rate, the discrete time channel output can be written
as

xk =

L2∑
i=−L1

bk−igk + mk + nk (3)

where mk is a transition noise sample, nk is a sample of
colored Gaussian thermal noise, gk = h(t, w)∗h(−t, w)|t=kT

and L1 and L2 are the number of precursors and postcursors
of the discrete time channel model.

The mutual information between the input information
sequence and the discrete time channel output is given by [2],
[11]

I(A; X) = h(X) − h(X |A) (4)

where h(X) and h(X |A) are differential entropies of the r.v.
ak and xk, respectively. In an AWGN scenario, the differential
entropy h(X |A) = (1/2) log(2πe σ2

w) is well known. Due
to the presence of transition noise, however, h(X |A) must
be evaluated explicitly. Since {xk} is a stationary ergodic
hidden-Markov process, the Shannon-McMillan-Breiman the-
orem holds [11] and it is possible to evaluate h(X) and
h(X |A) using a reasonably long information sequence by
means of simulation. In order to compute h(X) and h(X |A)
in (4), we can express these two terms as

h(X) = lim
n→∞

1

n
h(xn

0 ) = − lim
n→∞

1

n
E [log(p(xn

0 ))]

= − lim
n→∞

1

n
log [p(xn

0 )]

h(X |A) = lim
n→∞

1

n
h(xn

0 |an
0 )

= lim
n→∞

1

n

∑
ãn

0
∈Λn

h(xn
0 |an

0 = ã
n
0 ) · P (an

0 = ã
n
0 )

where x
k2

k1
is a shorthand notation for the vector collecting

signal observations from time epoch k1 to k2, Λn is the set
of all possible input sequence of length n + 1, p(xn

0 ) is the
probability density function (pdf) of the observation sequence
x

n
0 and P (an

0 = ã
n
0 ) is the a priori probability of the sequence

ã
n
0 .
Let us define ζk and ζk−1 as the current trellis state and the

previous trellis state, at time epoch k and k − 1, respectively.
With these definitions, we are able to evaluate the pdf of a
sequence of length k + 1 as

p(xk
0) =

∑
ζk

p(xk
0 |ζk)P (ζk) =

∑
ζk

µ(ζk)

where we have defined the “metric” µ(ζk) as2

µ(ζk) = p(xk
0 |ζk)P (ζk) . (5)

Marginalizing over the previous states and using the chain
factorization rule, we can rewrite (5) as

µ(ζk) = p(xk
0 |ζk)P (ζk) =

∑
ζk−1

p(xk
0 |ζk, ζk−1)P (ζk, ζk−1)

=
∑
ζk−1

p(xk|xk−1
0 , ζk, ζk−1)p(xk−1

0 |ζk, ζk−1)P (ζk, ζk−1)

2In a mathematical sense, log µ(ζk) is a metric.



=
∑
ζk−1

p(xk|xk−1
0 , ζk, ζk−1)P (ζk|xk−1

0 , ζk−1)

· p(xk−1
0 |ζk−1)P (ζk−1)︸ ︷︷ ︸

µ(ζk−1)

=
∑
ζk−1

p(xk|xk−1
0 , ζk, ζk−1)P (ζk|ζk−1)µ(ζk−1) (6)

where we have introduced µ(ζk−1) = p(xk−1
0 |ζk−1)P (ζk−1)

and assumed the probability of the transition from state ζk−1

to state ζk, i.e., P (ζk|ζk−1), independent from previous output
samples.

In order to limit the channel memory, we assume Marko-
vianity of order ν in the observation sequence: as a conse-
quence, we can express the conditional pdf as

p(xk|xk−1
0 , ζk, ζk−1) ≈ p(xk|xk−1

k−ν , ζk, ζk−1) . (7)

This pdf is completely specified by the conditional mean and
variance

x̂k = E{xk|xk−1
k−ν , ζk, ζk−1}

σ̂2
xk

= E{[xk − x̂k]2 |xk−1
k−ν , ζk, ζk−1} .

Keeping in mind that the observation sequence is conditionally
Gaussian, given the data, x̂k can be interpreted as a linear
predictive estimate of xk and σ̂2

xk
as the relevant Minimum

Mean Square Prediction Error (MMSPE) [12]. The linear
prediction approach is computationally more efficient and per-
fectly equivalent to the method used in [2] for the evaluation
of (7).

Since the prediction coefficients are data-dependent [5],
it is necessary to extend the state definition ζk, at time
epoch k, including not only precursors and postcursors of
the information bearing signal but also of the transition noise
signals, i.e.,

ζk = (ak+δ1
, ak+δ1−1, . . . , ak, ak−1, . . . , ak−δ2−ν+1)

where δ1 ≥ L1 and δ2 ≥ L2 are the maximum numbers
of precursors and postcursors of all the discrete time signals
presented in the channel model. As in [2], the Markovianity
assumption implies the computation of an upper bound on
h(X) and h(X |A). As a consequence, the information rate in
(4) is not a bound, in a strict sense, but only a good estimate.
The computation of a lower bound to complement and confirm
these results is currently under investigation [13]3.

The state-complexity of a linear prediction algorithm can
be naturally decoupled from the prediction order ν by means
of state-reduction techniques [14]–[16]. Let Q denote the
memory parameter to be taken into account in the definition
of a “reduced” trellis state

ωk = (ak+δ1
, ak+δ1−1, . . . , ak, . . . , ak+δ1−Q+1) .

3This reference was brought to our attention by an anonymous reviewer.
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Fig. 2. Magnetic channel model with transition noise and the multidimen-
sional front-end for sufficient statistics.

Metric (6) can be obtained by defining a “pseudo state” [17]

ζ̃(ωk) =( ωk︷ ︸︸ ︷
ak+δ1

, . . . , ak+δ1−Q+1︸ ︷︷ ︸
Q bits

, ăk+δ1−Q(ωk), . . . , ăk−δ2−ν+1(ωk)︸ ︷︷ ︸
δ1+δ2+ν−Q=P bits

)
(8)

where ăk+δ1−Q(ωk), . . . , ăk−δ2−ν+1(ωk) are the information
bits associated with the survivor of ωk, according to a per-
survivor processing technique [18]. Finally, the metric µ̃(ωk)
in the reduced-state trellis can be defined in terms of the
pseudo state (8) as

µ̃(ωk) = µ(ζ̃(ωk)) .

Note that this approach is related to the state reduction
techniques presented in [13].

IV. INFORMATION RATES OF MULTIDIMENSIONAL
FRONT-ENDS FOR MAGNETIC RECORDING CHANNELS

WITH DATA-DEPENDENT TRANSITION NOISE

In [5], the authors have shown that in the presence of
transition noise, the need for statistical sufficiency yield a
front-end with a number of filters proportional to the modeling
order of transition noise. Considering the first-order media
noise model, a multidimensional front-end4 is shown in Fig. 2.
It is now possible to evaluate the information rate for this
system, extending the algorithm described in Sec. III to a
multidimensional scenario. In order to make the presentation
simple, we will focus on a bidimensional front-end, assuming
that transition noise can be characterized by the jitter noise
term only.

The information rate for a bidimensional system can be
defined as [11]

I(A; X, Y ) = h(X, Y ) − h(X, Y |A).

Since {yk}, whose expression is similar to (3), is also a station-
ary ergodic hidden-Markov process, the Shannon-McMillan-
Breiman theorem still holds: therefore we can evaluate, by
simulation, the joint differential entropy on the basis of

h(X, Y ) = − lim
n→+∞

1

n
log[p(xn

0 , yn
0 )] .

4For simplicity, we omit the parameter w in the impulse response of the
channel.



Similarly to the monodimensional scenario, the bidimensional
pdf can be expressed as

p(xn
0 , yn

0 ) =
∑
ζk

µ(ζk)

where, we now define

µ(ζk) = p(xn
0 , yn

0 |ζk)P (ζk) . (9)

Marginalizing over the previous states and using chain factor-
ization, we can express (9), at time k, as

µ(ζk) = p(xk
0 , yk

0 |ζk)P (ζk)

=
∑
ζk−1

p(xk
0 , yk

0 |ζk, ζk−1)P (ζk, ζk−1)

=
∑
ζk−1

p(xk|xk−1
0 , yk

0 , ζk, ζk−1)p(yk|xk−1
0 , yk−1

0 , ζk, ζk−1)

·p(xk−1
0 , yk−1

0 |ζk, ζk−1)P (ζk, ζk−1)

=
∑
ζk−1

p(xk|xk−1
0 , yk

0 , ζk, ζk−1)p(yk|xk−1
0 , yk−1

0 , ζk, ζk−1)

·P (ζk|xk−1
0 , yk−1

0 , ζk−1)︸ ︷︷ ︸
P (ζk|ζk−1)

p(xk−1
0 , yk−1

0 |ζk−1)P (ζk−1)︸ ︷︷ ︸
µ(ζk−1)

≈

∑
ζk−1

p(xk|xk−1
k−ν , yk

k−ν , ζk, ζk−1)P (ζk|ζk−1)µ(ζk−1)

·p(yk|xk−1
k−ν , yk−1

k−ν , ζk, ζk−1) (10)

where, in the last step, we have assumed Markovianity of order
ν in both observation sequences and defined the conditional
means and variances of the pdfs in (10) as

x̂k = E{xk|xk−1
k−ν , yk

k−ν , ζk, ζk−1}
ŷk = E{yk|xk−1

k−ν , yk−1
k−ν , ζk, ζk−1}

σ̂2
xk

= E{[xk − x̂k]2|xk−1
k−ν , yk

k−ν , ζk, ζk−1}
σ̂2

yk
= E{[yk − ŷk]2|xk−1

k−ν , yk−1
k−ν , ζk, ζk−1}.

The quantities x̂k, ŷk, σ̂2
xk

and σ̂2
yk

can be interpreted as
linear predictive estimates of xk, yk and the relevant MMSPEs,
respectively.

Similarly, it is possible to apply multidimensional linear
prediction in order to estimate h(X, Y |A). Accordingly, we
have

H(X, Y |A) = − lim
n→∞

1

n
log2[p(un

0 , vn
0 |an

0 )] (11)

where u
n
0 and v

n
0 denote the overall noise sequences at the

output of the bidimensional front-end (first and second branch,
respectively). In particular, with the knowledge of the input
sequence, we can estimate the probability in (11) using, at
time k, Markovianity of order ν and chain factorization, i.e.

p(uk
0 , vk

0 |ak
0) ≈ p(uk

k−ν , vk
k−ν |ak

0)

= p(uk|uk−1
k−ν , vk

k−ν , ak
0)p(vk|uk−1

k−ν , vk−1
k−ν , ak

0)

· p(uk−1
k−ν−1, v

k−1
k−ν−1|ak−1

0 )︸ ︷︷ ︸
(k − 1)-st step

.
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Fig. 3. Information rates for longitudinal bidimensional magnetic recording
channel with different values of α and D = 2.0.
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Fig. 4. Information rates for longitudinal magnetic recording channel using
a monodimensional (1D) or bidimensional (2D) front-end, α = 95, D = 2.0.

The state definition must now include the precursors and
postcursors of the discrete time signals present in the bidimen-
sional channel model: finally, in order to limit the numerical
complexity of the algorithm, reduced-state techniques can be
used as in the monodimensional scenario.

V. NUMERICAL RESULTS

Fig. 3 shows the binary-i.i.d.-input information rates ob-
tained with a bidimensional front-end for a transition noise
percentage [19] α equal to 50, 70 and 95. The signal-to-noise-
ratio is defined as in [5], [19]. Fig. 4 presents a comparison
between the information rates achievable using a monodi-
mensional (1D curve) or bidimensional front-end (2D curve).
These curves are obtained with a state complexity of 2 Q, with
Q = 7, P = 10 and a prediction order ν = 8. Assuming that
an error correcting code with rate 16/17 [2] is used, the gain in
terms of SNR needed for an information rate of 16/17 bits per
channel use is nearly 3 dB, showing that with a bidimensional
front-end we are able to extract more information from the
output of the bidimensional channel and use it in order to
increase the system reliability.
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Fig. 5. Information rates for perpendicular magnetic recording channel using
a monodimensional front-end and D = 1.50.
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Fig. 6. Information rates for perpendicular magnetic recording channel using
a monodimensional (1D) or bidimensional (2D) front-end, α = 95, D =
1.50.

Fig. 5 presents information rates for a perpendicular mag-
netic recording channel using a monodimensional front-end.
As in the longitudinal channel, the signal-dependent transition
noise provides more information about the stored signal com-
pared with the white noise case, i.e., from an information rate
viewpoint, transition noise is preferable.

Finally, Fig. 6 shows a comparison between the information
rates achievable for a perpendicular recording system using a
monodimensional (1D curve) or bidimensional front-end (2D
curve), both at density D = 1.50 and α = 95. These curves are
obtained with a state complexity of 2 Q, with Q = 7, P = 8
and a prediction order ν = 8. Assuming, as in the longitudinal
channel, that a code rate of 16/17 is used in a perpendicular
recording system, the gain in terms of SNR is nearly 5 dB.

VI. CONCLUSION

Using linear prediction and state reduction techniques,
we have extended the method in [2] for the computation
of the information rates of binary-input ISI channels with
signal dependent noise. This method has been applied to the

computation of the information rates of magnetic recording
channels. Numerical results have shown that the information
rates of longitudinal and perpendicular magnetic recording
channels can be significantly increased by multidimensional
signal processing and detection techniques, with respect to
the rates achievable in conventional monodimensional systems.
This conclusion may be viewed as the information theoretic
counterpart of recent results in [5] and suggests that multi-
dimensional signal processing may be an effective approach
to enable a steady increase in the capacity of digital storage
devices.
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