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ABSTRACT

In this paper, we present a wavelet domain system identifica-

tion scheme, which takes into consideration the cross-terms

between different frequency bands. Wavelet domain subband

processing is advantageous whenever it produces a sparse

representation of the processed signals. Perfect representa-

tion of linear time invariant (LTI) systems in the discrete-time

wavelet transform (DTWT) domain requires time-invariant

band-to-band filters and time-varying crossband filters be-

tween distnict subbands. We represent the response between

two different subbands as a convolution with an appropriate

multirate crossband filter. This reduces the model mismatch,

which improves the identification in high SNR environment.

The crossband filters formulation is extended to the two-

dimensional wavelet domain. Experimental results demon-

strate the advantages of crossband filters usage.

Index Terms— System identification, discrete-time wavelet

transform, subband filtering, system modeling.

1. INTRODUCTION

Time-domain identification of LTI systems may suffer from

high computational complexity and low convergence rate

when the impulse response is very long. Identification in

different frequency bands (or in a time-frequency domain)

is attractive due to subsampling in each frequency band, by

reducing the number of coefficients to be identified. How-

ever, a reliable identification requires an accurate modeling of

the system, including band-to-band terms for each subband

and cross-terms between different subbands [1]. Ignoring the

cross-terms introduces aliased versions of the input signal, in

the error signal [2].

In [1], crossband filters estimation is studied in the short-

time Fourier transform (STFT) domain for acoustic echo can-

celation. Increasing the cross-terms number does not neces-

sarily improves the identification quality. Cross-terms num-

ber selection depends on two factors : as the input signal be-

comes stronger (with respect to the noise energy in the degra-

dation model), more crossband filters may be considered. The

same holds when the number of samples becomes larger (cor-

responds to slower time variations of a general linear system,

restricting the time-invariance assumption to hold for a longer

time period).

The wavelet transform enables a multiersolution analysis

with variable length basis functions. This results in a sparse

representation of signals in the wavelet domain, i.e. many

coefficients are close to zero while most of the signal’s energy

is concentrated in a small number of coefficients [3]. This

valuable property, especially in signals and images coding and

estimation, is desirable in the subband system identification

as well, since consideration of a small number of subbands

that carry most of the signal’s energy, significantly reduces its

complexity without substantial model mismatch.

Recently, a subband identification scheme was explored,

using the discrete-time wavelet transform (DTWT) domain

[4]. The main difference from the STFT domain representa-

tion is the filter bank interpretation of the DTWT. The diverse

lengths of the moultiresolution analysis and synthesis win-

dows dictate a nonuniform filter bank [5]. Consequently,

modeling the system in the wavelet domain requires time-

varying cross-terms, while the band-to-band terms remain

time-invariant. One approach to overcome this problem is to

use band-to-band filters only [4]. However, in order to restrict

the model-mismatch caused by disregarding the cross-terms,

the analysis and synthesis windows must be long enough to

produce a selective frequency bands separation. Apart from

the computational cost and additional delay caused by in-

creasing the windows length, feasible windows are incapable

of producing an efficient representation.

The main contribution of this work, is the extension of the

scheme in [4], by enabling an estimation of the crossband fil-

ters. Although these terms vary in time, it is possible to repre-

sent the cross-terms as convolution with an appropriate mul-

tirate filter. Estimating the multirate filter coefficients takes

care of the aliasing effects caused by imperfect frequency lo-

calization of the analysis and synthesis windows. Thus, the

model accuracy is improved and allows usage of shorter win-

dows which in turn reduces the system identifier delay. In ad-

dition, we generalize the crossband filters to two-dimensional

domain, using separable wavelet bases.

The paper is organized as follows. Section 2 presents a

brief description of the DTWT and LTI system representation

in this time-frequency domain. An emphasis is given on the
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Fig. 1. 1-level PRFB with conjugate mirror filters.
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Fig. 2. DTWT nonuniform filter bank.

extraction of the crossband filters as multirate filtering. In

Section 3, an identification scheme using least-squares (LS)

criterion is proposed. Experimental results on real-world im-

age data are discussed in Section 4.

2. LTI SYSTEM REPRESENTATION IN THE DTWT

DOMAIN

2.1. The Discrete Time Wavelet Transform

In this section, the orthogonal discrete time wavelet transform

(DTWT) and its implementation are briefly described.

Starting with a single-level decomposition, a discrete-

time signal x(n) ∈ ℓ2(Z) is convolved with analysis high-

pass and low-pass filters, h̃0(n) and h̃1(n) respectively, then

subsampled by a factor of 2 (see Fig. 1) :

xp,k =
∑

m

x(m)h̃k(2p − m), (1)

for k ∈ {0, 1}. The indices p and k represent the time in-

dex and the frequency-bin, respectively. In the reconstruction,

both signals are upsampled and convolved with synthesis fil-

ters, h0(n) = h̃0(−n) and h1(n) = h̃1(−n) :

x̂(n) =
∑

p

xp,0h0(n − 2p) +
∑

p

xp,1h1(n − 2p). (2)

A perfect reconstruction is achieved by choosing h̃0(n) and

h̃1(n) as conjugate mirror filters [6]. A cascade of J decom-

position units as described in (1), where in each level only the

low-pass signal is decomposed, generates a tree-structured fil-

ter bank, having an equivalent nonuniform pattern (see Fig.

2), with ℓ = J + 1 frequency-scale subbands and a varying

multirate factor for each subband µ(k) , 2min(k,ℓ−1). The

equivalent analysis and synthesis filters hk(n) and fk(n), ac-

quired with the ”Noble identities” [5], separate the frequency

domain to a set of octave bands, as can be seen in Fig. 3. It
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Fig. 3. Magnitude responses of {Hk}ℓ
k=1 for a 5 levels filter-

bank using Daubechies wavelets of length N .

is easy to verify that the length of each analysis or synthesis

filter is Nk = (µ(k) − 1)(N − 1) + 1. Since the DTWT is

implemented as an FIR filter bank, perfect separation is unob-

tainable. However, longer analysis and synthesis filters lead

to better separation.

Following this structure, the decomposition and recon-

struction are given by

xp,k =
∑

m

x(m)hk(µ(k)p − m), (3)

x(n) =

ℓ
∑

k=1

∑

p

xp,kfk(n − µ(k)p). (4)

2.2. Perfect Representation of LTI systems in the DTWT

domain

Typically, the system identification problem is associated with

a model, originally formulated in time domain (or in the space

domain, for two-dimensional systems). When the system is

assumed to be linear time-invariant (LTI), it is fully charac-

terized by an impulse response a(n). The system’s output for

an input signal x(n) is given by d(n) =
∑L−1

i=0 a(i)x(n − i).
Subband domain approach to system identification necessi-

tates an explicit subband characterization of the LTI system.

The relation between the respective wavelet coefficients of

x(n) and d(n) is given in [4] as

dp,k =

ℓ
∑

k′=1

∑

p′

xp′,k′ap,k,p′,k′ , (5)
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where ap,k,p′,k′ is the crossband filter :

an,k,k′ , a(n) ∗ hk(n) ∗ fk′

(n), (6)

ap,k,p′,k′ = an,k,k′ |n=µ(k)p−µ(k′)p′ . (7)

The filter an,k,k′ in (6) is termed the undecimated crossband

filter. The response of dp,k to an impulse excitation on xp′,k′

does not depend on the wavelet domain time difference p −
p′. It follows that the crossband filters are not time-invariant.

This is a major difficulty in the system identification context,

since (6) implies that for each time index p, a new filter should

be estimated, leading to infeasible model order. Fortunately,

it is possible to exploit the fact that the relation between xp′,k′

and dp,k is always derived from the same undecimated cross-

band filter. Furthermore, an explicit relation exists in the form

of multirate filtering with a downsampled version of an,k,k′ .

By substituting (7) into (5) we get

dp,k =

ℓ
∑

k′=1

∑

p′

xp′,k′aµ(k)p−µ(k′)p′,k,k′ . (8)

Assume that k, k′ < ℓ (This assumption is made only for

keeping the equations below readable). In this case, µ(k) =
2k and (8) reduces to :

dp,k =

ℓ
∑

k′=1

∑

p′

xp′,k′a2kp−2k′p′,k,k′ =

ℓ
∑

k′=1

dp,k,k′ , (9)

where dp,k,k′ is the contribution of frequency band k′ to fre-

quency band k. When k = k′, both xp,k′ and dp,k are defined

at the same resolution :

dp,k,k = xp,k ∗ a2kp,k,k. (10)

When k > k′, the relation is described as a convolution with

2k−k′

-fold decimation filter :

dp,k,k′ =
∑

p′

xp′,k′a2k′(2k−k′p−p′),k,k′ . (11)

Finally, when k < k′, we have :

dp,k,k′ =
∑

p′

xp′,k′a2k(p−2k′
−kp′),k,k′ . (12)

Considering the case where k = ℓ or k′ = ℓ is possible by

substituting 2k and 2k′

with µ(k) and µ(k′), respectively, in

equations (10)-(12). Generalizing the three cases discussed

above, we define the decimated crossband filter

āp,k,k′ = an,k,k′ |p=min(µ(k),µ(k′))n, (13)

to get :

dp,k,k′ =



























xp,k′ ∗ āp,k,k′ µ(k) = µ(k′)

xq,k′ ∗ āq,k,k′ |
q= µ(k)

µ(k′)
p

µ(k) > µ(k′)

x̆p,k′ ∗ āp,k,k′ µ(k) < µ(k′),

(14)

āp,k,k′

(a) µ(k)
= µ(k

′
)

āp,k,k′ ↓

(b) µ(k) > µ(k
′
)

āp,k,k′↑
(c) µ(k) < µ(k

′
)

Fig. 4. Different multirate operations depend on the ratio be-

tween the scales µ(k) and µ(k′).

where x̆p,k is the upsampled version of xp,k by factor µ(k′
)

µ(k)
.

The contribution pattern from the k′’th subband to the

k’th subband is a multirate operation, obeys the scales ratio

between them. In Fig. 4, the different multirate operations

appear, with respect to each case. From (7), the length of

an,k,k′ is Nk + Nk′ + L − 2 with Nk′ − 1 noncausal coeffi-

cients. Therefore, the length of āp,k,k′ is

Nk,k′ =

⌊

Nk′ − 1

min(µ(k), µ(k′))

⌋

+

⌊

Nk + L − 2

min(µ(k), µ(k′))

⌋

+ 1. (15)

A reasonable assumption when working in subband process-

ing, is that the LTI system’s impulse response length is very

long comparing to any analysis or synthesis window, i.e.

L >> Nk, 1 ≤ k ≤ l . Then, (15) reduces to

Nk,k′ ≈
L

min(µ(k), µ(k′))
. (16)

For achieving a full representation of the LTI system, there

is no need to fully estimate the crossband filters. The deci-

mated crossband filter coefficients, defined in (13), are suf-

ficient. The coefficients number in (16) for all the band-to-

band filters and crossband filters dictate the model order and

its complexity.

2.3. Extension to two-dimensional systems

Extension to wavelet representation of two dimensional sys-

tems, given by

d(n1, n2) =

L−1
∑

i1,i2=0

a(i1, i2)x(n1 − i1, n2 − i2), (17)

is immediate when using separable wavelet bases [3]. A

single level decomposition of a two-dimensional signal

x(n1, n2) ∈ ℓ2(Z2) is described by a quadratic filter-bank,

in which the signal is decomposed to 4 subbands in the two-

dimensional frequency domain (see Fig. 5). The analysis

filters in (1) construct the two-dimensional filters:

h̃i1,i2(n1, n2) , h̃i1(n1)h̃i2(n2) (18)
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Fig. 5. Two-dimensional frequency domain, schematically

separated by the different subbands. The number in each

square corresponds to subband index k.

for i1, i2 ∈ {0, 1}. The same holds for the synthesis fil-

ters. For a cascade of J decompositions levels, the equivalent

structure is a nonuniform filter-bank with ℓ = 3J + 1 fre-

quency subbands. In the wavelet domain, the system in (17)

is modeled using two-dimensional crossband filters:

dp1,p2,k =

ℓ
∑

k′=1

∑

p′

1
,p′

2

xp′

1
,p′

2
,k′ap1,p2,k,p′

1
,p′

2
,k′ , (19)

ap1,p2,k,p′

1
,p′

2
,k′ , an1,n2,k,k′ |ni=µ(k)pi−µ(k′)p′

i
i=1,2, (20)

an1,n2,k,k′ = a(n1, n2) ∗ hk(n1, n2) ∗ fk′

(n1, n2). (21)

The multirate filtering is similar to the one-dimensional case,

where the upsampling or downsampling factor is equal in both

dimensions.

3. ESTIMATION OF THE CROSSBAND FILTERS

In this section, we describe a system identification scheme,

relying on the estimation of the band-to-band filters and the

crossband filters. Consider the LTI system presented in (17),

under the presence of an additive noise ξ(n1, n2) :

y(n1, n2) = x(n1, n2) ∗ a(n1, n2) + ξ(n1, n2). (22)

On the DTWT domain, (22) is represented by

yp1,p2,k =
ℓ

∑

k′=1

dp1,p2,k,k′ + ξp1,p2,k. (23)

From (14), it is possible to formulate a vector-matrix rep-

resentation to dp1,p2,k,k′ . Let āk,k′ and dk,k′ be the lexi-

cographically orderings of the undecimated crossband filter

from k′ to k and of dp1,p2,k,k′ , respectively. Since, dp1,p2,k,k′

is a result of a linear operation, for each 1 ≤ k, k′ ≤ ℓ, the

vector dk,k′ can be can be expressed as :

dk,k′ = Xk,k′ āk,k′ . (24)

When µ(k) = µ(k′), Xk,k′ is a Block-Toeplitz matrix of size

((Pk +L−1)2×N2
k,k′) with xp′

1
,p′

2
,k′ on its columns [1],[4].

When µ(k) > µ(k′), the convolved signal is downsampled,

equivalent to downsampling the columns of Xk,k′ . Note that

the downsampling is performed on a noncausal signal, and

therefore its zero coefficient should be kept. When µ(k) <

µ(k′), the input signal xp′

1
,p′

2
,k′ is upsampled before convolu-

tion, and therefore Xk,k′ is built as a Block-Toeplitz matrix

with the upsampled input on its columns.

Similarly to [1], concatenation of the vectors {āk,k′}ℓ
k′=1

and the matrices {Xk,k′}ℓ
k′=1 :

āk =
(

āT
k,1 . . . āT

k,ℓ

)T

Xk =
(

Xk,1 . . . Xk,ℓ

)

,

leads to the following vector-matrix representation of dk :

dk = Xkāk. (25)

It is important to note that not only that the decimated cross-

band filters are noncasual, but also the number of noncausal

coefficients differs on each frequency band. In order to com-

pensate it, an appropriate artificial delay is set to each matrix

{Xk,k′}ℓ
k′=1. The delay is related to the finest scales sub-

bands (determining the total delay of the system identifier).

In addition, zero padding may be added for compenstating the

unequal matrices size. Estimation of the decimated crossband

filters is performed using least-squares (LS) criterion :

ˆ̄ak = arg min
āk

‖yk − Xkāk‖
2 =

(

XH
k Xk

)−1
XH

k yk. (26)

Estimating āk as in (26) may result in severe over-fitting,

when the data amount is limited, or in low SNR. In the STFT

domain, it is proposed to perform the estimation for each sub-

band, with a fixed number of crossband filters from adjacent

subbands [1]. This is motivated by the fact that the cross-

band filters energy decreases as | k − k′ | increases. The

same holds in the two-dimensional DTWT domain [4] with

numerous disparities. First, in the two-dimensional domain,

| k − k′ | is no longer a measure for adjacency between sub-

bands (see Fig. 5). Second, in this nonuniform structure there

is no justification for a fixed number of crossbands, since the

overlap between subbands is not fixed as well. A generalized

reduced model, allowing much more flexibility is :

d̃p1,p2,k =
∑

k′
∈Ωk

∑

p′

1
,p′

2

xp′

1
,p′

2
,k′ap1,p2,k,p′

1
,p′

2
,k′ , (27)

for k = 1, . . . , ℓ, where Ωk ⊂ {1, . . . , ℓ} is the frequency

bands subset that contribute to frequency band k. For exam-

ple, the selection Ωk = {k} is associated with the band-to-

band model of [4]. The LS estimation is based only on cross-

band filters āk,k′ such that k′ ∈ Ωk. If for certain subband k,

Ωk = ∅, then none of the crossbands that contribute to k is

estimated. On some setup, this may be a legitimate choice.
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Another concept, relevant to the DTWT domain, is the

sparse representation of many applicative signals [3]. For ex-

ample, it is known that for real-world images, most of the

energy is concentrated in the low frequencies. Therefore, it

is possible to exploit such a priori knowledge, and define a

nonuniform model:

Ωk =

{

{k′ | µ(k) = 2J} µ(k) = 2J

{k + 3} µ(k) < 2J . (28)

The nonuniform model distinguishes the low-frequency sub-

bands by involving all the cross-terms related to the coarsest

scales. In the high-frequency subbands, only a single band

contributes, from a coarser resolution and the same orienta-

tion (see Fig. 5). The discrimination above is justified mainly

from two reasonings. First, the SNR is very low in the high-

frequency subbands. Therefore, including them in the esti-

mation will eminently increase the variance. Second, due to

the small decimation factor, the high frequency bands con-

tain a considerable amount of data (see (16)), increasing the

complexity in the pseudo-inverse calculation of (26).

4. EXPERIMENTAL RESULTS

This section compares the nonuniform model with the band-

to-band and the full-band models.

We assume an LSI system whose impulse response is uni-

form of size 25 × 25. The additive white Gaussian noise

has a variance σ2
n, set to establish a desired blurred image

SNR
(

BSNR = ‖d−d‖
2

σ2
n

)

, independent of the original im-

age. The DTWT-based system identifier used here consists of

3 decomposition levels. We define the identification error on

a mean-square-error (MSE) term :

MSE =
‖d− Xâ‖2

‖d‖2
. (29)

It is well known that the MSE consist of two elements : the

bias error, stems from inaccurate modeling of the system, and

the variance error, stems from consideration of noisy data in

the identification process.

Fig. 6 shows the MSE curves as a function of the in-

put SNR for different identification configurations. First, the

decomposition is performed using Daubechies wavelets of

length N = 4 and N = 12. The identification is based on

the band-to-band filters only and ignores the crossband filters.

Next, the nonuniform model is applied for the same BSNR

range and wavelet length N = 4. Obviously, the bias error

is dominant when the input SNR is high enough [1]. It can

be seen, that the use of the crossband filters reduces the bias

error by 11dB, while increasing the wavelet length decreases

the bias error by only 9dB. On the other-hand, estimating the

crossband filters in low SNR environment is not effective and

results in increased variance error. This result settles with the

analysis presented in [1].

−20 0 20 40 60
−50

−40

−30

−20

−10

0

10

BSNR [dB]

M
S

E
 [

d
B

]

 

 
Full−band

Band−to−band, N= 4

Band−to−band, N=12

Nonuniform, N= 4

Fig. 6. MSE curves of different system identification config-

urations.

5. SUMMARY AND CONCLUSIONS

We have considered cross band filters estimation in the

DTWT domain. We showed that modeling with crossband

filters significantly reduces the identification bias error. In

addition, a priori knowledge of the signal’s properties, is

used for neglecting cross-terms related to low SNR subbands,

thus reducing the variance error. Identification in the wavelet

domain has further challenges, like specification of adaptive

wavelet bases for signals and systems with known spectral

properties, and identification of time-varying systems.
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