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Formulation of the Eigenvalue 
Problem for an Unconstrained 
Circular Bar 

M. Nikkhah-Bahrami1 

Many eminent mathematicians and applied mechanicists have 
been interested in the vibration problems of naturally curved and 
twisted bars [1-6].2 In all these cases the equations of motion are 
based on assumptions equivalent to those of the Euler-Bernoulli 
theory of vibrations of a straight beams. 

These equations are solved for some cases, such as an elastic 
solid full toroid [1, 2, 5], whereas for an incomplete circular bar the 
solution, because of tedious calculations, has been left in a closed 
form [3]. Even today, with the existence of computers, much un
wanted algebra needs to be done before using computers, to obtain 
numerical results from these existing classical equations. In order 
to avoid this tedious and unwanted algebra, a new approach for the 
formulation of the equations of motion, and thus the frequency 
equations, will be presented here which is more apt for numerical 
calculations. This paper will show how an eigenvalue problem can 
be formulated for unconstrained incomplete circular bars by su
perposition of rigid-body and deformation modes. 

Derivations of the Eigenvalue Problem 
The homogenous elastic circular bar of constant cross section is 

referred to a fixed system of orthogonal Cartesian coordinates (Q, 
X1, X2, X3) and to a curvilinear right-handed coordinate system 
(0, 01, 82, 83), where the origin 0 coincides with the generic point on 
the central axis of the circular bar. Coordinate 81 coincides with 
the central axis and has positive direction the direction of the tan
gent vector of the bar center line. Coordinate 82 coincides with the 
principal normal and is directed positively toward the center of 
curvature. Coordinate 83 coincides with the binormal and has a 
positive direction the direction of the binormal. 

The kinetic energy of the elastic bar is defined as 

T = \ f {r;t).(r;t)pdu (1) 

where 

r= lit) + He1, e2,e3) + a(e\t) 

For the in-plane motion (that is, the displacement of the center 
line of the circular bar is predominantly in the plane containing 
the undeformed center line), the position vector r in terms of the 
unit vectors may be expressed as 
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r = hp-it) + hPit) + ~hl3it) + UW, 82, e3) 
- liPiB1, B2, 83) + liuH8\ t) + l2uH8\ t), (2) 

differentiating and noting it; t = 4'it)xl2 = —i£(£)ii one obtains 
that 

r; t = III1 + hP + 'hu1; t + l2u
2; t+ hU2 (3) 

Therefore 

\f; t\2 = iu1; t)2 + iu2; t)2 + 2u'; tfe2 

+ (?2)2(^)2 + Iu1; tl1 cos j3 + 2U1; tl2 sin 0 

+ (f1)2 + (f2)2 - 2u2; tl1 sin 0 + 2u2; if2 cos p 

+ 24>elr cos 0 + 2fe2l2 sin 0 (4) 
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By letting u a ( 0 \ t) = Pc"(8l)fEc(t) [9, p. 152], it follows that 

0'-)2 =hC(Pc1PaX +Pc2Pa2)'fE° + ( ? ) 2 ( ^ ) 2 + ( f 1 ) 2 + (?)* 

+ ifE'Pc1^ + 2/B
cpc

1r1 cos f} 4- 2fE
cPcVP sin 0 

- 2fE
cPcHl sin 0 + 2}E

cpc
2P cos (3 + 2^2f1 cos 0 

+ 2^2f2 sin /3. (5) 

Therefore in matrix notation the kinetic energy is 

2T = 

f1 Mj-ij-i 0 M w |Mj-ifel
T 

0 Mf2f2 Mj-2^ (Aff%)' 

Mj-ty Mjty M^ , iAf^,/£)' 

J M f i / £ | (Mf2/E| |A%E) |AfWfi|_ 

f1 

LMJ 
(6) 

where 

pdu= \ pVG dBWdB3 

v Jo J A 

(1 - 82c)d»ldffW = pwRUr2) = M, 
0 J A 

Mm = I p{ ! cos fidv 

J -irR p g l 

p(R - B2) c o s - VGdBWdB3 = 0, 

M ^ = j 
J r>(2 sin /3dt> 

| p (if - 02) sin - VG dBWdB3 

2MR Mr2 

r 2-scR 

MH = C p(i2)2du 

= (" P f (R-B2)2VGdB1dB2dBi = MR2 + -Mr2, 
Jo J A 4 

If u 1 is defined as 

N B1 

uW, t) = cos-~ fE
c(t) 

R 

then since u\\ 1 = (l/R)u2 (the condition for unstretching the cen
ter line) it follows that 

NcB
l 

u2= -Ncsin——fE
c{t) 

W,EfE\ = £ (IPMIP1!' + \P2}\p2\')Pdv 

=f,[ 
NcB1 NmB^ 

cos cos 
R R 

MB1 N B1 

+ NcNm sin sin 
R R . 

pdv 

( "^(T) [1 + NcNm] for N° = Nm 

I v l ' c = m 
\ 0 for Nc * Nm, 

X i B1 e1\ 

( {p1} cos - - \p2} sin - ) pdv = 0 for all Nc, 
V R Rl 

X I 81 B\ 

(Jp2) cos - + {p1} sin -J pdv 0 for Nc odd 

A~2N2(c) 2 1 „ /1+NC
2\ 

Rpvr2 —L1 + = 2P7rr2R I ), 
LAf c

2 - . l 1-Nc
2i y \l-Nc

2 

Table 1 

E = 20.8 X 10 7 kPa R = 12.7 cm p = 7.8 gr/cm3 

r = 2.54 cm r = 0 .63 cm 

Mode no. 
Frequency 

(Hz) Mode no . 
Frequency 

(Hz) 

1 
•2 
3 
4 

3395 
7154 
12239 
18666 

1 
2 
3 
4 

849 
1789 
3059 
4666 

\M+IB\ = f \pl\?pdv = 0 for all Nc 

The potential energy is 

1 r*R 1 
U = - \ EI%i(Ru\-111 + -u1; l)dfi 

2 Jo R 

where 

2U=MW2M,EfE]\fE 

Eh2N
2(N2 - l)2 

(7) 

(8) 

N = 2,3,. 
R4pA(N2 + 1) 

If the rigid-body displacements are defined as 

VRY = [f1, f2, *] (9) 

then upon using Hamilton's principle the equation of motion may 
be written as 

r[MM][MMnn/ f ln + no] [o] ] [(/«)] non ,10) 
L[MBii][M£B]JLifeiJ L[o] [ic^jJ LffeU UojJ 

where 

[MR 

[MRE 

M fij-i 0 Mj-ty 

0 M(2(i Mm 

_Mm Mm Mw 
'[MPfSy-

[MEB] = [MfEfE] 

[KEB] = u2[MfEfE] 
JM+fB\'_ 

Thus with | /E) = I*}// the free-free eigenvalues are obtained from 

( [ - 1 - ] - [Xl)f*l = 10) (ID 

where 

M = [KEE]-H[MEE] ~ [MER\[MRR\-^[MRE]) (12) 

The resulting eigenvalue problems were numerically solved for two 
circular bars for which the results are tabulated in Table 1. These 
results were equivalent to those obtained by solving the classical 
equations. 

Co nc l us i o n 
This paper presents a new approach for finding frequencies of 

the incomplete circular bar which is different from the classical ap
proach. The method presented is more apt for numerical calcula
tion than the classical method. In addition, it provides a method 
for extending the elementary method to more exact methods [7,8]. 
A similar approach could be used for the out-of-plane motion, that 
is, for the motion in the direction normal to the in-plane motion. 
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Fig. 1 Plate 

An Experimental Verification of 
Boundary-Layer Solutions of 
Karman's Equations of Plates1 

Chin-Hao Chang2 

The so-called edge zone or boundary-layer solutions are widely 
used in large deflection problems of thin elastic plates [1-3]3 and 
shells [4-6]; but a little experimental work has been seen in the lit
erature of verification of these approximate solutions. The bound
ary-layer solutions for the bending of a buckled rectangular plate 
were obtained in [3]. Of the plate, two opposite edges are free and 
the other two are simply supported; along the supported edges uni
formly distributed compressive forces are acted on. Because of 
simplicity of this plate, an experimental study was made. Good 
agreement was observed between the analytical and experimental 
results. 

For comprehension, the boundary-layer solutions are briefly 
given. 

Boundary-Layer Solutions 
The von Karman equations for a dimensionless lateral deflec

tion W and Airy's stress function F of an elastic plate may be pre
sented in the form 

Now let 

in which 

W°xx(x, ±b) jt 0 

W= W°(x) + aW^x, v) + . . . 

F = F°(y) + f°(x, r,) + afHx, TJ) + . . . 

V = (6 — y)a~1/2 

(46) 

(5a) 

(56) 

(6) 

being a boundary-layer coordinate measured from y = +6. Substi
tuting series (5) into equations (1) results into a set of equations 
associated with different orders of a. The set with the lowest order 
of a has the form 

T2H?,„, - KJ?n = 0 (7a) 

W°xxW^ + f°vm = 0 (76) 

With the following boundary conditions at the free edge ()/ = 0) 

W!v, + „W%X = 0; W}m = 0 (8a, 6) 

/£, = 0; 1% •0 (9a, 6) 

y2AAW - Q(F, W) = 0, 2AAF+Q(W,W)/2 = 0 

in which 

72 = 1/12(1 - v2), a = hi A 

Q(r, s) = riXXsM, + riyys?A ' ^F.xvS.x 

(la, 6) 

(2a, 6) 

(2c) 

v = Poisson'e ratio, h = thickness, A = amplitude, and A = Lapla-
cian operator in Cartesian xy — coordinates; a subscript preceded 
by a comma represents the appropriate derivative. 

For a plate of a X 26 with x = 0, a simply supported, y = ±6 
free of Fig. 1 functions 

W° = sin (vx/a), F° = -y V y / ( 2 a 2 ) (3a, 6) 

can satisfy equations (1) and all the required boundary conditions 
except along the free edge y = +b, the normal moment 

The solutions for the boundary-layer equations (7)-(9) are 

W1(x, -n) = j>7e~x,,(cos \-q — sin X-n) (10a) 

f>(x, it) = -j*Y2e-x"(cos XJJ + sin Xij) (106) 

in which 

X2 = | W y / 2 7 (H) 

At the central section (x = a/2), the normal stresses are 

Nxx = h*E(F° + n,yy 

= —h3E(yir/a)2 + AE(ir6/a) V y e ^ ' t c o s 71) - sin 77;) (12a) 

Nyy = hsEf°xx = -E(^hMs
n(ym1/2

ve-^ sin X„ (126) 

Thus Nyy vanishes at the free edge (rj = 0) and also at the center of 
the plate (1; = •»); furthermore, Nyy is of higher order of ct in com
parison with Nxx, therefore its effect is negligible in computation 
of normal strain exx, i.e., 

Myy (x, ±6) = -EAh3y2[W?yy + vW°xx] * 0 (4a) 

exx = (Nxx - vNyy)IEh =* Nxx/Eh 

which is to be compared with the experimental results. 

(13) 
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E x p e r i m e n t a l R e s u l t s 
A plate of bare (unclad) aluminum sheet of 2024-T3 of h = 1.59 

mm (%6 in.) was used. The average modulus of elasticity, E = 
76.60 X 109 Pa (11.11 X 106 psi), and v = 0.331. The simply sup
ported edges were so constructed that the ends could freely rotate. 
The Euler buckling load of the plate shown in Fig. 1 is 

ir2Ehsb 
Pe = -r^ = 1023 N 

12(1 - v2)a2 

(14) 
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