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Abstract 

The BLEU algorithm was proposed as a 
baseline technique for the task of recog-
nizing textual entailment (RTE) by (Pérez 
& Alfonseca, 2005) in the first PASCAL 
RTE challenge. However, because the 
BLEU algorithm was designed as a metric 
for measuring the accuracy of automati-
cally generated translations, certain fea-
tures of the algorithm are not appropriate 
for RTE. Specifically, BLEU penalizes 
brevity both explicitly and implicitly in its 
scoring algorithm; since entailment hy-
pothesis are very often short phrases, this 
behavior is not desirable in RTE. There-
fore, this paper proposes a variation on 
the BLEU scoring algorithm that does not 
penalize brevity and can consistently out-
perform both the unmodified BLEU algo-
rithm and a dumb baseline.  

1 Introduction 

The task of recognizing textual entailment is a 
difficult one that can be approached in a number of 
ways. The first PASCAL Challenge for Recogniz-
ing Textual Entailment (RTE1) received submis-
sions that applied various semantic, syntactic, and 
statistical methods towards performing this task 
(Dagan et al. 2005), all of which were based on 
sound theoretical footing, but none of which 
achieved eye-catching results.  

Within the framework of the RTE1 challenge, a 
dumb baseline of 50% could be achieved by sim-
ply labeling all entailments as true (or as false): in 

comparison, the highest accuracy achieved by any 
RTE1 submission was 58.6%. The modest algo-
rithm outlined in this paper achieves an accuracy 
of 53.8% on the same test set. 

The fact that this modest approach outperforms 
5 of the 16 original RTE1 submissions (and per-
forms comparably to several of the others), most of 
which involve much more complicated systems, is 
indicative of the current plight of RTE. As with 
any discipline in its early stages, simple systems 
can offer initial strong results, while the more in-
tricate systems will require further development 
before their potential becomes apparent (Bayer et 
al. 2005). (See my other paper for the promising 
approaches for RTE) 

Despite the fact that this paper illustrates that 
the BLEU algorithm can be adjusted to perform 
better on RTE, I do not think this is an area that 
warrants further work. I can imagine certain poten-
tial applications for the BLEU algorithm within 
RTE (e.g. as a metric for comparing the hypothesis 
H to atomic propositions generated by a RTE sys-
tem), but the algorithm is not useful on its own as 
anything other than a baseline. 

1.1 Recognizing Textual Entailment 

Before going too far, it will be helpful to briefly 
outline what exactly is meant by textual entail-
ment. For a more thorough discussion of the tex-
tual entailment task and definition, see (Dagan et 
al. 2005, sections 1-2). 

In a nutshell, textual entailment is loosely de-
fined to hold if the meaning of a hypothesis text H 
can be inferred by an average human reader (using 
only his knowledge of English and some general 
world knowledge) given a text T. For example, 
below are two T-H pairs. In the first, entailment 
holds (the entailment is judged to be true) while in 



the second, entailment does not hold (it is judged 
false) 

 
T: Satomi Mitarai died of blood loss. 
H: Satomi Mitarai bled to death. 
(True) 
 
T: Coyote shot after biting girl in Vanier Park. 
H: Girl shot in park. 
(False) 
 

Many entailments are mere paraphrases,1 while 
some are more involved and require the application 
of world knowledge. Entailment is said to be ap-
plicable to a number of different fields within NLP 
(see section 3.2 for a list of the subfields recog-
nized by RTE1), where it is desirable to know 
whether the information in a hypothesis can be 
derived from a given source text. 

The fact that so many entailments are para-
phrases, repeating some or all of T in H, is the 
main reason that the BLEU algorithm works for 
RTE. As will be seen, n-grams cannot hope to cap-
ture every case of entailment, but the BLEU algo-
rithm can tailored to suit the RTE task. 

2 The Algorithm 

2.1 The Original BLEU Algorithm 

The BLEU algorithm was created by (Papineni et 
al. 2002) as a method for judging the performance 
of machine translation systems. In this use, BLEU 
compares the output of a MT system (called the 
test or hypothesis) to one or more human-
generated translations (the reference). The score of 
the system translation is based on the number of n-
grams (with values of n that typically cover the 
range from 1-4) appearing in the test that also ap-
pear in the reference, modified by a brevity factor 
that penalizes the test for being shorter than the 
reference (on the fair assumption that any two 
translations should be roughly equivalent in 
length). 

The scoring algorithm goes something as fol-
lows: 
 
1. For each i up to N, calculate a score si that is the 
ratio of the count of i-grams co-appearing in both 

                                                           
1 Up to 94% in the RTE1 data. (Bayer et al. 2005) 

reference and test (ctest,ref) and the count of i-grams 
appearing in the test (ctest): 
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2. Average the values of si. This is accomplished 
with a weighted geometric mean; the weight wi is 
typically kept constant for all i (wi=1/N for all i). 
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3. Calculate the brevity penalty. If the length of the 
test (t) is greater than the length of the reference 
(r), then there is no penalty (b=1). Otherwise, the 
penalty is logarithmically derived from the ratio of 
the two lengths: 
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4. Finally, calculate the overall score as the mean 
of all scores multiplied by the brevity penalty. 
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Alternatively, all together: 
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The scoring algorithm described above is that 
found in Papineni's Perl implementation of BLEU, 
which was used for the BLEU evaluations used in 
this study and served as the model for the modified 
BLEU algorithm described below. 

2.2 Modifying the BLEU Algorithm for RTE 

Application of the BLEU algorithm to the RTE 
task makes sense on the level that an entailed hy-
pothesis will very likely (though not necessarily) 
contain many of the same words that appear in the 
source text. Thus, the basic core of the algorithm, 
matching the co-occurrence of n-grams, remains 
valid.  

However, the relationship between text and hy-
pothesis in RTE is not the same as the relationship 



between test and reference in MT. The most im-
portant difference is that while in MT both test and 
reference are expected to convey the same infor-
mation, in RTE the hypothesis is only expected to 
contain a subset of the information contained in the 
text. While it is true that in some cases of entail-
ment H will contain roughly the same information 
as T, it is counter to the definition of entailment 
that H could contain more information than is 
stated (explicitly or implicitly) in T. 

There are several consequences that derive 
from this fundamental difference. The first conse-
quence is that it is clear which of T and H should 
be considered the text and which the reference in 
the BLEU framework. Clearly, the hypothesis 
should be considered the test (the equivalent of the 
candidate translation), since we want to count the 
number of n-grams in H that also appear in T, and 
not vice-versa. 

A further consequence of this difference is that 
there is no longer a motivation for the brevity pen-
alty. Entailment hypotheses are very often shorter 
than the source text, by virtue of the fact that they 
contain only a subset of information in the source 
text. Thus, directly penalizing the hypothesis for 
being shorter than the text is not productive in 
RTE. 

It is a simple matter to eliminate the brevity 
penalty in the BLEU algorithm, but there is actu-
ally a second penalty against brief or truncated hy-
potheses hidden in the scoring algorithm. This 
arises from the use of a weighted geometric mean 
to average the n-gram scores. Although stated ear-
lier in log terms, the formula for calculating sn can 
be equivalently stated as: 

∏
=

=
N

i

w
iN

iss
1

 

 
This formulation makes it is easier to see that if 

si is null for any value of i, then the entire score 
will also be null. This is extremely harsh in the 
RTE task because often, due to the fact that the 
hypothesis is a highly summarized or truncated 
version of the source text, there will be no n-gram 
overlap for higher values of n. For example, 63% 
of the entailment pairs in the RTE1 development 
set had no n-gram overlap for n=4.2

                                                           
2 See the section below on unmodified BLEU results for fur-
ther statistics. 

To rectify this problem (clearly we don't want 
63% of our data to have a null score), there are two 
options: we could use a lower value of n, or we 
could change the averaging function. It is not de-
sirable to reduce the value of n: 37% is still a sig-
nificant number of entailments that make use of the 
4-gram overlap, and it is likely that these longer 
phrases represent the algorithm’s best hope for 
capturing syntactic features. Besides, even at n=2, 
a significant number (15%) of the RTE1 develop-
ment set would receive a null score. It is preferable 
to have a continuum of gradated scores than to 
break the data into essentially null and non-null 
categories. 

The obvious solution is to use a linear, rather 
than geometric mean. In fact, Papineni et al. state 
that this same averaging method yielded good re-
sults during the development of the BLEU algo-
rithm, but was later discarded because it did not 
account for the exponential decay in n-gram over-
lap for increasing values of n. This is less of a con-
cern in RTE, where the main objective of this 
algorithm is to measure word overlap. Thus, we 
can use a linear weighted average such as: 
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In fact, this average score will act as the overall 
score in our modified algorithm, since there is no 
brevity factor. The values for si and wi are calcu-
lated as above. 

3 Results and Performance 

3.1 Evaluation Methodology 

The evaluation for the performance of the algo-
rithms was the same as that defined for the RTE1 
challenge. Accuracy was measured as the fraction 
of correctly labeled true or false entailments as 
produced by the system (i.e. the percentage of 
judgments that are correct). A second measure, a 
confidence-weighted score (cws), was computed. 
This measure weights judgments based on their 
relative ranking as follows: 
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Fig 2: Chart plotting accuracy vs. cutoff score 
for the RTE1 test data. The dotted line indicates 
the cutoff score that was chosen based on the 
development set. 

Fig 1: Chart ploting accuracy vs. cutoff score 
for the RTE1 development data. The two dotted 
lines indicate the potential candidates for cutoff 
score. 
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Although other measures for evaluation, such as 

precision, recall, and f, have been recognized as 
potentially insightful for RTE (Dagan et al. 2005), 
they were not included in this project because they 
were not part of the RTE1 challenge. 

3.2 Datasets 

The RTE1 challenge consisted of a development 
dataset, containing 283 true entailments and 284 
false entailments (567 total entailments), and a test 
set containing 400 true and 400 false entailments 
(800 total entailments). In addition, the RTE2 de-
velopment set consists of 400 yes and 400 no en-
tailments (800 total entailments; they decided to 
change the terminology, but yes/no denotes the 
same thing that true/false denoted in RTE1). Thus, 
the dumbest baseline for all of these systems, 
choosing always either true or false, is 50%. 

The examples for the RTE1 datasets were sub-
divided into categories: these categories corre-
spond to different areas of NLP and the 
entailments are representative of the type of texts 
that arise in that area. The categories in RTE1 
were: information retrieval (IR); comparable 
documents (CD); reading comprehension (RC); 
question answering (QA); information extraction 
(IE); machine translation (MT); and paraphrase 
acquisition (PP). Most systems showed slight dif-
ferences in performance between these categories.  

3.3 Results for the Unmodified BLEU Algo-
rithm 

The first run used the unmodified BLEU algorithm 
to assign a score to each text-hypothesis pair in the 
RTE1 development set. For this run and all others, 
N was chosen to be 4, which is also the default 
value in the Perl implementation. After running the 
algorithm on all T-H pairs, a cutoff score scut was 
determined such that all entailments with a score 
equal to or lower than scut were judged false, and 
all entailments with a score higher than scut were 
judged true.  

As mentioned above, the unmodified BLEU al-
gorithm assigns a high number of zero scores on 
the RTE dataset. In fact, zero is an attractive cutoff 
point; as figure 1 above helps illustrate, the optimal 
accuracy on the development set was found to oc-
cur at two points: scut = 0.002 and scut = 0.132. Both 
of these cutoffs give accuracies of 53.8% 
(299/567). The lower value was chosen, as it is 
unclear what is represented by the second peak; a 
cutoff score of zero, on the other hand, has a cer-
tain aesthetic appeal.  

At this cutoff, the unmodified BLEU algorithm 
correctly identified 253 false entailments and 46 
true entailments, for an overall accuracy of 53.8% 
(299/567). The difference in number of correct 
false and correct true judgments is simply due to 
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Fig 3: Chart plotting accuracy vs. cutoff score 
for the RTE1 test data. The dotted line indicates 
the cutoff score that was chosen for the modi-
fied algorithm based on the development set. 

Fig 4: Chart plotting accuracy vs. cutoff score 
for the RTE1 test data. The dotted line indicates 
the cutoff score that was chosen based on the 
development set. 

the fact that the majority of hypotheses received a 
zero score, thus falling below the cutoff score. 

Applying this same cutoff value to the RTE1 
test data, the unmodified BLEU algorithm cor-
rectly identified 253 false entailments and 163 true 
entailments, for an overall accuracy of 52.0% 
(416/800). 

Both figures 1 and 2 illustrate that the unmodi-
fied BLEU algorithm achieves its peak accuracy 
with a cutoff of zero, perhaps because this very 
low score is most likely to capture the false entail-
ments with very low correlation to their source 
texts. However, it is difficult to explain why the 
algorithm seems to have an alternative peak at 
higher cutoff scores: this may be due to the algo-
rithm capturing the very highly correlated true en-
tailments (perhaps from the CD or MT tasks). The 
distributions also seem to indicate a difference in 
the nature of the development and the test data 
sets: the potential peak cutoff at 0.12 in the devel-
opment data would have an awful performance on 
the test set. 

It is probably wise not to read too much into 
these distributions, as this system is performing at 
a level only slightly higher than random guessing. 
The best way to think about the unmodified BLEU 
algorithm as a RTE system is that it is a binary 
function: a zero score predicts a false entailment, 
while a nonzero score predicts a true entailment. 

3.4 Results for the Modified BLEU Algorithm 

Since it was specifically altered to give fewer null 
scores, the modified BLEU algorithm provided a 
distinctly different distribution of scores than the 
original BLEU algorithm. It also achieved higher 
accuracy for the RTE1 development and test data  

As before, we chose the optimal cutoff score scut 
based on the performance of the algorithm on the 
RTE1 development set. The ideal value was de-
termined to be scut = 0.221; this corresponds to the 
maximum accuracy, as can be seen in figure 3. At 
this value of scut, the modified BLEU algorithm 
achieved 57.8% accuracy (328/567), correctly 
identifying 131 false entailments and 197 true en-
tailments. 

The system did not fare as well on the test data: 
using the previously determined cutoff score, the 
modified BLEU algorithm managed only an accu-
racy of 53.8% (430/800), correctly identifying 160 
false entailments and 270 true entailments. 

As a side note, if the algorithm were allowed to 
re-train based on the test data, the best possible 
accuracy would be 55.3%, using a scut of 0.1333; 
see figure 4. This may be an argument in favor of 
lowering the cutoff score for future applications. 

3.5 RTE2 Datasets 

Considering that there seems to have been a sig-
nificant difference in the make-up of the two data-
sets in RTE1, it is worthwhile to investigate the 



performance of these two systems on a new data-
set: the development set for the Second Recogniz-
ing Textual Entailment challenge.  

The RTE2 dataset is slightly different in format 
consists of the categories IE, IR and QA from 
above, as well as text summarization (SUM). The 
RTE2 data were chosen “to provide more ‘realis-
tic’ text-hypothesis examples, based mostly on 
outputs of actual systems” (Bar-Haim 2005), and 
thus one may expect that the datasets will be dif-
ferent in some ways from the RTE1 datasets. 

Using the same cutoff score of scut = 0.221, the 
modified BLEU algorithm achieved an accuracy of 
60.4% (483/800) on the RTE2 development data 
set. Thus, whatever changes the developers made 
to the datasets seem to favor the n-gram approach. 

Likewise, the unmodified BLEU algorithm was 
tested on the RTE2 development set, achieving 
56.0% accuracy (448/800) using a cutoff score of 
zero. 

The RTE2 results at least partially validate the 
choice of cutoff score for the modified BLEU algo-
rithm assigned by the RTE1 development data 
(0.221). The revised cutoff score based only on the 
RTE2 development data would be 0.2580, yielding 
an accuracy of 61.4%, only 1% higher than the 
accuracy achieved with the original cutoff score. 
Looking over the results of the RTE1 development 
and test data combined with the RTE2 develop-
ment data, it seems best to keep the cutoff score 
near 0.22. 

3.6 Comparison of Results 

At this point it seems appropriate to bring up the 
work of Pérez & Alfonseca from the first RTE 
challenge. Their submission consisted of an im-
plementation of the BLEU algorithm, but I have 
been unable to replicate their exact results. From 
their pseudo-code it would seem that they imple-
mented a variation of the BLEU algorithm that 
used a weighted linear mean to average the scores. 
However, they do not mention that they have 
modified the BLEU algorithm from the version 
proposed by Papineni et al., nor do they give any 
of the details of their implementation.  

I experimented with a modified version of the 
algorithm that included the brevity factor but used 
the linear rather than geometric mean, hoping to 
match their results. I was unable to come up with 
the cutoff scores they reported, although I managed 
to obtain loosely similar accuracy values. 

Below I summarize the results of Pérez & Al-
fonseca’s BLEU implementation, my unmodified 
BLEU implementation, and the modified BLEU 
implementation. The table contains the accuracy 
values for these three systems, as well as the best 
system in RTE1 for comparison: 
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Development 
Set (RTE1) 53.8 57.8 54 n/a 

Test Set 
(RTE1) 52.0 53.8 49.5 58.6 

Development 
Set (RTE2) 56.0 60.4 n/a n/a 

Table 2: Comparison of accuracy values for 
three BLEU-based systems and the best entry 
in RTE1. 
 
While the table above illustrates that the modi-

fied BLEU algorithm proposed in this study out-
performs the unmodified BLEU algorithm and the 
BLEU variant implemented by Pérez & Alfonseca, 
it also points out that none of the BLEU-based sys-
tems achieve accuracies close to the best system in 
RTE1, and this gap is not likely to be closed. In the 
next section, I will discuss the role of BLEU as a 
baseline in RTE and look at some other promising 
approaches to the RTE task. 

 

4 Trees and Rocket Ships 

(Bayer et al. 2005), in their submission to the 
RTE1 challenge, rightly point out that RTE is a 
difficult task and that until the complex systems 
are able to get their many components working 
well together the simple systems will outperform 
them. They warn against trying to "climb a tree to 
get to the moon" (quoting Dagan). In this sense, 
the BLEU algorithm is a tree; it gets us part of the 
way towards the solution, but inevitably leads to a 
dead end. It may have a role within a larger sys-
tem, but the future of RTE is such that a simplistic 
n-gram approach will not be successful on its own. 



4.1 Shortcomings of the BLEU Algorithm 
(the "Tree") 

The BLEU algorithm is not meant to be anything 
more than a baseline for RTE, thus it is not produc-
tive to spend much time pointing out its deficien-
cies. An example or two will suffice to show why 
an n-gram model will always fail on certain types 
of entailment pairs. 

For example, consider the case where the entire 
hypothesis H appears as a clause in the text T. The 
BLEU algorithm will assign this a score of 1, since 
every possible n-gram in H also appears in T. 
However, this does not ensure entailment. Con-
sider the pair: 

 
T: It is not the case that John likes ice cream. 
H: John likes ice cream. 
(false) 
 

Our first reaction might be to question the some-
what arbitrary relationship we came up with ear-
lier, treating H as the test and T as the reference in 
the BLEU algorithm. However, changing this as-
signment accomplishes nothing, since the labels T 
and H can similarly be reversed in the above ex-
ample to yield another false entailment that 
achieves a BLEU score of 1. 

While problems such as this clearly show that 
BLEU is deficient as a stand-alone algorithm for 
RTE, it has potential applications as a moderate 
baseline and possibly as a final stage in more com-
plex systems. One could imagine, for instance, a 
system that generates atomic propositions from T 
and uses the BLEU algorithm to compare these 
propositions to H. 

4.2 Other Promising Approaches to RTE (the 
"Rocket Ships") 

Reading through the proceedings of the first RTE 
challenge workshop, it is clear that there are sev-
eral interesting approaches being taken towards the 
RTE task. Below I list a few of my favorites, giv-
ing only a general sketch of how they work. 

Tree-Edit Distance and Syntactic Graph Match-
ing 

I group these together because even though there 
are some basic differences, they share a similar 
concept. Both approaches use dependency-tree 
structures to represent the T and H sentences (or 

clauses), and then use some procedures to calculate 
the difference between T and H in terms of the cost 
required to transform one tree/graph into the other. 

Minimum tree-edit distance algorithms use the 
basic transformations of inserting, removing, and 
substituting nodes within the trees to find the 
shortest edit path that transforms the H tree into the 
T tree (or vice versa). It would be interesting to see 
a minimum tree-edit distance algorithm for RTE 
that could incorporate syntactic concepts into its 
cost calculations: e.g. inserting a "be" verb node 
into apposition structures to transform them into 
sentences. This would be a big project in itself! 
However, I think that there is a lot of room for in-
novation in this approach and it may offer signifi-
cant progress in the future. See (Kouylekov & 
Magnini, 2005), (Raina et al. 2005), and others. 

 

Statistical Lexical Relationships 

This approach treats entailment as translation, 
drawing on concepts from the field of MT. T-H 
pairs in the training set are aligned using software 
such as Giza++, and "translate" the text into the 
entailment. (Bayer et al. 2005)'s System 2 is ex-
actly this type of system. Even though they de-
scribe it as a "tree" in their analogy above, it 
achieved the best performance in the RTE1 chal-
lenge! 

While these systems may fail to directly address 
the underlying semantic and syntactic principles 
that define entailment, there is certainly room for 
improvement, especially in the view of those who 
hope to merge syntactic considerations with the 
statistical methods that have such success in MT. 
See (Bayer et al. 2005), (Glickman et al. 2005), 
and others. 

Atomic Propositions 

This is an interesting approach that basically pre-
dicts the entailment hypothesis from the source 
text. A sentence contains several atomic proposi-
tions that each could generate an independent sen-
tence; these atomic propositions are compared to 
the hypothesis to see if any of them matches. See 
(Akhmatova, 2005). 

Semantic Distance 

This is a concept (not really an approach) that is an 
essential feature of any effective RTE system. 



There are many types of relatedness between 
words (synonymy, antynomy, hypernymy, etc.) 
and a RTE system must be able to use these rela-
tionships effectively when performing various 
comparisons and transformations between T and 
H. See (Budanitsky et al. 2001) and practically any 
of the RTE1 submissions. 

5 Conclusion 

In this paper I hope to have shown that the BLEU 
algorithm is more effective in dealing with the 
RTE task when it has undergone certain modifica-
tions, namely eliminating the brevity penalty and 
adjusting the scoring mechanism to use a weighted 
linear, rather than geometric, mean. The modifica-
tions to the system led to a 2-4% increase in accu-
racy over all test sets when compared to the 
unmodified BLEU algorithm. 

Despite these modifications, the BLEU algo-
rithm remains nothing more than a baseline for 
recognizing textual entailment, because it lacks the 
room to grow and accommodate further improve-
ments. This is not to say that it is useless for the 
future of RTE; it may potentially serve as a base-
line for evaluating other systems and components 
in RTE, and it may itself act as a component in a 
robust RTE system. 
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