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Abstract

The BLEU algorithm was proposed as a
baseline technique for the task of recog-
nizing textual entailment (RTE) by (Pérez
& Alfonseca, 2005) in the first PASCAL
RTE challenge. However, because the
BLEU algorithm was designed as a metric
for measuring the accuracy of automati-
cally generated translations, certain fea-
tures of the algorithm are not appropriate
for RTE. Specifically, BLEU penalizes
brevity both explicitly and implicitly in its
scoring algorithm; since entailment hy-
pothesis are very often short phrases, this
behavior is not desirable in RTE. There-
fore, this paper proposes a variation on
the BLEU scoring algorithm that does not
penalize brevity and can consistently out-
perform both the unmodified BLEU algo-
rithm and a dumb baseline.

1 Introduction

The task of recognizing textual entailment is a
difficult one that can be approached in a number of
ways. The first PASCAL Challenge for Recogniz-
ing Textual Entailment (RTE1) received submis-
sions that applied various semantic, syntactic, and
statistical methods towards performing this task
(Dagan et al. 2005), all of which were based on
sound theoretical footing, but none of which
achieved eye-catching results.

Within the framework of the RTE1 challenge, a
dumb baseline of 50% could be achieved by sim-
ply labeling all entailments as true (or as false): in

comparison, the highest accuracy achieved by any
RTE1 submission was 58.6%. The modest algo-
rithm outlined in this paper achieves an accuracy
of 53.8% on the same test set.

The fact that this modest approach outperforms
5 of the 16 original RTE1 submissions (and per-
forms comparably to several of the others), most of
which involve much more complicated systems, is
indicative of the current plight of RTE. As with
any discipline in its early stages, simple systems
can offer initial strong results, while the more in-
tricate systems will require further development
before their potential becomes apparent (Bayer et
al. 2005). (See my other paper for the promising
approaches for RTE)

Despite the fact that this paper illustrates that
the BLEU algorithm can be adjusted to perform
better on RTE, | do not think this is an area that
warrants further work. | can imagine certain poten-
tial applications for the BLEU algorithm within
RTE (e.g. as a metric for comparing the hypothesis
H to atomic propositions generated by a RTE sys-
tem), but the algorithm is not useful on its own as
anything other than a baseline.

1.1 Recognizing Textual Entailment

Before going too far, it will be helpful to briefly
outline what exactly is meant by textual entail-
ment. For a more thorough discussion of the tex-
tual entailment task and definition, see (Dagan et
al. 2005, sections 1-2).

In a nutshell, textual entailment is loosely de-
fined to hold if the meaning of a hypothesis text H
can be inferred by an average human reader (using
only his knowledge of English and some general
world knowledge) given a text T. For example,
below are two T-H pairs. In the first, entailment
holds (the entailment is judged to be true) while in



the second, entailment does not hold (it is judged
false)

T: Satomi Mitarai died of blood loss.
H: Satomi Mitarai bled to death.
(True)

T: Coyote shot after biting girl in Vanier Park.
H: Girl shot in park.
(False)

Many entailments are mere paraphrases,® while
some are more involved and require the application
of world knowledge. Entailment is said to be ap-
plicable to a number of different fields within NLP
(see section 3.2 for a list of the subfields recog-
nized by RTEL), where it is desirable to know
whether the information in a hypothesis can be
derived from a given source text.

The fact that so many entailments are para-
phrases, repeating some or all of T in H, is the
main reason that the BLEU algorithm works for
RTE. As will be seen, n-grams cannot hope to cap-
ture every case of entailment, but the BLEU algo-
rithm can tailored to suit the RTE task.

2 The Algorithm

2.1 The Original BLEU Algorithm

The BLEU algorithm was created by (Papineni et
al. 2002) as a method for judging the performance
of machine translation systems. In this use, BLEU
compares the output of a MT system (called the
test or hypothesis) to one or more human-
generated translations (the reference). The score of
the system translation is based on the number of n-
grams (with values of n that typically cover the
range from 1-4) appearing in the test that also ap-
pear in the reference, modified by a brevity factor
that penalizes the test for being shorter than the
reference (on the fair assumption that any two
translations should be roughly equivalent in
length).

The scoring algorithm goes something as fol-
lows:

1. For each i up to N, calculate a score s; that is the
ratio of the count of i-grams co-appearing in both

! Up to 94% in the RTE1 data. (Bayer et al. 2005)

reference and test (Cestrer) @and the count of i-grams
appearing in the test (Ceest):

C

__ “test,ref

S =
C

i
test

2. Average the values of s;. This is accomplished
with a weighted geometric mean; the weight w; is
typically kept constant for all i (w;=1/N for all i).
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3. Calculate the brevity penalty. If the length of the
test (t) is greater than the length of the reference
(r), then there is no penalty (b=1). Otherwise, the
penalty is logarithmically derived from the ratio of
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4. Finally, calculate the overall score as the mean
of all scores multiplied by the brevity penalty.
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Alternatively, all together:
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The scoring algorithm described above is that
found in Papineni's Perl implementation of BLEU,
which was used for the BLEU evaluations used in
this study and served as the model for the modified
BLEU algorithm described below.

2.2 Modifying the BLEU Algorithm for RTE

Application of the BLEU algorithm to the RTE
task makes sense on the level that an entailed hy-
pothesis will very likely (though not necessarily)
contain many of the same words that appear in the
source text. Thus, the basic core of the algorithm,
matching the co-occurrence of n-grams, remains
valid.

However, the relationship between text and hy-
pothesis in RTE is not the same as the relationship



between test and reference in MT. The most im-
portant difference is that while in MT both test and
reference are expected to convey the same infor-
mation, in RTE the hypothesis is only expected to
contain a subset of the information contained in the
text. While it is true that in some cases of entail-
ment H will contain roughly the same information
as T, it is counter to the definition of entailment
that H could contain more information than is
stated (explicitly or implicitly) in T.

There are several consequences that derive
from this fundamental difference. The first conse-
guence is that it is clear which of T and H should
be considered the text and which the reference in
the BLEU framework. Clearly, the hypothesis
should be considered the test (the equivalent of the
candidate translation), since we want to count the
number of n-grams in H that also appear in T, and
not vice-versa.

A further consequence of this difference is that
there is no longer a motivation for the brevity pen-
alty. Entailment hypotheses are very often shorter
than the source text, by virtue of the fact that they
contain only a subset of information in the source
text. Thus, directly penalizing the hypothesis for
being shorter than the text is not productive in
RTE.

It is a simple matter to eliminate the brevity
penalty in the BLEU algorithm, but there is actu-
ally a second penalty against brief or truncated hy-
potheses hidden in the scoring algorithm. This
arises from the use of a weighted geometric mean
to average the n-gram scores. Although stated ear-
lier in log terms, the formula for calculating s, can
be equivalently stated as:

This formulation makes it is easier to see that if
s; is null for any value of i, then the entire score
will also be null. This is extremely harsh in the
RTE task because often, due to the fact that the
hypothesis is a highly summarized or truncated
version of the source text, there will be no n-gram
overlap for higher values of n. For example, 63%
of the entailment pairs in the RTEL development
set had no n-gram overlap for n=4.?

2 See the section below on unmodified BLEU results for fur-
ther statistics.

To rectify this problem (clearly we don't want
63% of our data to have a null score), there are two
options: we could use a lower value of n, or we
could change the averaging function. It is not de-
sirable to reduce the value of n: 37% is still a sig-
nificant number of entailments that make use of the
4-gram overlap, and it is likely that these longer
phrases represent the algorithm’s best hope for
capturing syntactic features. Besides, even at n=2,
a significant number (15%) of the RTE1 develop-
ment set would receive a null score. It is preferable
to have a continuum of gradated scores than to
break the data into essentially null and non-null
categories.

The obvious solution is to use a linear, rather
than geometric mean. In fact, Papineni et al. state
that this same averaging method yielded good re-
sults during the development of the BLEU algo-
rithm, but was later discarded because it did not
account for the exponential decay in n-gram over-
lap for increasing values of n. This is less of a con-
cern in RTE, where the main objective of this
algorithm is to measure word overlap. Thus, we
can use a linear weighted average such as:

N
Sy = ZWiSi
i=1

In fact, this average score will act as the overall
score in our modified algorithm, since there is no
brevity factor. The values for s; and w; are calcu-
lated as above.

3 Results and Performance

3.1 Evaluation Methodology

The evaluation for the performance of the algo-
rithms was the same as that defined for the RTE1
challenge. Accuracy was measured as the fraction
of correctly labeled true or false entailments as
produced by the system (i.e. the percentage of
judgments that are correct). A second measure, a
confidence-weighted score (cws), was computed.
This measure weights judgments based on their
relative ranking as follows:
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Fig 1: Chart ploting accuracy vs. cutoff score
for the RTE1 development data. The two dotted
lines indicate the potential candidates for cutoff
score.

Although other measures for evaluation, such as
precision, recall, and f, have been recognized as
potentially insightful for RTE (Dagan et al. 2005),
they were not included in this project because they
were not part of the RTE1 challenge.

3.2 Datasets

The RTEL challenge consisted of a development
dataset, containing 283 true entailments and 284
false entailments (567 total entailments), and a test
set containing 400 true and 400 false entailments
(800 total entailments). In addition, the RTE2 de-
velopment set consists of 400 yes and 400 no en-
tailments (800 total entailments; they decided to
change the terminology, but yes/no denotes the
same thing that true/false denoted in RTE1). Thus,
the dumbest baseline for all of these systems,
choosing always either true or false, is 50%.

The examples for the RTE1 datasets were sub-
divided into categories: these categories corre-
spond to different areas of NLP and the
entailments are representative of the type of texts
that arise in that area. The categories in RTE1l
were: information retrieval (IR); comparable
documents (CD); reading comprehension (RC);
guestion answering (QA); information extraction
(IE); machine translation (MT); and paraphrase
acquisition (PP). Most systems showed slight dif-
ferences in performance between these categories.

Fig 2: Chart plotting accuracy vs. cutoff score
for the RTEL1 test data. The dotted line indicates
the cutoff score that was chosen based on the
development set.

3.3 Results for the Unmodified BLEU Algo-
rithm

The first run used the unmodified BLEU algorithm
to assign a score to each text-hypothesis pair in the
RTE1 development set. For this run and all others,
N was chosen to be 4, which is also the default
value in the Perl implementation. After running the
algorithm on all T-H pairs, a cutoff score s, was
determined such that all entailments with a score
equal to or lower than s, were judged false, and
all entailments with a score higher than s.; were
judged true.

As mentioned above, the unmodified BLEU al-
gorithm assigns a high number of zero scores on
the RTE dataset. In fact, zero is an attractive cutoff
point; as figure 1 above helps illustrate, the optimal
accuracy on the development set was found to oc-
cur at two points: se,e = 0.002 and s = 0.132. Both
of these cutoffs give accuracies of 53.8%
(299/567). The lower value was chosen, as it is
unclear what is represented by the second peak; a
cutoff score of zero, on the other hand, has a cer-
tain aesthetic appeal.

At this cutoff, the unmodified BLEU algorithm
correctly identified 253 false entailments and 46
true entailments, for an overall accuracy of 53.8%
(299/567). The difference in number of correct
false and correct true judgments is simply due to
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Fig 3: Chart plotting accuracy vs. cutoff score
for the RTE1 test data. The dotted line indicates
the cutoff score that was chosen for the modi-
fied algorithm based on the development set.

the fact that the majority of hypotheses received a
zero score, thus falling below the cutoff score.

Applying this same cutoff value to the RTE1
test data, the unmodified BLEU algorithm cor-
rectly identified 253 false entailments and 163 true
entailments, for an overall accuracy of 52.0%
(416/800).

Both figures 1 and 2 illustrate that the unmodi-
fied BLEU algorithm achieves its peak accuracy
with a cutoff of zero, perhaps because this very
low score is most likely to capture the false entail-
ments with very low correlation to their source
texts. However, it is difficult to explain why the
algorithm seems to have an alternative peak at
higher cutoff scores: this may be due to the algo-
rithm capturing the very highly correlated true en-
tailments (perhaps from the CD or MT tasks). The
distributions also seem to indicate a difference in
the nature of the development and the test data
sets: the potential peak cutoff at 0.12 in the devel-
opment data would have an awful performance on
the test set.

It is probably wise not to read too much into
these distributions, as this system is performing at
a level only slightly higher than random guessing.
The best way to think about the unmodified BLEU
algorithm as a RTE system is that it is a binary
function: a zero score predicts a false entailment,
while a nonzero score predicts a true entailment.

Fig 4: Chart plotting accuracy vs. cutoff score
for the RTE1 test data. The dotted line indicates
the cutoff score that was chosen based on the
development set.

3.4 Results for the Modified BLEU Algorithm

Since it was specifically altered to give fewer null
scores, the modified BLEU algorithm provided a
distinctly different distribution of scores than the
original BLEU algorithm. It also achieved higher
accuracy for the RTEL development and test data

As before, we chose the optimal cutoff score Sey
based on the performance of the algorithm on the
RTEL development set. The ideal value was de-
termined to be s.; = 0.221; this corresponds to the
maximum accuracy, as can be seen in figure 3. At
this value of sy the modified BLEU algorithm
achieved 57.8% accuracy (328/567), correctly
identifying 131 false entailments and 197 true en-
tailments.

The system did not fare as well on the test data:
using the previously determined cutoff score, the
modified BLEU algorithm managed only an accu-
racy of 53.8% (430/800), correctly identifying 160
false entailments and 270 true entailments.

As a side note, if the algorithm were allowed to
re-train based on the test data, the best possible
accuracy would be 55.3%, using a s¢, of 0.1333;
see figure 4. This may be an argument in favor of
lowering the cutoff score for future applications.

3.5 RTE2 Datasets

Considering that there seems to have been a sig-
nificant difference in the make-up of the two data-
sets in RTEL, it is worthwhile to investigate the



performance of these two systems on a new data-
set: the development set for the Second Recogniz-
ing Textual Entailment challenge.

The RTE2 dataset is slightly different in format
consists of the categories IE, IR and QA from
above, as well as text summarization (SUM). The
RTE2 data were chosen “to provide more ‘realis-
tic’ text-hypothesis examples, based mostly on
outputs of actual systems” (Bar-Haim 2005), and
thus one may expect that the datasets will be dif-
ferent in some ways from the RTE1 datasets.

Using the same cutoff score of s¢, = 0.221, the
modified BLEU algorithm achieved an accuracy of
60.4% (483/800) on the RTE2 development data
set. Thus, whatever changes the developers made
to the datasets seem to favor the n-gram approach.

Likewise, the unmodified BLEU algorithm was
tested on the RTE2 development set, achieving
56.0% accuracy (448/800) using a cutoff score of
zero.

The RTE2 results at least partially validate the
choice of cutoff score for the modified BLEU algo-
rithm assigned by the RTELl development data
(0.221). The revised cutoff score based only on the
RTE2 development data would be 0.2580, yielding
an accuracy of 61.4%, only 1% higher than the
accuracy achieved with the original cutoff score.
Looking over the results of the RTE1 development
and test data combined with the RTE2 develop-
ment data, it seems best to keep the cutoff score
near 0.22.

3.6 Comparison of Results

At this point it seems appropriate to bring up the
work of Pérez & Alfonseca from the first RTE
challenge. Their submission consisted of an im-
plementation of the BLEU algorithm, but | have
been unable to replicate their exact results. From
their pseudo-code it would seem that they imple-
mented a variation of the BLEU algorithm that
used a weighted linear mean to average the scores.
However, they do not mention that they have
modified the BLEU algorithm from the version
proposed by Papineni et al., nor do they give any
of the details of their implementation.

I experimented with a modified version of the
algorithm that included the brevity factor but used
the linear rather than geometric mean, hoping to
match their results. | was unable to come up with
the cutoff scores they reported, although | managed
to obtain loosely similar accuracy values.

Below | summarize the results of Pérez & Al-
fonseca’s BLEU implementation, my unmodified
BLEU implementation, and the modified BLEU
implementation. The table contains the accuracy
values for these three systems, as well as the best
system in RTE1 for comparison:

3 3 g
D ED | u 8
Lo 8L | SE| K8
o So | &< xom
Development
Set (RTE1) 538 | 57.8 | 54 n/a
Test Set
(RTE1) 52.0 | 53.8 | 49.5 | 58.6
Development
Set (RTE?) 56.0 | 604 | n/a | n/a

Table 2: Comparison of accuracy values for
three BLEU-based systems and the best entry
in RTEL.

While the table above illustrates that the modi-
fied BLEU algorithm proposed in this study out-
performs the unmodified BLEU algorithm and the
BLEU variant implemented by Pérez & Alfonseca,
it also points out that none of the BLEU-based sys-
tems achieve accuracies close to the best system in
RTEL, and this gap is not likely to be closed. In the
next section, | will discuss the role of BLEU as a
baseline in RTE and look at some other promising
approaches to the RTE task.

4  Trees and Rocket Ships

(Bayer et al. 2005), in their submission to the
RTEL challenge, rightly point out that RTE is a
difficult task and that until the complex systems
are able to get their many components working
well together the simple systems will outperform
them. They warn against trying to "climb a tree to
get to the moon" (quoting Dagan). In this sense,
the BLEU algorithm is a tree; it gets us part of the
way towards the solution, but inevitably leads to a
dead end. It may have a role within a larger sys-
tem, but the future of RTE is such that a simplistic
n-gram approach will not be successful on its own.



4.1 Shortcomings of the BLEU Algorithm
(the "Tree™)

The BLEU algorithm is not meant to be anything
more than a baseline for RTE, thus it is not produc-
tive to spend much time pointing out its deficien-
cies. An example or two will suffice to show why
an n-gram model will always fail on certain types
of entailment pairs.

For example, consider the case where the entire
hypothesis H appears as a clause in the text T. The
BLEU algorithm will assign this a score of 1, since
every possible n-gram in H also appears in T.
However, this does not ensure entailment. Con-
sider the pair:

T: It is not the case that John likes ice cream.
H: John likes ice cream.
(false)

Our first reaction might be to question the some-
what arbitrary relationship we came up with ear-
lier, treating H as the test and T as the reference in
the BLEU algorithm. However, changing this as-
signment accomplishes nothing, since the labels T
and H can similarly be reversed in the above ex-
ample to yield another false entailment that
achieves a BLEU score of 1.

While problems such as this clearly show that
BLEU is deficient as a stand-alone algorithm for
RTE, it has potential applications as a moderate
baseline and possibly as a final stage in more com-
plex systems. One could imagine, for instance, a
system that generates atomic propositions from T
and uses the BLEU algorithm to compare these
propositions to H.

4.2 Other Promising Approaches to RTE (the
"Rocket Ships™)

Reading through the proceedings of the first RTE
challenge workshop, it is clear that there are sev-
eral interesting approaches being taken towards the
RTE task. Below I list a few of my favorites, giv-
ing only a general sketch of how they work.

Tree-Edit Distance and Syntactic Graph Match-
ing

I group these together because even though there
are some basic differences, they share a similar
concept. Both approaches use dependency-tree
structures to represent the T and H sentences (or

clauses), and then use some procedures to calculate
the difference between T and H in terms of the cost
required to transform one tree/graph into the other.
Minimum tree-edit distance algorithms use the
basic transformations of inserting, removing, and
substituting nodes within the trees to find the
shortest edit path that transforms the H tree into the
T tree (or vice versa). It would be interesting to see
a minimum tree-edit distance algorithm for RTE
that could incorporate syntactic concepts into its
cost calculations: e.g. inserting a "be" verb node
into apposition structures to transform them into
sentences. This would be a big project in itself!
However, | think that there is a lot of room for in-
novation in this approach and it may offer signifi-
cant progress in the future. See (Kouylekov &
Magnini, 2005), (Raina et al. 2005), and others.

Statistical Lexical Relationships

This approach treats entailment as translation,
drawing on concepts from the field of MT. T-H
pairs in the training set are aligned using software
such as Giza++, and "translate” the text into the
entailment. (Bayer et al. 2005)'s System 2 is ex-
actly this type of system. Even though they de-
scribe it as a "tree" in their analogy above, it
achieved the best performance in the RTEL chal-
lenge!

While these systems may fail to directly address
the underlying semantic and syntactic principles
that define entailment, there is certainly room for
improvement, especially in the view of those who
hope to merge syntactic considerations with the
statistical methods that have such success in MT.
See (Bayer et al. 2005), (Glickman et al. 2005),
and others.

Atomic Propositions

This is an interesting approach that basically pre-
dicts the entailment hypothesis from the source
text. A sentence contains several atomic proposi-
tions that each could generate an independent sen-
tence; these atomic propositions are compared to
the hypothesis to see if any of them matches. See
(Akhmatova, 2005).

Semantic Distance

This is a concept (not really an approach) that is an
essential feature of any effective RTE system.



There are many types of relatedness between
words (synonymy, antynomy, hypernymy, etc.)
and a RTE system must be able to use these rela-
tionships effectively when performing various
comparisons and transformations between T and
H. See (Budanitsky et al. 2001) and practically any
of the RTE1 submissions.

5 Conclusion

In this paper | hope to have shown that the BLEU
algorithm is more effective in dealing with the
RTE task when it has undergone certain modifica-
tions, namely eliminating the brevity penalty and
adjusting the scoring mechanism to use a weighted
linear, rather than geometric, mean. The modifica-
tions to the system led to a 2-4% increase in accu-
racy over all test sets when compared to the
unmodified BLEU algorithm.

Despite these modifications, the BLEU algo-
rithm remains nothing more than a baseline for
recognizing textual entailment, because it lacks the
room to grow and accommodate further improve-
ments. This is not to say that it is useless for the
future of RTE; it may potentially serve as a base-
line for evaluating other systems and components
in RTE, and it may itself act as a component in a
robust RTE system.
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