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Stability of A–B phase boundary in a constriction
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Abstract

We report on a Ginzburg–Landau calculation of the stability of a boundary between A and B phases of superfluid
3He in a two-dimensional constriction. In the macroscopic limit the stability follows a well-known relation, which

depends on the surface tension sAB of the A–B boundary. In the narrow-constriction limit the surface tension is not well

defined, but the interface is always stable, and a weak link between the A and B phases is obtained.
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1. Pinning of A–B interface

Properties of the A–B interface in superfluid 3He have

previously been studied in some detail [1]. Most of the

experimental and theoretical considerations were in-

volved with nucleation problems, propagation of the

free boundary, or determination of its order parameter

structure and surface tension [2–4]. In contrast, we wish

to study the conditions under which the boundary can

be stabilized in a weak link, and the properties of the

resulting current-phase characteristics. In this paper we

concentrate on an analysis of the stability aspect, using

the Ginzburg–Landau (GL) theory. We consider a two-

dimensional model which approximates a long narrow

slit in a planar wall.

It is well known that in the macroscopic limit the

pinning stability of the interface is determined only by

its finite surface tension sAB [2]. For a slit of width W

the stability condition is

jDfABjo
2sAB

W
; ð1Þ

where DfAB ¼ fA � fB is the difference in bulk condensa-

tion energy densities of the two phases. However, the

macroscopic concept of surface tension is not well

defined in the limit of small constrictions, and Eq. (1) is

not necessarily valid then. In any case, sAB is defined

only for DfABE0: In the GL regime, DfAB can be varied

by applying different pressures or magnetic fields. In this

paper, we choose the first of these methods, and use in

our calculations the Sauls–Serene strong-coupling para-

meters [5].

Fig. 1 shows schematically where the A–B boundary

stabilizes at different ambient pressures. At a coexistence

point ðT ; pÞ ¼ ðT0; p0Þ in temperature–pressure plane

both bulk phases are equally stable and DfAB ¼ 0 (in

GL theory T0 is arbitrary). However, A phase is more

stable inside the channel, and the interface will settle to

the B phase end (a). Upon increasing the pressure, the

interface will bulge (b) and eventually go unstable [2]. If

the pressure is decreased, the opposite (d) will happen,

but first a (rapid) transition through (c) must occur. The

situation is not symmetric, and, a priori, the critical

jDfABj may be different in opposite directions. There

may also be hysteresis associated with the paths (a–b–a)

or (a–d–a).

2. Numerical results

Our computational method employs a standard

minimization routine for the GL free energy functional,
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which is discretized in and around the aperture. A lattice

spacing of one xGL was used in the larger apertures,

where refinement had no noticeable effect on the

stability behavior ðxGL ¼
ffiffiffiffiffiffiffiffiffi
K=a

p
[4]). As boundary

conditions, we assumed diffusive walls, and any

orientations of the bulk A and B phase order parameters

were made possible. Bulk cutoffs were chosen far

enough, so that the phase boundary could freely bulge

and escape at the instability.

For a free planar boundary, the lowest value of sAB

should be attained when the bulk orientations of the A

and B order parameters and the interface normal #s

satisfy #dm ¼ 7Rmi #si [1]. We shall restrict to this case here

also, with #s now the wall normal. Tests with other

configurations show that the obtained critical values can

fluctuate somewhat, sometimes causing the instability to

occur slightly earlier.

We have mostly tested apertures in walls of two

different thicknesses, D=xGL ¼ 4 or 20; and we found no

difference in their critical jDfABj values (see Fig. 2). There

is hardly any hysteresis in the B phase end (a–b–a), and

the transition (a–c) is not clear-cut for channels this short.

In contrast, there is strong hysteresis in the A phase end

(a–d–a). This is because there is an energy barrier for A

phase to re-enter the channel, since the inevitable bending

of #l requires the formation of a line singularity in one

corner of the channel end. Hence, as the pressure is

increased at point (d), the boundary tends to first freeze at

the A phase end, and then jump directly to the B phase

end.

From the asymptotic behavior of Fig. 2 we also

conclude that, at ðT ; pÞ ¼ ðT0; p0Þ;

sAB ¼ ð0:7270:2ÞxT fB; ð2Þ

where xT is now defined as in Ref. [2] for simplicity of

comparison. The upper and lower limits correspond to

fits to the right and left branches, respectively. This

result is in good agreement with the calculations of Refs.

[3,4], although the macroscopic limit has only been

approached up to W=xGL ¼ 70: This scheme for the

determination of sAB is also closer in spirit to the

experiment of Ref. [2], with the suppression of the order

parameter at solid surfaces, the pinning, and the

interfacial curvature all being taken into account.

As for the units of Fig. 2, note that fA; fB; and xGL

are themselves dependent on T and p: To be exact,

the dotted curves corresponding to an extrapola-

tion of Eqs. (1) and (2) assume that the path in

ðT ; pÞ plane is taken such that xGLðT ; pÞfBðT ; pÞ ¼
xGLðT0; p0ÞfBðT0; p0Þ; with T0 as a free parameter.

3. A–B interface and weak links

Ultimately, we are interested in the weak-link proper-

ties of the A–B interface. The most relevant regime in

Fig. 2 is then W=xGL510; since a significant suppres-

sion of the order parameter is required for a proper

weak link realization [1]. In this case the pinned interface

is stable for all physically obtainable pressures, and

therefore a slit-like A–B weak link is well defined and

experimentally feasible. As an interesting feature, we

note that the associated current-phase relations are p
periodic under the same condition #dm ¼ 7Rmi #si which

was assumed above. These issues will be addressed

elsewhere in more detail.
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Fig. 1. Equilibrium position of the A–B interface in the channel

at different pressures: (a) p ¼ p0; (b) p > p0; (c,d) pop0: The

thick arrows denote orientation of #l vector when there is A

phase in the respective regions.
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Fig. 2. Stability of the A–B interface inside a 2D slit. The solid

curves calculated for different wall thicknesses (4 and 20)

coincide. The dash–dotted line marks the hysteretic transition

in the thick-wall case, where A phase penetrates back into the

channel when the path (a–c–d) is reversed before the instability.

The vertical dotted line corresponds to the melting pressure for

the Sauls–Serene parameters [5], and the curved dotted lines to

an extrapolation of Eqs. (1) and (2) for all p (see text).
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