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Dynamic Characteristics of 
Externally Pressurized, Double-
Pad, Circular Thrust Bearings 
With Membrane Restrictors 
The dynamic characteristics of externally pressurized, double-pad, circular thrust 
bearings with membrane variable flow compensation are analytically studied. Under 
static loads or load composed of a static and cyclic component, membrane com
pensation gives better overall performance characteristics than capillary {fixed flow) 
compensation. As the frequency increases, capillary compensation gives approxi
mately the same performance as optimal membrane compensation when the bearing 
operates under pure cyclic loading. 

Introduction 
Externally pressurized bearings are widely used in applica

tions such as machine tools, measuring instruments, and testing 
machines. The performance of these bearings is sensitive to 
the type of internal compensation. Generally, there are two 
types of compensation. One is passive compensation, examples 
of which are capillary and orifice restrictors. The other is active 
compensation, which includes spools, membranes, and con
stant-flow-rate valves. For passively compensated bearings, the 
geometry of the compensating element does not change when 
the operating conditions are varied. For actively compensated 
bearings, however, the internal geometrical configuration is 
automatically adjusted by means of either a load sensing device 
or a pressure sensing device. Generally, higher load capacity 
and stiffness are attainable when the bearing is actively com
pensated. 

Since the 1960s, externally pressurized bearings with variable 
flow restrictors have been investigated by many researchers. 
For steady-state conditions, contributions to the behavior of 
these bearings have been made by De Gast (1966), Mayer and 
Shaw (1963), O'Donoghue and Rowe (1969), and Cusano 
(1974). Since these bearings often operate under dynamic con
ditions or subjected to disturbances, their dynamic perform
ance is of interest to designers. However, analyses reported in 
the literature concerning the dynamic behavior of externally 
pressurized bearings having fixed or variable-flow restrictors 
are limited. Among these analyses is that of De Gast (1966) 
who experimentally studied the response of a membrane com
pensated bearing subjected to a sinusoidal load. The squeeze 
film damping of an externally pressurized bearing and its effect 
on the vibratory response of machinery, particularly machine 
tools, was investigated by Brown (1961). However, he used a 
simple linear, spring-damper, massless model and assumed that 
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the supply pressure is equal to the recess pressure of the bearing. 
Licht and Colley (1964) presented a theoretical analysis on the 
performance characteristics of externally-pressurized sliders 
with both incompressible and compressible lubricants. They 
mainly focused on system stability analysis considering small 
displacements from the equilibrium gap height. Optiz et al. 
(1969) analytically studied the dynamic behavior of an exter
nally pressurized spindle bearing with capillary compensation. 
Since their results are based on an equivalent linear mass-
spring-damping system, the validity of the results are limited. 
Perhaps, the most rigorous analysis of the dynamic charac
teristics of externally pressurized bearing is due to Ghosh and 
Majamdar (1982). They studied the stiffness and damping 
characteristics of externally pressurized thrust bearings by li
nearizing the governing equations using a first order pertur
bation method. Although their model contained many features 
such as effects of fluid inertia and recess volume fluid com
pressibility, the analysis was limited to passively compensated 
systems with a capillary or orifice restrictor. 

In this paper, the dynamic behavior of an externally pres
surized doublepad, circular thrust bearing with membrane 
compensation is analytically studied. The circular geometry is 
used for its simplicity. Similar results, however, are expected 
if other geometries were used. The bearing is modeled as a 
two-degree-of-freedom nonlinear system. Both the steady state 
and transient behavior of the bearing, when it is subjected to 
a static or dynamic load, are analyzed. A wide range of system 
parameters, such as membrane stiffness, supply pressure, and 
recess-to-supply pressure ratio, are considered under various 
loading conditions. 

Problem Formulation 
The following analysis is based on the assumptions given 

below: 
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connecting pipe 

bearing 

Fig. 1 Schematic of a membrane-compensated double-pad circular 
bearing 

(1) The bearing system is modeled as a two-degree-of-free
dom system with two lumped masses (Figs. 2 and 3). 

(2) The pressure in the recess region is assumed to be constant 
while that in the annular region is governed by the Reynolds 
equation. 

(3) The lubricant is incompressible and its viscosity and 
density are constant. 

(4) Laminar flow exists in the bearing and in the membrane 
compensator. 

(5) The ambient pressure is zero. 
(6) The lubricant inertia force is neglected. 

Mathematical Model 
1 Governing Equations of Motion. A schematic of the 

double-pad externally pressurized bearing is shown in Fig. 1. 
The equation of motion of the bearing is given by (see Fig. 2) 

Mh=fn+f(t) (1) 
where/„=/„6-/„, is the resultant pressure force of the two oil 
films acting on the bearing, and/(f) is the externally applied 
load which is assumed to be composed of a static component 
and a sinusoidal component, i.e., 

f(t) = ws+wdcos(ut) (2) 

Similarly, the equation of motion of the membrane is given 
by (Fig. 3) 

mx + kmx=fm (3) 
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Fig. 2 Forces acting on the bearing element 

where fm =f,„b - / , „ , is the resultant pressure force acting on 
the membrane and km is the membrane stiffness. The mem
brane stiffness can be determined in terms of the material and 
geometry of the membrane element and is given by De Gast 
(1966) as 

CP = 

Mg 
trips 
Mg 

r2 

= dimensionless membrane stiffness 

= dimensionless supply pressure 

Cr= — = dimensionless radius parameter 

7 T 2 ^ 2 

c 

M2gh4ox0 

R4 

= dimensionless viscosity parameter 

^ = dimensionless geometry of the con-
0 necting pipe 

\ l - / 3 InRj 

1/3 

ho V - / 3 
Cz = m/M = ratio of membrane to bearing mass 

E = modulus of elasticity of membrane, 
Pa 

f(t) = external load, N 
fm =fmb —fmt = resultant pressure force acting on 

membrane, N 
fmb> fmt = membrane pressure force, N 

fmbai fmta = membrane annular region pressure 
force, N 

fmbn fmtr = membrane recess region pressure 
force, N 

fv=fvb~fvt — resultant pressure force acting on 
bearing, N 

fvb' fvi = bearing pressure force, N 
fvba> fvta = bearing annular region pressure 

force, N 
fvbn fvtr = bearing recess region pressure force, 

N 
Fv—fJ^ePs — dimensionless bearing pressure force 

Fm =fm/ir>ips = dimensionless membrane pressure 
force 

g = gravitational constant, g = 9.8 m/s2 

h = bearing displacement, m 
hd = amplitude of bearing cyclic displace

ment, m 
hm = bearing mean displacement, m 
h0 = bearing film thickness at zero load, 

m 
H=h/h0 = dimensionless bearing displacement 

Hd=hd/h0 = dimensionless amplitude of bearing 
cyclic displacement 

Hm = hm/h0 = dimensionless bearing mean dis
placement 

km = membrane stiffness, N/m 
L = length of the connecting pipe, m 
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For the bottom side of the bearing, the pressure force is given 
by: 

fvba^^(l2
e-lj)pA + 

Fig. 3 Forces acting on the membrane 

Km — 
4irAt3E S2-\ 

3/i(l-X2) ( S 2 - l ) 2 - 4 S 2 ( l n S ) 2 (4) 

HtH) 

""" 4°© 
+ 2 ^ - ^ ) 2 ! 

1 a 

(7) 

2 The Pressure Forces. The pressure forces in equations 
(1) and (3), depend on the bearing geometry, kinematic con
ditions, and the supply pressure. To obtain these pressure 
forces, the pressure distributions in the oil films must be first / m t e = ir(/2- r?)P 
determined. The pressure forces in the recess region (f„ln fubn 

fmm fmbr) are given by the recess areas multiplied by the cor
responding recess pressures. 

The pressure distribution in the annular region is governed 
by the Reynolds equation which is given, in cylindrical coor
dinates, by 

n3 /d2p 1 dp\ 

Solving equation (5), for the pressure and then integrating over 
the annular area, the pressure forces in the annular regions of 
the bearing and membrane are obtained. For the top side of 
the bearing, the pressure force can be expressed as follows: 

Similarly, for the top side of the membrane, the pressure force 
is given by 

'»© 
rl K9-D 

1 a 

3/jnrx 

(Xo-x)3 

r\~r\ 

In © 
i* I In '© 

0 2 / + 2 ^ 
+ L

2irl-r\)2\ (8) 

Finally, for the bottom side of the membrane, the pressure 
force is given by 

futa = Tr(r2e-rf)p2 + 
irPi 

In © 
r2 
1 P ('"©-3 1 j fmba = Tr(rl-r})pi 

viPs-Pi) 

In © 4©-o^: 
. Nomenclature (cont.) 

m = equivalent membrane mass, Kg 
M = bearing moving mass, Kg 
n = general notation for film thickness, 

m 
ps = supply pressure, Pa 
p0 = bearing recess pressure at zero load, 

Pa 
p(r) = annular pressure, Pa 

Pi = recess pressure in recess " / , " Pa 
Pj-p/Ps = dimensionless recess pressure in re-

Qi> Qi, = rate of lubricant flow out of the 
bearing, m3/s 

Qi> Qi = r a t e °f lubricant flow into the bear
ing, m3/s 

Qm\i Qmi = r a t e of lubricant flow into the mem
brane, m3/s 

r = radial coordinate direction, m 
rh re> ru r2> r3 = radius (see Figs. 2 and 3), m 

R = radius of the connecting pipe, m 
R, = r/re = dimensionless radius of the bearing 

recess 
Rl=rl/r2 = dimensionless radius of the mem

brane recess 
S=r3/r2 = membrane geometric parameter 

At = membrane thickness, m 

fi = 

t = time, s 
D h2 

T= - M t = dimensionless time 
iiii 

Vl = upward velocity of bottom surface, 
m/s 

V2 = upward velocity of top surface, m/s 
ws = static component of the external 

load, N 
wd = amplitude of cyclic component of 

the external load, N 
Ws = ws/Mg = dimensionless static load 
Wd=wd/Mg = dimensionless amplitude of cyclic 

load 
x = membrane deflection, m 

x0 = membrane film thickness at zero 
load, m 

X=x/x0 = dimensionless membrane deflection 
&=PQ/PS = pressure ratio 

H = lubricant viscosity, Pa-s 
X = Poisson's ratio 
co = excitation frequency, rad/s 

yCuCx J(h t) _ dimensionless excitation frequency 
Cn 
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4 Lubricant Flow Mate. 

Rates of flow into the membrane and out of the bearing 

The rates of lubricant flow into the membrane and out of 
the bearing can be obtained from the equation governing the 
viscous, laminar flow between two parallel circular plates. This 
flow is given by 

The total pressure forces at the top and bottom sides of the 
bearing are given, respectively, as 

fv,=fv,r+fvta (10) 

fub=fvbr+fvba (H) 

Similarly, the total pressure forces at the top and bottom sides 
of the membrane are given, respectively, as 

J ml =Jmtr ~^~Jmta (12) 

fmb =fmbr +fmba (13) 

The resultant pressure forces acting on the bearing and mem
brane are then given by 

J v Jvb Jvt 

•irrn3 dp 

6JX dr 
(20) 

Substituting dp/dr from a solution of equation (5), the rate of 
flow out of the top side of the bearing is given by 

62 = 
Tr(hQ-h)3 

6fi 
Pi 

J n 
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In © 
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and, out of the bottom of the bearing, given by 
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x 
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Similarly, the rate of flow into the top of the membrane is 
given by 

Jm Jmb Jmt 

= irii(Pi~Pi) + 

Q,„ 
ir(x0-x)3 \ ps-Pi 

6fi 

*(Pi-P\) 

'»© 
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and, into the bottom of the membrane, given by 

7r(x0 + x)3 \Ps-P3 

+ ~{r\-r\fx 

\ xj \ xj 

6/x 

(15) 
J n © 

The recess region pressures,puP2,P} andp4 , in equations (14) 
and (15), are related to the supply pressure (ps), system ge
ometry and kinematic conditions. These relations can be de
termined by the flow continuity in the system. 

3 Continuity Equations. The continuity equation for the 
top side of the membrane is given by (Fig. 1) 

Ql = Qn,i + irr2
2x (16) 

and, for the bottom side of the membrane, it is given by 

Qi = Qna-inlx (17) 

Similarly, the continuity equation for the top side of bearing 
is given by 

Q2 = Qi + Trr2
eh (18) 

and, for the bottom side of the bearing, it is given by 

Q4 = e 3 - ^ (19) 

3/xx 

(x0+xy 

(rj-rj) 

In © 
+ 2/i (24) 

Rate of flow into the bearing through the connecting pipe 

Considering the laminar flow in the pipe connecting the top 
side of the membrane to the top side of the bearing, this flow 
is given by 

TR4 

&=^L{p>-p2) (25) 

Similarly, for the pipe connecting the bottom side of the mem
brane to the bottom side of the bearing, the flow is given by 

(26) 

Substituting equations (21) through (26) into equations (16) 
through (19), the equations of continuity become 
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(27) 

(28) 

(29) 

(30) 

The continuity equations developed above can be used to 
solve for the recess region pressures, pu p2, Pi and pA. These 
pressures, in a dimensionless form, are given by 

0.5 HF+(C„-C) P2 
Pi = (31) 

G = (l+A")3/[61n0ff1)] 

I=(l+H)3/[6ln(Ri)] 

The governing equations (1) and (3), can also be rearranged 
into a dimensionless form as follows: 

H=FvCttl + Cv2cos (UT)+Cvi 

X=FmCm2 — Cm3X 

(35) 

(36) 

where 
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L(i+^)3 ( l -x) 3 . 
By using the dimensionless recess pressures given by equations 
(31) through (34), equations (35) and (36) can be solved nu
merically to obtain bearing and membrane dynamics, respec
tively. 

P* = 

where 

CW(G-XDE) - 0 . 5 HF(B-G) 

BCW-(B-G){CW-I) 

A = (l-X)3/[6ln(R1)] 

B = CJCX 

C=(l-J/)3/[61n(fl,-)] 

D= (hQr2/xQre)
2 = (C/Cx)

2 

£=( l - i? 1
2 ) / [21n( i? 1 ) l 

F=(\-R?)/(\nRt) 

(34) 
Results and Discussion 

For all the results presented, the following dimensionless 
parameters are kept constant 

Cz = 0.0001, C1V=10.0, C, = 0.15, 

£,=0.33, i?, =0.4, C„ = 244000 

The choice of these constants is based on representative values 
that might be found in practice. 

The nondimensional input parameters varied in this paper 
include membrane stiffness (Ck), supply pressure (Cp), pressure 
ratio (/3), external load (Ws or Wd) and excitation frequency 
(0). The maximum nondimensional excitation frequency (0) 
considered in this research is one. For O > 1, all results ap-
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Fig. 4(c) 
Fig. 4 Static displacement of bearing, (a) effects of Ck and Wa(Cp = 24, 
/3 = 0.5), (b) effects of 0 and W, (C t = 0.36, C„ = 2A), (c) effects of C„ and 
WB{Ck = 0.36, 0 = 0.5) 

0.02 

Hd 0.01 

Fig. 5(c) 

Fig. 5 Amplitude of cyclic displacement of bearing with zero mean load 
(Ws = 0,il = 1.0), (a) effects of C„ and Wd (Cp = 24, /3 = 0.5), (o) effects of 
C„ and W„ (C t = 0.36, 0 = 0.5), (c) effects of /3 and VI^C* = 0.36, C„ = 24) 

proach an asymptote and, therefore, no additional information 
is obtained. Considering some practical ranges for the variables 
which constitute fi, the excitation frequency would vary from 
1 to 7 cycles per second for the parameters considered and 
fi = 1. Under dynamic conditions, for the range of parameters 
considered, no cavitation occurred in the bearing or membrane. 
All results obtained are based on zero initial conditions. 

1 Static Analysis. In the static analysis, the bearing is 
subjected to a constant external load. This analysis is presented 
so that comparisons can be made between the static and dy
namic behaviors. Results from the static analysis are shown 
in Fig. 4. Figure 4(a) shows the variation of bearing displace
ment (H) with the static load (Ws) for various values of mem
brane stiffness (Ct). The results shown are for Cp = 24 and 
(3 = 0.5. When Ck approaches infinity, different operating con
ditions do not affect the motion of the membrane. Therefore, 
the system is equivalent to a capillary compensated bearing. 
Results obtained indicate that there exists an optimal value of 
Ck at which the stiffness of the bearing approaches infinity. 
This optimal value is found to be approximately 0.36. It is 
evident from the results that, as Ck assumes different values, 
the bearing can have positive, infinite and even negative stiff
nesses (i.e., bearing displacement is opposite to the applied 
load). A negative stiffness can result in static instability (ham
mering) and fatigue failure of the diaphragm. Operating in the 
negative stiffness region, therefore, should be avoided. Results 
shown in Fig. 4(a) also indicate that, when the dimensionless 

load, Ws, exceeds 5.0, the system stiffness tends to decrease 
significantly, even with an optimal Ck. 

The effects of pressure ratio on the bearing performance are 
shown in Fig. 4(b) for Q. = 0.36 and Cp = 24. For the given 
parameters, /3 = 0.5 seems to give the best performance. The 
system behavior, however, is relatively insensitive to the var
iation of (3. Effects of supply pressure on the bearing per
formance are shown in Fig. 4(c) for £^ = 0.36 and (3 = 0.5. For 
a given load, the stiffness of the bearing increases with in
creasing Cp. If Cp is chosen large enough, the stiffness may 
approach infinity. However, too large a Cp can result in a 
bearing system having negative stiffness, and too small a Cp 
can result in a stiffness that is too low. Therefore, Cp should 
be carefully selected to achieve the best system behavior. These 
analytical results agree qualitatively with the analytical results 
obtained by De Gast (1966) and with the experimental results 
obtained by Row and O'Donoghue (1970). 

2 Dynamic Analysis With Zero Mean Load. The dynamic 
characteristics of the bearing are first analyzed by comparing 
the response of the system under sinusoidal loading with the 
response under static loading. The results from this study are 
shown in Figs. 5 and 6. For a given amplitude of cyclic loading, 
and for Cp = 24, (3 = 0.5 and 0 = 1 , the amplitude of bearing 
displacement (Fig. 5(a)) is at least an order of magnitude smaller 
than the bearing displacement due to a static load of the same 
amplitude (Fig. 4(a)). Moreover, the value of Ck for which the 
system has an optimal response under static condition no longer 
produces an optimal response when Q = 1.0. In fact, the system 
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Fig. 6 Amplitude of cyclic displacement of bearing with zero mean load 
(Ws = 0, W„=0.5), (a) effects of Ck and a (C„ = 24, 0 = 0.5), (b) effects of 
C„ and n (Ck = 0.36, 0 = 0.5), (c) effects of 0 and fi (C„ = 0.36, C„ = 24) 

performance with capillary compensation (i.e., Ck=<x>) is al
most as good as the best response with membrane compen
sation. 

Figure 5(b) shows the amplitude of bearing displacement as 
a function of amplitude of excitation force for three values of 
Cp, again at an excitation frequency of A = 1.0. The results 
presented are for Ck = 0.36 and /? = 0.5. The system response 
is relatively insensitive to different values of Cp. The optimal 
value of Cp under these dynamic conditions is about 18 which 
is not the optimal value under static conditions. The amplitude 
of bearing displacement remains in a relatively small range 
(less than 0.014) for a wide range of amplitudes of excitation 
force. Thus, a smaller supply pressure can and should be used 
under dynamic conditions especially at higher frequencies. 

Figure 5(c) shows the amplitude of bearing displacement as 
a function of the amplitude of excitation force for Q. = 0.36, 
Cp-24 and three values of /3. Again, the optimal value of /3 
under dynamic conditions is not the optimal one found under 
static conditions, and the amplitude of bearing displacement 
is relatively insensitive to different values of /3. The best re
sponse is obtained for /3 = 0.3. 

The frequency response of the system is shown in Fig. 6 for 
^ = 0.5. Figure 6(a) shows that the optimal value of Ck is 
0.36 at low excitation frequencies (in the range of 0.0-0.4) for 
Cp = 24 and /3 = 0.5. As the excitation frequency goes beyond 
0.4, the amplitude of bearing displacement for different values 
of Ck approaches approximately the same value. The curves 
shown in Figs 6(b) and 6(c) have almost the same trend as the 
curves shown in Fig. 6(a). The behavior of the system at low 
frequency (up to 0.4) is similar to that under a static loading. 
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Fig. 7 Mean and cyclic displacement amplitudes of bearing with non
zero mean load for membrane (Cs = 0.36) and capillary (Ck = DO) compen
sations (/3 = 0.5, Cp = 24), (a) effects of Ws and 12 {Wd= 3.0), (b) effects of 
Ws and !J {W„ = 3.0), (c) effects of Ws and Wd (!) = 0.5) 

As the frequency increases, bearing displacements are very 
small for all values of Ck, Cp and /3. This is due to the squeeze 
effect which dominates at the higher frequencies. 

3 Dynamic Analysis With Non-Zero Mean Load. Since 
a cyclic load superimposed on a static load represents more 
common operating conditions, it is important to study the 
performance characteristics of the bearing when it is subjected 
to such loading. Under this loading condition, the response of 
the bearing is composed of a mean displacement Hm, and a 
cyclic displacement of amplitude Hd about Hm. For the fol
lowing analysis, the values of Cp and 0 are taken as 24 and 
0.5, respectively, and the dynamic excitation forces are as
sumed to be sinusoidal. Both a membrane compensated system 
with Q = 0.36 and a capillary compensated system (Q.= °°) 
are studied and the results are shown in Fig. 7. For Wd=3, 
Fig. 7(a) shows the bearing mean displacement plotted against 
the excitation frequency for various values of static loads (Ws). 
For a given Ws, the results indicate that Hm is almost inde
pendent of the excitation frequency. The values of Hm for 
Ck = oo (capillary compensation) are much larger than those 
for Ck = 0.36 under the same operating condition. The ampli
tude of the bearing cyclic motion as a function of excitation 
frequency is shown in Fig. 1(b). The parameters are the same 

,as those in Fig. 7(a). This motion is sensitive to the excitation 
frequency and to the static load only in the low frequency 
range. It becomes almost identical for all values of Ws when 
Q is sufficiently high. Figure 1(b) indicates that Hd is practically 
independent of Ck at high frequencies. As expected, at low 
frequencies, Hd for capillary compensation is larger than that 
for membrane compensation. The effects of the amplitude of 
dynamic load (Wd) on the bearing mean displacement (Hm) 
are shown in Fig. 7(c) for Q = 0.5. For a given Ws, the analysis 
predicts that Hm is significantly affected only at the higher 

164 /Vo l . 113, JANUARY 1991 Transactions of the AS ME 

Downloaded From: https://tribology.asmedigitalcollection.asme.org on 06/28/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use



0.1 

0.1 

m 

i 

(a) ^ ^ 

i 

i i i 

—~~ sCk = 0.64 

NCk = 0.36 

Ck = O.I8 

i i i 

4 T 6 

Fig. 8(a) 

10 

0.3 

0.1 

-0.1 

-0.3, 

1 

(b) 

" 

1 1 

7CP = 24 -

Cp = 32 

i i i 

T 
Fig. 8(b) 

10 

Fig. 8 Step response of bearing for 1VS = 0.4 and 0 = 0.5, (a) effects of 
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Fig. 9 Step-sinusoidal-input response of the bearing for membrane and 
capillary compensation (Cp = 24, 0 = 0.5, IVS = 3.0, W„=4.0 !J = 1.0) 

capillary compensated bearing than in the membrane com
pensated bearing. The cyclic amplitude of the bearing with 
Q = oo is smaller than that with Ck = 0.36. 

Conclusion 
In this paper, a circular, double-pad, externally pressurized 

thrust bearing compensated by a membrane restrictor or a 
capillary is studied. The response of the bearing is analyzed 
in detail under various static and dynamic loading conditions. 
Based on the results obtained, the following conclusions can 
be drawn: 

1 Under static loading, the stiffness of the bearing can 
approach infinity for a relatively wide range of applied loads 
if the system parameters (Ck, Cp, 13) are appropriately chosen. 
The system can also exhibit a negative stiffness when the mem
brane is too soft (i.e., small value of Ck) or when the supply 
pressure is too high. 

2 The amplitude of the bearing displacement is generally 
an order of magnitude smaller under pure sinusoidal loading 
than under a static loading of the same amplitude. Moreover, 
the response of the bearing is relatively insensitive to different 
values of Ck, Cp and P when the excitation frequency is suf
ficiently high (i.e., 0>0.5). This relative insensitivity is due to 
the dominance of the squeeze action at the higher frequencies. 
Therefore, a bearing with capillary compensation, which is 
much more inexpensive and less complicated than membrane 
compensation, can be used if the bearing is to be operated 
under sinusoidal, high-frequency conditions. 

3 Under dynamic loading with a given nonzero mean (Ws), 
the mean displacement (Hm) of a membrane compensated bear
ing is relatively insensitive to the excitation frequency and is 
affected by the amplitude of cyclic loading {Wd) only when 
both Wd and Ws are relatively high. For both membrane and 
capillary compensations, the cyclic bearing displacement (Hd) 
is significantly affected by Ws only when the excitation fre
quency is relatively low. For a given Ws, Hm is significantly 
larger for capillary compensation than for membrane com
pensation. 

4 The transient behavior of a membrane compensated 
bearing is generally better than that of a capillary compensated 
bearing, especially when a static loading component exists. 

values of Ws and Wd for membrane compensation. The bearing 
mean displacement with capillary compensation is significantly 
larger than that with membrane compensation and, for given 
Ws, it is independent of Wd. 

4 Time Response Analysis. The transient analysis is con
ducted by looking at the time history of the bearing displace
ment when a static load or a dynamic load with nonzero mean 
value are applied. Figure 8(a) shows the transient response of 
the bearing displacement, H, when the bearing is subjected to 
a step load with ^ = 4.0, /3 = 0.5, and Cp = 24. The bearing 
with Q = 0.36 has a much shorter settling time as well as a 
much smaller steady state displacement than the bearing with 
other Ck values. Thus, the system transient response seems to 
be very sensitive to the membrane stiffness. The effect of supply 
pressure (Cp) on the bearing time response is shown in Fig. 
8(b) for Ws = 4.0, 0 = 0.5 and 6^ = 0.36. The optimal value of 
Cp is 24 for the given values of Ck and (3, and a long transient 
is experienced when the supply pressure is low. Data not shown 
indicate that the transient response is relatively insensitive to 

Figure 9 shows the bearing transient response for Cp = 24, 
13 = 0.5, H^ = 3.0, Wd = 4.0 and 0=1.0. The transients are 
mainly due to the static step loading and is much larger in the 
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