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Enzyme structures determined in organic solvents show that most organic
molecules cluster in the active site, delineating the binding pocket. We
have developed algorithms to perform solvent mapping computationally,
rather than experimentally, by placing molecular probes (small molecules
or functional groups) on a protein surface, and finding the regions with
the most favorable binding free energy. The method then finds the con-
sensus site that binds the highest number of different probes. The
probe–protein interactions at this site are compared to the intermolecular
interactions seen in the known complexes of the enzyme with various
ligands (substrate analogs, products, and inhibitors). We have mapped
thermolysin, for which experimental mapping results are also available,
and six further enzymes that have no experimental mapping data, but
whose binding sites are well characterized. With the exception of halo-
alkane dehalogenase, which binds very small substrates in a narrow chan-
nel, the consensus site found by the mapping is always a major subsite of
the substrate-binding site. Furthermore, the probes at this location form
hydrogen bonds and non-bonded interactions with the same residues
that interact with the specific ligands of the enzyme. Thus, once the struc-
ture of an enzyme is known, computational solvent mapping can provide
detailed and reliable information on its substrate-binding site. Calcu-
lations on ligand-bound and apo structures of enzymes show that the
mapping results are not very sensitive to moderate variations in the pro-
tein coordinates.
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Introduction

A major challenge in structural genomics is the
elucidation of biochemical and biological proper-
ties of enzymes, including the determination of

amino acid residues that belong to the ligand/
substrate-binding site.1,2 The two main sources of
information on specific molecular interactions are
the structures of the enzyme, co-crystallized with
various ligands (substrates, cofactors, inhibitors,
products, and transition state analogs), and site-
directed mutagenesis of the putative binding site
residues. Since the available complexes provide
complete structural characterization only for a frac-
tion of the enzymes with known structure,2 and
mutational analyses are slow and labor-intensive,
developing a method for determining the func-
tional site on the basis of protein structure has
been an important goal.3

A potentially useful strategy for determining
ligand-binding sites on the surface of a protein is
solvent mapping, i.e. solving the X-ray structure
of the protein in a variety of organic solvents.4,5
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Data for elastase4– 6 and thermolysin7,8 show that
the protein structure remains virtually identical to
the native structure, and a limited number of
organic molecules (typically 1 to 12) are associated
with the protein surface in the first shell of water
molecules. The power of the method arises from
superimposing at least four or five structures of a
protein solved in different solvents.5 For enzymes,
the probes cluster in the active site, forming a “con-
sensus” site that delineates the binding pocket. All
other binding sites are either in crystal contact,
occur only at high ligand concentrations, or are in
small, buried pockets that bind only a subset of
the solvent molecules rather than all of them. The
preferential binding of organic molecules to the
active site has also been shown in aqueous solution
by NMR methods.9

Since experimental solvent mapping requires
repeated structure determination, and the protein
may have to be cross-linked for added stability in
organic solvents, the method is relatively expen-
sive. We have developed algorithms to perform
the mapping computationally by using small
organic molecules as probes on the protein surface,
and determining the consensus sites that bind a
number of different probes.10,11 The method has
been first applied to hen egg-white lysozyme9 and
thermolysin,7,8 because these proteins have been
experimentally mapped using a number of organic
solvents. In both cases, the probes cluster in the
active site, in good agreement with the results of
the mapping experiments.

While structural genomics efforts are likely to
provide structures for an increasing number of
poorly characterized proteins, few computational
tools are available for determining the functionally
important residues,12 – 20 even when the structure is
known, and hence computational mapping is
potentially important. However, several problems
need to be addressed before the method can be
considered a useful tool. First, both experimental
and computational mapping methods have been
applied only to a handful of proteins. Thus, the
general applicability of the approach is not at all
clear, and more proteins should be mapped to see
if the organic solvents cluster in the active site, irre-
spective of their size and polarity.4 – 8 Second,
assuming that such clustering occurs, it is still
necessary to study a number of well-known
enzymes, and to carefully evaluate the information
provided by mapping.

Here we address the above problems. First, the
mapping algorithm is applied to thermolysin, the
protein with the most extensive experimental map-
ping data available. The results are compared to
the ligand positions in the X-ray structures of the
protein, determined in aqueous solutions of iso-
propanol, acetone, acetonitrile, and phenol.7,8 The
interactions between the probes and particular
residues of the protein are also compared to the
interactions seen in the known complexes of
thermolysin with various ligands (substrate and
transition state analogs, products, and inhibitors),

extracted from the RCSB PDB. Second, we map six
enzymes, enolase, fructose-1,6-biphosphatase, ribo-
nuclease T1, trypsin, haloalkane dehalogenase, and
triosephosphate isomerase, that have no experi-
mental mapping data, but whose binding sites are
well characterized. These particular enzymes were
selected because their substrate binding sites are
not in the largest pockets,21 thereby avoiding the
possibility that the mapping finds the largest
crevice on the protein surface, which is frequently
the case when using simple geometric methods.15–18

We map each protein using acetone, urea, dimethyl-
sulfoxide (DMSO), isopropanol, t-butanol, and
phenol as probes, identify the consensus site, and
compare the results to the interactions extracted
from all complexes of these enzymes with various
ligands in the PDB. Mapping is performed both
for the ligand-bound and the apo structures of
each enzyme.

With the exception of haloalkane dehalogenase,
which binds substrates that are smaller than some
of the probes, the consensus site with the highest
number of different probes occurs in a major sub-
site of the enzyme active site. Clusters at nearby
locations indicate other subsites of the active site,
and hence are also considered in the further analy-
sis. As we will show, the selected clusters generally
delineate the entire active site. In particular, the
residues of an enzyme that most frequently interact
with the probes also bind many ligands (substrate
analogs, products, and inhibitors). Apart from par-
ticular cases in which either the binding site is not
accessible to probes, or part of the protein is not
present in the calculations, the mapping always
finds most of the binding site residues, and there
are very few false positives, i.e. residues hit by the
probes that do not belong to the binding site. Our
results suggest that the clustering of organic sol-
vents in the binding sites of enzymes is a general
property that applies to all enzymes, and thus sol-
vent mapping is a potentially important tool to
study poorly characterized enzymes if their struc-
ture is available.

Results

Identification of the thermolysin binding site

Thermolysin is zinc endopeptidase with two
quasi-spherical domains separated by a large
groove containing the active site zinc ion, coordin-
ated by H142, H146, E166, and one water
molecule.22,23 Since structures are available for
more than 20 complexes of thermolysin with
bound ligands, including transition-state analogue
inhibitors, the binding site and catalytic mechan-
ism are well understood. English et al.7,8 deter-
mined high resolution crystal structures of
thermolysin, generated from crystals soaked in
aqueous solutions of isopropanol, acetone, aceto-
nitrile, and phenol. An increasing number of sol-
vent interaction sites could be identified as the
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solvent concentration was increased, up to 12
bound molecules in the case of isopropanol. How-
ever, the S0

1 subsite was shown to be exceptional
on two accounts. First, at low solvent concen-
trations, this is the only binding site, and the con-
centrations must be substantially increased (up to
80% in the case of isopropanol) before binding
occurs at any other location. Second, superimpos-
ing all structures shows that S0

1 is the only site
where all four solvent molecules bind. Isopropanol
also binds to subsites S1 and S2, but only at high
concentrations.7 Figure 1a shows the ligand posi-
tions in the active site of superimposed thermo-

lysin structures solved in 10% isopropanol,7 50%
acetone, 50% acetonitrile, and 50 mM phenol.8

Computational mapping was applied to a
thermolysin structure (RCSB PDB code: 2tlx), co-
crystallized with the dipeptide Val-Lys, a cleavage
product, which is also shown in Figure 1 for refer-
ence. The PDB does not include any thermolysin
structure without a bound ligand. We have
removed the peptide, the active site Zn2þ, and all
crystallographic water molecules, and mapped the
entire protein surface using both the CS-Map algor-
ithm and the GRAMM-based approach to map-
ping. In agreement with the experimental data,7,8

Figure 1. Experimental and computational mapping of thermolysin. a, Superimposed ligand positions in thermoly-
sin co-crystallized with the V-K dipeptide (2tlx), and in structures solved in 10% isopropanol,7 50% acetone, 50% aceto-
nitrile, and 50 mM phenol.8 The color scheme used for the ligands is ochre, V-K dipeptide; red, isopropanol; blue,
acetone; black, acetonitrile; and purple, phenol. For the protein side-chains we use the standard atomic colors, i.e.car-
bon, grey; oxygen, red; nitrogen, blue; and hydrogen, white. All solvents bind in the S0

1 pocket, and isopropanol also
binds at the S1 and S2 sites (the latter is not shown). b, Computational mapping of thermolysin using the CS-Map algor-
ithm. The Figure shows the main consensus site in the S0

1 pocket that binds all four solvents (Table 1, site 1), and the
second consensus site close to S1, which binds three solvents (Table 1, site 2). c, Distribution of intermolecular non-
bonded interactions among thermolysin residues. The interactions were determined from three sources: computational
mapping; extracted from 43 complexes of thermolysin with different ligands in the RCSB PDB database; and exper-
imental mapping.7,8 Computational mapping results are based on the interactions found between various thermolysin
residues and the probes in the main consensus site. The Figure shows the union of the three sets of interacting residues
as determined by the three methods. d, The same as c, but for hydrogen bonds rather than non-bonded interactions.
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isopropanol, acetone, acetonitrile, and phenol were
used as probes. For each method, the five lowest
free energy clusters for each probe were super-
imposed (see Methods) to find the consensus sites
shown in Table 1. The integers in this Table repre-
sent the ranking of probe clusters, e.g. the consen-
sus site 1 found by CS-Map is located in the S0

1

pocket, contains the fourth lowest free energy clus-
ter of acetone, the second lowest free energy cluster
of phenol, and so on. For reference, Table 1 also
shows the distances from the center of a isopro-
panol molecule, labeled as IPA1 in the X-ray struc-
tures of thermolysin solved in isopropanol,7 which
binds in the S0

1 pocket.
According to Table 1, CS-Map finds a single con-

sensus site that binds all four molecules in the S0
1

pocket (Figure 1b), in good agreement with the
experimental data. Phenol, acetone, and aceto-
nitrile cluster at two additional positions, the first
being close to the S1 subsite (Table 1, consensus
site 2). Although the computational mapping also
places the lowest free energy isopropanol cluster
into the S1 pocket, this location is distinct from the
second consensus site that includes the other three
solvents. GRAMM also finds a single consensus
site, with four solvents bound, in the S0

1 site, even
closer to IPA1 than the one found by CS-Map. The
method places the lowest free energy clusters of
acetone and isopropanol, and the second lowest
free energy clusters of acetonitrile in an almost
completely buried pocket (Table 1, site 2 for
GRAMM). It is interesting that this pocket has
been shown experimentally to bind three of the
four solvents at elevated concentrations, but the
exception was acetonitrile rather than phenol.8

While CS-Map and GRAMM yield the same con-
sensus site for thermolysin, the results also show
that GRAMM has a higher tendency to put probes
in largely buried pockets. We note that combining
the results from CS-Map and GRAMM we find
the main consensus site to include eight probe
clusters, whereas at most three clusters overlap at
any other location. As will be discussed further,
such combination of results from the two methods
generally helps to better discriminate the consen-
sus site from other locations that bind some of the
probes.

In the case of thermolysin we have used the
CS-Map results to characterize the binding site.
Since the main consensus site (Table 1, site 1) and
site 2 are within 3 Å to each other, both were con-
sidered in the analysis (see Methods), and the
clusters at both locations were divided into sub-
clusters. Sub-clustering shows that each probe mol-
ecule binds in a number of rotational states, with
the non-polar moiety located in a hydrophobic
pocket defined by the side-chains of L202, F130,
L133, and F114 (Figure 1b), and the polar part
pointing toward various polar patches on the pro-
tein, in some cases forming one or two hydrogen
bonds.10 The X-ray structures also suggest that,
apart from the solvent in the buried pocket, the
bound molecules are fairly mobile, generally with
B factors around 60, and the existence of several
possible binding modes has been noted by the
crystallographer.7,8 Selecting a representative con-
formation from each sub-cluster, we counted the
non-bonded interactions and hydrogen bonds
between the probes and the protein, and deter-
mined their distribution among the amino acid
residues.

The above distributions were compared to the
ones based on experimental solvent mapping,7,8 as
well as to the interactions extracted from the 23
thermolysin complexes in the RCSB PDB. The
binding of substrate and transition state analogs,
products, and inhibitors always involves the
largely hydrophobic S0

1 sub-site, with the substrates
and longer inhibitors extending toward sub-sites S1

and S2. At least four hydrogen bonds are formed in
each complex, most frequently with the side-chains
of R203, E143, Y157, and N112, and with the polar
backbone atoms of Y115, A113, and N111. As
shown in Figure 1c and d, the residues that are
important for the binding of specific ligands also
interact with many probes.

While experimental solvent mapping identifies
only a subset of the important residues (E143,
R203, N112, and A113), computational mapping
provides essentially complete information on the
residues in the binding site, in terms of both non-
bonded interactions and hydrogen bonds (Figure 1c
and d, respectively). Indeed, H142, H146, and
E166 coordinate the Zn2þ in the active site, E143

Table 1. Ranking of probe clusters within the consensus sites for thermolysin

Probe

Algorithm Consensus sitea Acetone Phenol Isopropanol Acetonitrile

CS-Map 1 (S1
0) 4 (0.8) 2 (0.7) 2 (0.7) 3 (0.3)

2 (S1) 2 (3.7) 1 (3.5) – 1 (3.9)
3 1 (18.1) 4 (17.3) – 2 (17.4)

GRAMM 1 (S1
0) 5 (0.2) 3 (0.3) 4 (0.7) 3 (0.1)

2 1 (14.5) – 1 (14.4) 2 (14.2)
3 2 (20.1) – 2 (20.2) 1 (19.8)
4 3 (17.5) – 3 (16.9) 5 (16.7)

Distance of each cluster center from the isopropanol position IPA17 is shown in parentheses.
a The two consensus sites in the substrate binding region are shown in bold.
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serves as the general base, Y157 and H231 provide
further stabilization of the transition state, while
N112 and the backbone of A113 form hydrogen
bonds with the leaving group.22,23 While the same
residues interact with many of the probes, the
mapping results reflect the importance of each resi-
due for substrate binding rather than for catalytic
activity. For example, the mapping finds the high-
est number of hydrogen bonds for R203
(Figure 1d) which does not directly participate in
hydrolysis, but forms hydrogen bonds with the
carbonyl group of a residue at the P0

1 position, and
is known to be crucial for substrate binding.24 The
mapping does not find D226, which is part of the
catalytic mechanism,22 but the D226A mutation
introduces only a minor perturbation in the
activity.25 It is important that we do not find any
false positives, i.e. amino acid residues hit by the
probes that are not part of the binding site.

Mapping and binding site identification in
model enzymes

In our previous paper10 we mapped hen egg-
white lysozyme, which binds polysaccharides and
has a very large cleft six saccharide units long.
The mapping placed the lowest free energy clusters
for each of eight different solvents in sub-site C of
the binding site, in good agreement with inter-
molecular Overhauser effects that show site C to
bind, almost exclusively, all eight compounds in
aqueous solution.9 Since finding a large binding
site was really easy, here we study six enzymes,
enolase (1ebg), ribonuclease T1 (1rnt), triosephos-
phate isomerase (2ypi), fructose-1,6-biphosphatase
(1fbc), trypsin (1tng), and haloalkane dehalogenase
(2dhc), that all have relatively small binding sites.21

This eliminates the possibility that the mapping
simply finds the largest pocket on the protein sur-
face. All ligands, including ions and crystallo-
graphic water molecules, were removed before the
mapping by the less reliable, but faster GRAMM-
based approach. Acetone, urea, DMSO, isopro-
panol, t-butanol, and phenol were used as probes.
The five lowest free energy clusters of each probe
were superimposed (see Methods) to find the con-
sensus sites shown in Table 2.

Enolase (1ebg) catalyzes the dehydration of
2-phospho-D-glycerate (2-PGA) during glycolysis,
and contains two Mg ions in the binding site.26 – 28

Computational mapping, applied to the protein
finds only one position at which clusters of all six
probes overlap (Table 2, site 1 and Figure 2a). As
shown in Table 2, these clusters are the lowest free
energy ones for all solvents but isopropanol,
which has its second lowest free energy cluster at
this location. The consensus clustering occurs in
the active site, with cluster centers less than 1 Å
away from the position of 2-PGA. All other consen-
sus sites are formed by the clusters of four or less
different probes (Table 2).

In the clusters belonging to the main consensus
site, the probes interact with all the residues that

participate in the catalytic mechanism (Figures 3a
and 4a). These residues are K345, the catalytic
base; E211, the catalytic acid which donates proton
to C3 hydroxyl group of 2-PGA; K396, interacting
with one of the C1 carboxylate oxygen atoms to
stabilize the redistribution of negative charge
formed in the intermediate; E168, which may be
essential for proper orientation of K396 and E211,
as well as pKa adjustment of these residues; and
H373 which interacts with C3 hydroxyl oxygen
atom of 2-PGA.26 – 28 However, the highest numbers
of contacts are found for residues that are import-
ant for substrate binding rather than catalysis.
These are S39, which coordinates the lower affinity
Mg ion,29 and H159, R374, and S375 that interact
with the phosphate group of the substrate (Figure
3a).26 –28 Recently, an alternative mechanism has
been proposed in which H159 serves as the cata-
lytic base,30 but later it was shown that the H159A
mutant of yeast enolase still has 0.2% of the native
activity.31

In general, there is an excellent agreement
between the non-bonded interactions predicted by
the mapping, and those seen in the complexes of
enolase with various ligands (Figure 3a). Accord-
ing to Figure 4a, the predicted and observed
hydrogen bonds differ substantially more. The
main deviation is due to S39, which coordinates
the lower affinity Mg2þ through its backbone car-
bonyl and side-chain hydroxyl. Mapping has been
performed without metal ions, and S39 hydrogen
bonds with almost all probes. By contrast, the
side-chains of D246, E295, and D320 that coordin-
ate the higher affinity Mg2þ, did not show a strong
tendency to form hydrogen bonds (Figure 4a),
although they interact with many probes (Figure
3a). All other hydrogen-bonding groups are cor-
rectly identified by the mapping.

Ribonuclease T1 (1rnt) is an extensively studied
enzyme that catalyzes the hydrolysis of RNA at
guanylyl residues.32 According to the mapping,
we have all six solvents clustering in the active
site (Table 2, site 1). The probes interact with the
catalytic residues E58, H92, and H40,32 but the resi-
dues with the highest number of contacts and
hydrogen bonds are in the guanine-binding loop
Y42–E46 (Figures 3b and 4b). These latter residues
render ribonuclease T1 guanine-specific through a
series of intermolecular hydrogen bonds, and their
mutations affect the dissociation constant of the
enzyme–substrate complex but do not affect the
turnover rate.33 – 35 We find the strongest hydrogen
bonding affinity for N43, and large numbers of
non-bonded interactions for Y45 and Y42. The
latter is known to contribute significantly to
guanine binding through a face-to-face parallel
stacking, and the interactions with the side-chain
are revealed by the mapping (Figure 3b). By
contrast, for N43 and Y45 most interactions are
with the backbone, i.e. the NH group of N43
interacts with guanine N7, and the NH of
Y45 hydrogen bonds to O6 of guanidine moiety.33

The Y45 side-chain is also important, and this
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residue, often referred to as the lid of the guanine-
binding site, interacts with the highest number of
probes.32 Side-chain effects are also important for
F100, which frequently interacts both with the
probes in the mapping (Figure 3b) and with the
ligands in the ribonuclease complexes, and is
assumed to enhance the electrostatic interactions
between substrate and active site via a change in
the dielectric constant.32 As expected, this residue
forms many contacts with the probes (Figure 3b),
but no hydrogen bonds (Figure 4b).

Triosephosphate isomerase (2ypi) catalyzes the
tautomerization of dihydroxyacetone phosphate
(DHAP), and is the first example of the TIM fold
that occurs in variety of enzymes.36 The largest
consensus site found by the mapping is formed by
lowest free energy clusters of acetone, DMSO, iso-
propanol, and phenol, and the second lowest free
energy cluster of urea (Table 2, site 1 and Figure
2c). All other consensus sites have four or fewer

different probes. At the main consensus site, the
probes interact with N10, K12, H95, and E165 that
are directly involved in catalysis (Figure 3c), the
latter serving as the base.36 The remaining non-
bonded interactions are with three separate groups
of residues on loops 6 (residues 166 to 176), 7 (resi-
dues 209 to 214), and 8 (residues 230 to 240), and
bind to the phosphate group to the substrate.36 – 38

In particular, the NH groups of G171, G210, S211,
G232, and G233 make hydrogen bonds with the
phosphate oxygen atoms. The hydrophobic side-
chains of I170, L230, and V231 are also very
important for binding (Figure 3c), which may
explain the high sequence conservation at these
positions.38

For trypsin (1tng) the only consensus site with
six solvents is in the S1 pocket (Table 2, site 1;
see Figure 2d), formed by the lowest free energy
clusters of all probes but urea, which has its fourth
lowest free energy cluster at this location. The

Table 2. Free energy ranking of probe clusters, mapped by GRAMM, within the consensus sites for the bound confor-
mations of six enzymes

Probe

Protein Con. sitea Acetone Urea DMSO Isopropanol t-Butanol Phenol

1ebg 1 1 (0.26) 1 (0.27) 1 (0.48) 2 (0.81) 1 (0.39) 1 (0.36)
2 – 3 (10.11) 2 (9.83) 3 (9.14) 2 (9.10) 2 (11.10)
3 4 (20.61) – 4 (20.99) – 4 (20.83) 4 (20.59)
4 2 (14.38) 4 (14.38) 3 (14.58) – – 5 (15.26)
5 3 (25.30) – – 5 (24.52) – 3 (24.23)
6 5 (9.00) – 5 (8.08) 4 (7.44) – –

1rnt 1 2 (0.51) 4 (0.35) 1 (0.37), 4 (0.75) 5 (0.48) 4 (0.56) 1 (0.21)
2 3 (15.93) 5 (14.21) 5 (15.04) – 5 (15.34) 5 (14.28)
3 – 1 (10.61) 2 (11.76) 4 (12.38) – 2 (12.31)
4 – – 3 (10.24) 1 (12.02) – 4 (11.65)
5 – 3 (14.24) – 2 (15.92) – 3 (14.42)
6 1 (11.33), 5 (12.50)

2ypi 1 1 (0.49) 2 (0.76) 1 (0.46) 1 (0.70) – 1 (0.26)
2 2 (20.14) 3 (19.35) 3 (20.75) 4 (20.17) – –
3 – – – 3 (6.74) 1 (5.71) 2 (5.52)
4 – – 2 (17.48) – – 4 (16.14)
5 3 (12.79) – – 2 (12.53) – –
6 5 (17.51) 5 (16.74)
7 5 (12.75) 4 (12.60)

1tng 1 1 (0.30) 4 (0.65) 1 (0.17) 1 (0.60) 1 (0.32) 1 (0.50)
2 2 (17.46) 3 (18.01) 2 (17.44) 2 (16.92) – 4 (17.18)
3 4 (15.30) – 3 (14.91) 3 (15.27) 2 (15.89) 2 (15.72)
4 – – 4 (16.54) 5 (17.61) 4 (17.85) 5 (15.94)

1fbc 1 1 (1.41) 1 (0.43) 2 (0.59) 5 (0.80) 2 (0.61) 3 (0.92)
2 5 (1.72) 3 (1.27) 4 (0.44) 1 (1.18) 5 (1.50) 2 (0.87)
3 3 (0.40)
4 2 (11.86) 2 (10.06) 5 (11.76) 2 (9.91) 4 (11.33) 1 (9.64)
5 – – 1 (22.85) – – 5 (23.46)
6 4 (17.50) 4 (17.38)

2dhc 1 1 (0.62) 1 (0.56) – 1 (0.78) – –
2 3 (9.84) 3 (7.80) 3 (9.71) 3 (8.12) 1 (9.87) 2 (8.02)
3 2 (10.81) 4 (10.32) 1 (10.23), 5 (10.36) 4 (9.80) 3 (10.49) –
4 4 (12.40) 2 (11.40) 4 (13.15) 5 (12.62) – –
5 – – 2 (12.23) – – 1 (11.37)
6 5 (22.72) 2 (23.26)
7 5 (17.06) 5 (16.32)

Distance of each cluster center from the ligand in the X-ray structure of the enzyme is shown in parenthesis.
a Consensus sites in the substrate binding region are shown in bold.
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probes establish interactions with the specificity
determining residues D189 and G216, and with
catalytic residues S195 and H5739,40 (Figure 3d).
Most contacts occur with S190 and the backbone
atoms of C191, W215, S214, and V213. The last
three residues are known to fix the scissile bond of
the substrate in a fixed orientation.39,41 The side-
chain of V213 is at the bottom of the S1 pocket,
and interacts with the probes more often than it is
seen in the complexes of trypsin with various
ligands. Similarly, the residue G226, the backbone

of V227, and the side-chain of Y228 are all deep in
the binding site, and thus are more available to
the probe than to the larger substrate, resulting in
some overprediction of their interactions (Figure
3d). The mapping finds many hydrogen bonds
with S190, formed both by the backbone and by
the side-chain (Figure 4d). Since S190 hydrogen
bonds with the P1 side-chain,41 this prediction is
correct. The probes also form hydrogen bonds
with W215 and C191 that contact the P3 and P1 resi-
dues, respectively, in the substrate, but rarely form

Figure 2. Consensus sites found by computational mapping, superimposed with the specific ligand of the enzyme.
The color scheme for the ligands is ochre, ligand in X-ray structure of the enzyme; blue, acetone; yellow, urea; pink,
DMSO; red, isopropanol; green, t-butanol; and purple, phenol. a, Enolase (1ebg), ligand: phosphonoacetohydroxamate.
b, Ribonuclease T1 (1rnt), ligand: 20-guanylic acid. c, Triosephosphate isomerase (2ypi), ligand: 2-phosphoglycolate. d,
Trypsin (1tng) ligand: aminomethylcyclohexane. e, Fructose-1,6-bisphosphatase (1fbc) ligand: 2,5-anhydroglucitol-1,6-
biphosphate. Sites 1 and 2 are shown overlapping the two ends of the ligand. f, Haloalkane dehalogenase (2dhc),
ligand: 1,2-dichloroethane. Site 4 is the putative ligand collision site.30 The mapping suggests that the substrate
bound at site 4 is shifted toward site 2 (one of the two main consensus sites), and then enters the channel and moves
toward the catalytic site (site 1). The role of the second main consensus site (site 3) is not clear.
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hydrogen bonds. The agreement is good for G219,
which hydrogen bonds with the P1 side-chain.

Fructose-1,6-bisphosphatase is a tetrameric
enzyme that hydrolyzes fructose-1,6-bisphosphate

in the presence of divalent cations.42 The mapping
of this protein yields three consensus sites with six
solvents. Two of these sites are only 1 Å from each
other (Table 2, sites 1 and 2), and together include

Figure 3. Distributions of intermolecular non-bonded interactions. The mapping results are based on the interactions
found between the probes in the consensus site and the residues of the protein. The main consensus site is considered
for all enzymes except haloalkane dehalogenase, where the probes in site 1 are used. The statistics on enzyme–ligand
interactions are extracted from all enzyme–ligand complex structures in the RCSB PDB (see Methods). The Figure
shows the union of the two sets of interacting residues as determined by the two methods, i.e. computational mapping
and extraction from the complexes.
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the lowest free energy clusters for acetone, urea,
and isopropanol, and the second lowest free
energy clusters for DMSO, t-butanol, and phenol.
As described in Methods, nearby consensus sites

usually delineate different subsites of the active
site, and this is really the case for this protein,
site 1 being close to the location of the sugar
ring in the enzyme–substrate complex, and site 2

Figure 4. Distributions of intermolecular hydrogen bonds. The mapping results are based on the interactions found
between the probes in the consensus site and the residues of the protein. The main consensus site is considered for
all enzymes except haloalkane dehalogenase, where the probes in site 1 are used. The statistics on enzyme–ligand
hydrogen bonds are extracted from all enzyme–ligand complex structures in the RCSB PDB (see Methods). The Figure
shows the union of the two sets of interacting residues as determined by the two methods, i.e. computational mapping
and extraction from the complexes.
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surrounding the 2-phosphate group of the sub-
strate (Figure 2e). Site 3 in Table 2 also binds six
solvents, but with substantially higher free ener-
gies than sites 1 and 2 for four of the six probes.

The probes in the consensus site, formed by sites
1 and 2, interact with the catalytic bases D74 and
E98,42,43 but the most frequent interactions occur
with residues that bind the ligand or one of the
cations (Figure 3e). These are: L120, G122, S123,
S124, and N125, which form hydrogen bonds with
the 2-phosphate group of the substrate;42 S247,
M248, and K274, which contact the sugar ring;41,42

Y244 and K264, which hydrogen bond to the
6-phosphate group;43 and E97, D118, D121, R276,
and E280, which coordinate with the cation.42 –44

The mapping does not find any interactions with
N212, Y215, and R243. This result is due to map-
ping only a monomer of the dimeric protein. Since
N212, Y215, and R243 are in a crevice formed by
residues from two subunits, restricting consider-
ation to a single subunit in the mapping removes
the pocket, and the probes will not bind in this
region.42 In fact, R243 of one subunit interacts with
the ligand bound to another subunit, and hence
will not appear to be important for binding if only
one subunit is considered.

As emphasized, mapping generally reflects the
importance of residues for binding rather than
for catalytic activity. Therefore, it is somewhat
unexpected that it shows D74 and E98 to be rela-
tively important (Figures 3e and 4e), in spite of
the fact that these residues interact rarely with the
ligand, but were proposed to act as the catalytic
base, abstracting protons from the metal–hydroxide
complex.45 Apart from the minor differences we
have mentioned, the agreement between predicted
and observed non-bonded interactions is remark-
ably good (Figure 3e). The hydrogen-bonding
residues are also correctly identified by the map-
ping, but the predicted frequency is less accurate
than for the non-bonded interactions (Figure 4e).
For example, S123 hydrogen bonds with the
2-phosphate group of the substrate41 and hence is
expected to interact with the probes, but the fre-
quency of predicted hydrogen bonds is dispropor-
tionately large. The same applies to D121 that
coordinates with a metal ion in the active site.43,45

For the haloalkane dehalogenase (2dhc) we find
two consensus locations (Table 2, sites 2 and 3; see
Figure 2e), both with six different solvents. Since
neither of the two is close to the bound substrate,
ethylene dichloride, it may appear that the map-
ping has failed, but this is not the case. Haloalkane
dehalogenase binds very small ligands, such as
ethylene dichloride, and the binding site is in the
middle of a long and narrow channel.46,47 Consen-
sus site 1 (see Figure 2f and Table 2), which
includes the lowest free energy clusters for acetone,
urea, and isopropanol, is exactly at this location,
and the correlation between the frequency of non-
bonded interactions revealed by the mapping and
seen in the complexes of haloalkane dehalogenase
with ligands is very good (Figure 3e). However,

the larger solvents are unable to enter the channel.
The two large consensus sites (sites 2 and 3) are at
the two ends of the channel. Thus, all ligands pre-
ferentially bind at these locations, but only the
small ligands (acetone, urea, and isopropanol) can
move into the channel toward the catalytic site
(Table 2, site 1). An additional consensus site of
three solvents (Table 2, site 4) is adjacent to site 3,
and the existence of a collision complex formed
during halide import is supported by both
crystallographic and kinetic evidence, the latter
involving the mutations of residues T197 and F294
that are at consensus site 4.47 Taken together, these
kinetic data and the mapping results strongly
suggest that the substrate enters the channel at
site 2 (Figure 2f). The role of binding at site 3 is
not clear.

Mapping the apostructures of the
model enzymes

In order to study the effect of conformational
changes on the mapping results, the same
GRAMM-based algorithm was applied to the apo
structures of the six enzymes. Since more probes
generally yield higher reliability of results, we
have added acetonitrile as the seventh probe.
Table 3 shows the derived consensus sites. For
four of the apo structures we were still successful
in locating the known substrate-binding site, with
very little deviation from the analysis of the
bound forms. For triosephosphate isomerase
(1ypi), six out of the seven probes cluster at the
experimental binding site, while the next largest
consensus site has only four different solvents.
Trypsin (3ptn) also has six probes clustered at the
experimental S1-binding site, while its closest
runner-up site has five solvents clustered. For fruc-
tose-1,6-bisphosphatase (2fbp), both subsites of the
binding site (as described earlier) were successfully
found with seven and six solvent probes, respect-
fully. The next most occupied site had only four
clustered probes. Finally, for haloalkane dehalo-
genase (2had), the most occupied consensus site
consisted of one of the two ends of the channel
that leads to the internal active site (Table 3, site
2). This site had all seven probes successfully
mapped to it. In addition to this, the active site
(site 1) had four solvents clustered, while the
additional end of the channel (site 3) also had four
probes. Therefore, as stated earlier, although the
main consensus site for haloalkane dehalogenase
is not the internal active site, the observation that
most probes cluster at the entrance of the deep
internal channel by which the substrate must tra-
verse implies a successful mapping result.

The fast, GRAMM-based mapping algorithm
was less successful in locating the binding site of
the remaining two enzymes, enolase and ribo-
nuclease T1 when their apo structures were used.
For enolase (1ebh) five different probes cluster at
the binding site (Table 3, site 1), but a second
location, about 16 Å away, also binds five probes
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(Table 3, site 2), and no further discrimination
between these two sites could be made based on
the mapping results alone. For ribonuclease T1

(9rnt), only phenol clusters at the binding site (not
shown in Table 3), while there is a cluster with six
different probes about 6 Å away (Table 3, site 1).
In order to improve the reliability of the mapping
results, we combined the results obtained by
GRAMM and by CS-Map to determine if further
resolution of the binding site can be achieved. For
enolase (1ebh), the CS-Map based method adds
six additional clusters of four different probes
(Table 4, site 1) to the five probe clusters we have
already obtained by GRAMM at the binding site.
In contrast, for the second consensus site with five
clusters (Table 3, site 2) only four probes were
added on using CS-Map (Table 4, site 3). As a
result, the known binding site of enolase was
observed to have 11 clusters of five different sol-
vents, the most clusters of any site on the protein.
For ribonuclease T1 (9rnt), the results were not as
straightforward. While CS-Map added six new
clusters at the binding site (Table 4, site 1) to the

single phenol cluster that was given by the
GRAMM-based mapping, and three more probes
in the second sub-site (Table 4, site 5), these two
sub-sites appear to be separate from each other,
and hence we were not able to combine these
locations into a single consensus site. As a result,
the seven overlapping clusters in the binding site
(Table 5, site 6) were still not enough to overcome
a different site at which the combined algorithm
yields ten clusters (Table 5, site 3). In addition,
sites 1 and 2 in Table 5 show other locations with
seven and nine clusters, respectively. Therefore,
while CS-Map added a significant number of
probes to the experimental binding site, they were
not sufficient enough to compensate for the poor
GRAMM result.

Comparison of bound and unbound structures
of ribonuclease T1 reveals that the side-chain of
Y45 plays a dominant role in the binding of all
ligands (see Figure 3b). As stated earlier, Y45 is
considered as the “lid” of the binding site, and its
side-chain takes on two different conformations.
In the apo enzyme, Y45 forms a hydrogen bond

Table 3. Free energy ranking of probe clusters mapped by GRAMM for six apoenzymes

Probe

Protein Con. sitea Acetone Urea DMSO Isopropanol t-Butanol Phenol Acetonitrile

1ebh 1 5 (1.17) 3 (0.72) 4 (0.35) 1 (0.55) 1 (0.66)
2 1 (16.27) 4 (15.99) 2 (16.28) 1 (15.94) 2 (16.16)
3 4 (23.13) 5 (23.02) 2 (22.18)
4 1 (7.82) 3 (7.38) 3 (8.13)
5 1 (9.45) 2 (8.42), 3 (10.43)
6 2 (25.00) 4 (24.47) 4 (24.12)

9rnt 1 5 (6.80) 4 (5.72) 4 (6.66) 5 (6.68) 4 (6.21) 3 (6.50)
2 2 (11.89) 1 (10.60) 1 (11.49) 3 (11.75) 2 (11.15)
3 2 (12.96) 4 (12.16) 1 (12.82) 4 (11.28) 4 (12.89)
4 3 (13.96) 3 (13.79) 2 (13.44) 5 (13.68)
5 4 (13.84) 5 (13.72) 5 (13.99)

1ypi 1 3 (0.65) 1 (0.73) 1 (0.99) 2 (0.88) 2 (0.68) 3 (0.60)
2 1 (7.58) 2 (10.99) 3 (11.46) 2 (9.38)
3 5 (18.35) 4 (20.47), 5 (18.34)
4 4 (17.45) 5 (15.87) 2 (16.64)
5 1 (5.36) 3 (6.22) 1 (5.23)

3ptn 1 1 (0.39) 4 (0.55) 1 (0.54) 1 (0.30) 1 (0.26) 1 (0.45)
2 3 (7.09) 5 (6.05) 5 (6.39) 2 (6.86) 5 (6.27)
3 2 (23.60) 2 (23.41) 3 (23.31) 3 (23.76)
4 5 (22.49) 3 (21.67) 5 (22.63)
5 4 (18.91) 2 (17.35) 2 (18.82)
6 4 (12.06) 4 (12.33) 2 (12.95)

2fbp 1 1 (1.18) 3 (1.53) 1 (0.86) 1 (1.21), 2 (1.06) 5 (0.53) 2 (1.26)
2 5 (1.44) 3 (0.72) 3 (1.23) 1 (0.44) 1 (1.09), 2(0.97)
3 2 (11.94) 5 (12.83) 2 (13.66) 3 (11.14)
4 2 (19.22) 4 (18.72) 3 (19.48) 1 (18.61)
5 5 (24.85) 5 (24.89) 4 (23.61)
6 4 (19.53) 4 (18.93) 4 (19.65)

2had 1 2 (0.63) 1 (0.55) 3 (0.80) 2 (0.93)
2 1 (9.47) 2 (7.53) 1 (8.97) 1 (9.49) 1 (9.86) 1 (7.24) 2 (8.87)
3 4 (10.79) 4 (10.44) 4 (10.35) 5 (10.78)
4 5 (29.35) 2 (29.25) 3 (29.33) 2 (29.36) 3 (29.65)
5 3 (9.78) 3 (8.95) 4 (10.52)

Distance of each cluster center from the ligand in the X-ray structure of the corresponding bound enzyme after structural
superposition.

a Consensus sites in the substrate binding region are shown in bold.
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with N99 and partially blocks the binding site from
interacting with the substrate. The binding of a
substrate analog or inhibitor moves Y45 to a differ-
ent rotameric state, breaks the hydrogen bond with
N99, and makes the pocket more accessible. We
note that both CS-Map and GRAMM place some
ligand clusters in the active site, even when map-
ping the apo structure, but other locations have

higher numbers of different probes, resulting in
false positives. However, the correct site can be
easily selected if there is any information on its
approximate position, and then the analysis of
sub-clusters provides the required characterization
of the binding site residues as for the other five
proteins. Nevertheless, this result emphasizes the
need for further testing of the mapping algorithm

Table 4. Free energy ranking of probe clusters mapped by CS-Map

Probe

Protein Con. sitea Acetone Urea Isopropanol t-Butanol Phenol Acetonitrile

1ebh 1 1 (0.69), 5 (0.90) 1 (0.39) 1 (0.60) 1 (0.92), 3 (1.34)
2 3 (21.31) 5 (21.39) 3 (20.79) 4 (20.46) 5 (20.65)
3 1 (16.60) 1 (16.78) 5 (17.69) 2 (16.10)
4 2 (13.75) 2 (11.96) 3 (14.09)
5 5 (9.46) 3 (9.460) 2 (9.63)
6 2 (18.43), 4 (22.28) 2 (22.47)

9rnt 1 2 (0.56) 4 (0.62) 3 (0.29) 2 (0.42) 5 (0.26) 2 (0.52)
2 1 (10.99) 3 (10.88) 2 (10.50) 1 (10.53) 2 (11.22), 4 (10.38) 1 (11.18)
3 4 (12.06) 2 (11.85) 4 (11.68) 4 (12.67) 4 (12.73)
4 3 (12.01) 1 (10.45) 1 (11.05) 1 (10.75)
5 3 (0.63) 3 (0.41) 3 (0.45)

Distance of each cluster center from the ligand in the X-ray structure of the corresponding bound enzyme after structural
superposition.

a Consensus sites in the substrate binding region are shown in bold.

Table 5. Free energy ranking of probe clusters mapped by either GRAMM and/or CS-Map for enolase (1ebh) and ribo-
nuclease T1 (9rnt) apostructures

Probe

Protein
Con.
sitea Acetone Urea DMSO Isopropanol t-Butanol Phenol Acetonitrile

1ebh 1 5 (1.17), 1b (0.69),
5b (0.90)

3
(0.72)

4 (0.35), 1b

(0.39)
1 (0.55), 1b

(0.60)
1 (0.66), 1b (0.92),
3b (1.34)

2 1 (16.27), 1b

(16.60)
4 (15.99) 2

(16.28)
1 (15.94), 1b

(16.78)
5b (17.69) 2 (16.16), 2b

(16.10)
3 4 (23.13) 5

(23.02)
2 (22.18)

4 1
(7.82)

3 (7.38) 5b (8.42) 3 (8.13)

5 1 (9.45) 2 (8.42), 3
(10.43)

6 2 (25.00), 4b

(25.15)
4 (24.47), 4b

(24.64)
4 (24.12)

9rnt 1 5 (6.80) 4 (5.72), 5b (6.84) 4
(6.66)

5 (6.68) 4 (6.21) 3 (6.50)

2 2 (11.89), 3b

(12.01)
1 (10.60), 1b

(10.45)
1
(11.49)

1b (11.05) 3 (11.75) 2 (11.15), 1b

(10.75)
3 4b (12.06) 2b (11.85) 2

(12.96)
4 (12.16), 4b

(11.68)
1 (12.82), 4b

(12.67)
4 (11.28) 4 (12.89), 4b

(12.73)
4 3 (13.96), 5b

(14.15)
3
(13.79)

5b (14.06) 2 (13.44) 5 (13.68)

5 4 (13.84) 5
(13.72)

5 (13.99)

6c 2b (0.56) 4b (0.62) 3b (0.29) 2b (0.42) 5b (0.26) 5
(0.29)

2b (0.52)

Distance of each cluster center from the ligand in the X-ray structure of the corresponding bound enzyme after structural
superposition.

a Consensus sites in the substrate binding region are shown in bold.
b Cluster centers derived from mapping with CS-Map. All cluster centers not denoted with b are derived from the GRAMM

method.
c This consensus site corresponds to the experimental binding site for ribonuclease T1.
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in order to better understand the limits of its appli-
cability. In particular, we expect that molecular
dynamics simulation prior to docking would
break the Y45–N99 hydrogen bond, making the
binding site more accessible to the small probes.

Discussion

Why do organic solvents prefer binding at
enzyme active sites?

The weakly specific binding of different ligands
at the active sites of enzymes has been confirmed
both by X-ray crystallography4 – 8 and by NMR
methods.9 The results of computational solvent
mapping show three properties of enzyme binding
sites that might help to understand why such sites
attract organic molecules, regardless of their sizes
and polarities. First, the active sites of most
enzymes are fairly large pockets that surround the
small ligands, and thus provide a substantial num-
ber of ligand–protein contacts. Indeed, the inter-
molecular van der Waals energy is generally the
largest contribution to the binding free energy.
However, the van der Waals term may reach simi-
larly low values in other clefts, far from the active
site. Second, some fraction of this interface is non-
polar and interacts with non-polar fragments of
the ligand. The hydrophobic interactions provide
another major contribution to the binding free
energy. Again, it is important to note that similarly
strong or even stronger non-polar contributions
can occur in hydrophobic pockets that have noth-
ing to do with the active site. Third, the net contri-
butions of polar atoms to the free energy are
relatively small, because the favorable electrostatic
interactions are generally compensated by unfavor-
able desolvation of the partial charges. However,
the presence of several polar patches in the active
site is very important, because it enables the ligand
to bind in a number of rotational/translational
states. In each conformation, the polar parts of the
ligand form one or two hydrogen bonds, or at
least favorable electrostatic interactions, with one
of the polar groups on the protein.10 Due to the
multiplicity of the bound conformations, a ligand
binding in the active site retains more of its
rotational/translational entropy than one that
binds elsewhere in a single conformational state,
and the resulting difference in the free energy
makes tight binding in small crevices less
favorable.

While good shape complementarity, substantial
hydrophobic interactions, and the existence of
several polar patches all seem to be necessary to
steer small ligands toward the active site, the rela-
tive importance of these three factors remains
uncertain, primarily because the entropic contri-
butions are difficult to assess. Mapping generally
shows three to eight bound states, corresponding
to well-populated sub-clusters, in the active site.
Assuming that these states are equally likely,

accounting for the multiplicity would lower the
free energy by 0.6–2.0 kcal/mol. Although this
contribution is not very large, it may be important,
because the van der Waals, electrostatic, and
desolvation components on their own frequently
give similar values for a number of crevices.
Indeed, what primarily distinguishes the active
site from other pockets in enzymes is not the size
or hydrophobicity, but the existence of several
polar groups that are always required for catalytic
activity. Thus, the presence of catalytically import-
ant polar residues that can serve as acids and/or
bases can additionally aid in providing a binding
site with adequate polarity in discrete locations in
order to fulfill the above requirement for substrate
binding. Most of these groups can also form favor-
able (hydrogen bonding or electrostatic) inter-
actions with the polar moiety of the ligand. Size
also matters, as the site must be large enough to
accommodate the small probes in multiple confor-
mational states, each with good shape complemen-
tarity, resulting in favorable van der Waals
interactions. If the active site is very large, as in
the case of the hen-egg lysozyme,9,10 the lowest
free energy clusters of the different probes usually
overlap in a sub-site of the active site (e.g. site C
for lysozyme). As we have shown, additional con-
sensus sites occur in other sub-sites for a number
of enzymes, delineating further parts of the active
site. We have found that mapping also works for
non-enzyme proteins such as streptavidin that has
a deep, partially hydrophobic binding site that
includes a number of hydrogen bond donor and
acceptor groups (unpublished results). It is not yet
clear whether the method can be extended to
recognize potential protein–peptide and protein–
protein interactions sites that are substantially
more planar than the sites considered here.

While the above analysis provides some insight
on the origin of the weakly specific binding in the
active site, our conclusions, including the import-
ance of multiple bound conformations, are based
on mapping results, and hence depend on the
validity of the free energy evaluation models used
in the calculations. However, the X-ray structures
of the few proteins, determined in organic solvents,
support the existence of multiple bound states.5 – 8 It
is tempting to speculate that attracting a large vari-
ety of ligands to the active site has evolutionary
advantages, and retaining rotational/translational
degrees of freedom is a good way to stabilize
otherwise very weak complexes. In fact, enzymes
with very broad substrate specificity such as cyto-
chrome P450s that need to metabolize a wide
range of xenobiotics, including chemicals pro-
duced by the modern chemical industry, bind
some substrates in several conformations, resulting
in a mixture of different metabolites.48

Most enzymes, however, bind their specific
ligands (substrates, transition state analogs, and
inhibitors) in unique, well-defined conformations,
forming four to six hydrogen bonds. Although
binding in a unique conformation implies that
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more rotational/translational entropy is lost, the
increase in the free energy is more than compen-
sated by favorable van der Waals and electrostatic
interactions.

Why do our mapping algorithms work?

Mapping proteins computationally rather than
experimentally goes back as far as 1985, when
Goodford developed the GRID program49 to map
receptor sites. Another popular approach to map-
ping is the Multiple Copy Simultaneous Search
(MCSS†50 version 2.1, Harvard University,
Cambridge, MA, USA) method, which optimizes
the free energy of numerous ligand copies simul-
taneously, each transparent to the others but sub-
ject to the full force of the receptor. However, the
classical algorithms generally fail to reproduce the
available NMR and X-ray data on the binding of
organic solvents to proteins. The major problem is
that they result in too many energy minima on the
surface of the protein, and it is difficult to deter-
mine which of these minima is actually relevant.4

This shortcoming was demonstrated by English
et al.,8 who used both GRID and MCSS to map
thermolysin for the binding sites of isopropanol,
acetone, acetonitrile, and phenol, and compared
the results to those of mapping experiments.
While they found local minima close to the experi-
mentally observed binding positions, the closest
minima were generally not among those with the
lowest free energies, resulting in false positives
(i.e. configurations with favorable energy which
are not located near any experimentally observed
binding site).

The algorithms presented here differ from tra-
ditional mapping methods in four major respects.
First, while very different, both the CS-Map algor-
ithm and the GRAMM-based mapping method
provide much better sampling of the potential
binding sites than GRID and MCSS that include
only local minimization rather than any systematic
search. Second, while neither GRID nor MCSS
account for desolvation, the free energy potential
used in step 2 of our mapping algorithm includes
a relatively accurate electrostatics and desolvation
model. Third, the docked ligand positions are
clustered, and the clusters, rather than individual
docked conformations, are ranked on the basis of
their average free energies. The main goal of this
step is to estimate the entropic effects of the mul-
tiple bound states, a contribution that otherwise
would not be accounted for in our model. Dis-
crimination by clustering, introduced by Baker
and co-workers in the context of protein structure
determination,51 and extended by us to protein–
protein docking,52 is based on the idea that the
native structure has more structural neighbors
than other, non-native conformations do. Indeed,

the multiple bound states in the active site result
in a cluster of low energy conformations that
define a relatively broad free energy minimum.

Clustering and considering the average free
energies of the clusters eliminate most of the local
minima that correspond to binding in narrow, iso-
lated pockets. Nevertheless, this approach is
unable to fully account for the extra entropy that
comes from the multiplicity of the bound states,
and hence the mapping is not expected to yield
perfect discrimination of the correct bound states.
In fact, the ligand positions that are the closest to
the active site do not necessarily have the lowest
values of the free energy (see Tables 1–4). The
fourth, and probably the most important, differ-
ence between our method and earlier approaches
is that we seek consensus sites at which the lowest
free energy clusters of different solvents overlap.
Restricting considerations to consensus sites
implies that some false positives for specific
ligands can be tolerated. For example, if the prob-
ability of obtaining a false positive is as high as
20%, but the false positives for the different probes
are independently distributed over the protein sur-
face, then the probability of obtaining a false con-
sensus site using six probes is less than 0.01%. In
reality, the situation is less favorable, since the
false positives tend to be in relatively large pockets
and hence are not independent. Nevertheless, as
we have shown, mapping with six or seven probes
usually gives very good results.

Solvent mapping generalizes the geometric
analysis of protein binding sites

Since the size and shape of a protein cavity dic-
tate the geometry of ligands that can bind there,
geometry-based computational tools have been
used to predict putative binding sites.15 – 20 For
example, PASS (Putative Active Sites with Spheres)
is a simple computational tool that maps the
protein surface with a water-sized sphere to
characterize regions of buried volume. Compu-
tational solvent mapping generalizes the geometric
analysis by using a number of small molecular
probes with different sizes and shapes, and consist-
ing of polar and non-polar fragments. As we
argued, such probes are likely to prefer functional
sites to other cavities, because the functional sites
generally include a mixture of non-polar patches
(for strong binding) and polar groups (for
enzymatic activity). While it would be possible to
use an arbitrary set of probes, the use of small
organic solvents ensures that the results can be
compared to data from solvent mapping
experiments.4 – 8 Furthermore, the detailed atomic
models used in the mapping provide hydrogen
bonding information that cannot be derived by a
geometric analysis.

For comparison with the mapping results we
applied the PASS algorithm18 to the ligand-bound
and apo structures of the six enzymes. As shown
in Table 6, with two exceptions the ranked list of

† Evensen, E., Joseph-McCarthy, D. & Karplus, M.
(1997).
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putative binding sites, generated by PASS, includes
the known binding site. However, the latter is
ranked first (in degree of confidence) only for two
of the bound structures (trypsin and ribonuclease
T1) and two of the apo structures (enolase and ribo-
nuclease T1). We recall that the mapping fails to
rank the binding site first only for the ribonuclease
T1 apo structure. For haloalkane dehalogenase,
PASS was able to find the location of one end (the
entrance) of the extended binding channel, and
was not able to successfully predict any additional
part of the protein with known biological signifi-
cance, including the active site (Table 7). Addition-
ally, the prediction of the channel entrance for the
apo and bound forms of the enzymes, respectively,
were fifth and fourth ranked. It is clear that PASS,
employing a single spherical probe, provides less
specific information on the binding site than the
mapping, which employs a variety of probes, each
supplying its own geometric orientations as well
as its interspersions of hydrophobic locations with
hydrogen bond donor and acceptor atoms.

Mapping versus docking

In principle, one should be able to predict the
binding properties of a protein by docking various
ligands to its binding sites using docking programs
such as DOCK53 or Autodock.54 However, ligand
binding can substantially alter the structure of the
protein (see, e.g. Yu & Koshland),55 and docking to

the unbound form is a non-trivial problem.56,57

Low resolution and theoretically predicted recep-
tors present even greater challenges.58 Docking
programs are frequently used for finding potential
ligands in large databases, but it has been observed
that the ligands found usually do not have the
tightest fit, but instead leave some space move-
ment in the binding site.56 Small ligands are
obviously easier to dock than large ones, and thus
mapping is generally less sensitive to variations in
structure than docking. In fact, the only protein
for which mapping failed to correctly identify the
residues that are important for ligand binding was
ribonuclease T1. Docking results are generally
more sensitive to the conformational differences
between bound and apo forms, and hence the
bound forms are used for drug design whenever
available.

Conclusions

Computational mapping employs small organic
molecules to probe the surface of proteins. We
have performed mapping calculations for seven
enzymes. With the exception of haloalkane dehalo-
genase, which binds very small substrates in a
narrow channel, the probes cluster in major sub-
sites of the substrate-binding site. For haloalkane
dehalogenase, the clusters occur at the two ends
of the channel, but the smaller probes also find the

Table 6. Prediction of experimental binding site locations using the PASS algorithm

Enzyme
Bound
structure

Prediction of
binding site

Ranking of success-
ful predictiona Apostructure

Prediction of
binding site

Ranking of success-
ful predictiona

Enolase 1ebg Failed –/12 1ebh Succeeded 1/14
Trypsin 1tng Succeeded 1/6 3ptn Succeeded 3/5
Ribonuclease T1 1rnt Succeeded 1/3 9rnt Succeeded 1/2
Triosephosphate
isomerase

2ypi Failed –/9 1ypi Succeeded 7/11

Fructose-1,6-
bisphosphatase

1fbc Succeeded 6/11 2fbp Succeeded 8/14

a The number to the left represents the ranking of the binding site prediction while the number to the right represents the total
number of predicted sites along the protein surface. Any failed attempt to predict the experimental binding site is represented by –.

Table 7. Prediction of binding site locations on haloalkane dehalogenase using the PASS algorithm

Enzyme
Bound struc-
ture, 2dhc

Prediction of
binding site

Ranking of success-
ful predictiona

Apo-struc-
ture, 2had

Prediction of
binding site

Ranking successful
predictiona

Haloalkane
dehalogenase

Active site Failed –/9 Active site Failed –/12

Consensus
site 2b

Failed –/9 Consensus
site 2b

Failed –/12

Consensus
site 3b

Succeeded 5/9 Consensus
site 3b

Succeeded 4/12

Consensus
site 4b

Failed –/9 Consensus
site 4b

Failed –/12

a The number to the left represents the ranking of the binding site prediction while the number to the right represents the total
number of predicted sites along the protein surface. Any failed attempt to predict the experimental binding site is represented by –.

b Refer to Table 2 for the designation of these specific consensus site locations. The significance of each of these four consensus sites
is described in the text. Note that the consensus sites specified in this Table are based solely on mapping results using 2dhc.
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active site. Residues that interact with many
ligands (substrate analogs, products, and inhibi-
tors) also tend to bind the probes with high fre-
quency. Since the probe–residue interactions
reflect the residue’s role in binding rather than
catalytic activity, the method can be used to charac-
terize the substrate binding sites of enzymes.

As we have shown, results are slightly better
when mapping ligand bound versus apo structures
of enzymes, a situation well known in structure-
based drug design. However, since it is easier to
dock very small molecules to a rigid protein than
larger ones, the sensitivity of results to moderate
changes in the protein coordinates remains rela-
tively low.

Here we were able to resolve a number of open
problems. First, mapping results for seven
enzymes strongly suggest that the binding of
small organic compounds at the active site of
enzymes is a general phenomenon. Since X-ray
structures have been determined in organic sol-
vents only for a few enzymes, extending the analy-
sis to more proteins was absolutely necessary for
any progress. Second, the results convincingly
show that solvent mapping can be performed com-
putationally rather than experimentally. Third, the
analysis of mapping results enabled us to better
understand why the small ligands bind in the
active site, regardless of their sizes and polarities.
Fourth, comparing the probe–protein interactions
in the mapping results with the ligand–protein
interactions, extracted from the X-ray structures of
enzyme–ligand complexes shows that the map-
ping provides a detailed and reliable characteriz-
ation of enzyme binding sites, and we hope that
we will be able to apply it to a number of struc-
tures produced by structural genomics initiatives.

Methods

Computational mapping by the CS-Map algorithm

The five computational steps of the algorithm are as
follows.9,10

Step 1: rigid body search

In the CS-Map algorithm10,11 a multi-start simplex
method is used to move the probes around the protein,
starting from a number of evenly distributed points
over the entire protein surface, i.e. no a priori assumption
is made about the location of the binding site. The scor-
ing function in the search is given by:

DGs ¼ DEelec þ DGdes þ Vexc ð1Þ

where DEelec denotes the direct (Coulombic) part of the
electrostatic energy, DGdes is the desolvation free energy,
and Vexc is an excluded volume penalty term such that
Vexc ¼ 0 if the ligand does not overlap with the protein.
The electrostatic energy is determined by the expression
DEelec ¼

P
i Fiqi; where qi is the charge of the ith probe

atom, and Fi is the electrostatic field of the solvated pro-
tein at that point.59,60 The electric field F is calculated by
a finite difference Poisson–Boltzmann (FDPB) method59,60

using the CONGEN program.61 Dielectric constants
1 ¼ 4 and 1 ¼ 78 are used for the protein and the solvent,
respectively. We use the template partial charges pro-
vided by the Quanta program† (Molecular Simulations,
Inc) for the probe molecules. The desolvation term,
DGdes, is obtained by the Atomic Contact Potential
(ACP) model,62 an atomic level extension of the
Miyazava–Jernigan potential.63

In this step, we also use an alternative approach based
on the docking program GRAMM (global range molecu-
lar matching).64,65 The program places the protein and
the ligand molecule on separate grids, and performs an
exhaustive six-dimensional search through the relative
intermolecular translations and rotations using a very
efficient Fast Fourier Transform (FFT) correlation tech-
nique and a simple scoring function that measures
shape complementarity and penalizes overlaps. We
have used 1.5 Å grid step for translations and 15o incre-
ments for rotations. A total of 1000 docked confor-
mations were retained for refinement in step 2.

Step 2: minimization and re-scoring

Step 1 produces a large number of protein–ligand
complexes at various local minima of DGs. The free
energy of each complex is minimized using the more
accurate free energy potential:

DG ¼ DEelec þ DEvdw þ DGp
des ð2Þ

where DEvdw denotes the receptor–ligand van der Waals
energy, and the superscript in DGdes

p emphasizes that the
desolvation term includes the change in the solute–
solvent van der Waals interaction energy. The sum
DEelec þ DGdes

p is obtained by the Analytic Continuum
Electrostatic (ACE) model,66 as implemented in version
27 of CHARMM67 using the parameter set from version
19 of the program. The minimization is performed using
an adopted basis Newton–Raphson method.67 During
the minimization the protein atoms are held fixed, while
the atoms of the probe molecules are free to move.

Step 3: clustering and ranking

The minimized probe conformations from step 2 are
grouped into clusters based on Cartesian coordinate
information. The method creates a number of clusters
such that the maximum distance between a cluster’s
hub and any of its members (the cluster radius) is
smaller than half of the average distance between all the
existing hubs. We have slightly modified this algorithm
by introducing an explicit upper bound U ¼ 4:0 �A on
the cluster radius. We retain only the clusters with more
than T entries, where the threshold T is defined by the
average clusters size, T ¼ m=n if T , 20, where m is the
total number of probes and n is the number of clusters.
Otherwise T ¼ 20; i.e. clusters with more than 20
elements are always retained. For each retained cluster,
we calculate the partition function Qi ¼

P
j exp

ð2DGj=RTÞ; obtained by summing the Boltzmann factors
over the conformations in the ith cluster only. The clusters
are ranked on the basis of their average free energies
kDGli ¼

P
j pijDGj; where pij ¼ expð2DGj=RTÞ=Qi; and

the sum is taken over the members of the ith cluster.

† QUANTA/CHARMM Program, Molecular
Simulations Inc., Waltham, MA, USA.
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Step 4: determination of consensus sites

Mapping is primarily used to find “consensus” sites at
which many different probe molecules cluster. In order
to find the consensus sites, we select the minimum free
energy conformation in each of the five lowest average
free energy clusters for each solvent. The structures are
superimposed, and the position at which most probes of
different types overlap is defined as the main consensus
site. An additional clustering of probes close to the
main consensus site is likely to indicate another sub-site
of the active site, and hence the probes in the second
cluster are added to those already in the consensus site.

Step 5: sub-cluster analysis

For each ligand, the cluster at the consensus site is
further divided into sub-clusters based on probe orien-
tations and free energies. The latter are included, because
similar conformations with very different free energies
usually have different mechanisms of binding (e.g.
different hydrogen bonding interactions), and hence it is
preferable to group them into different sub-clusters.10,11

The sub-clusters of the ith cluster are ranked on the
basis of the probabilities pij ¼ Qij=Qi; where Qi is the
sum of the Boltzmann factors over all conformations of
the ith cluster, and Qij is obtained by summing the
Boltzmann factors over the conformations in the jth sub-
cluster only. Each subcluster with pij . 0:05 was repre-
sented by a single conformation. The LIGPLOT
program68,69 of Thornton and co-workers was used to
find the non-bonded interactions and hydrogen bonds
formed between each probe conformation and the pro-
tein. After counting all interactions, we have determined
their distribution among the residues of the protein, as
shown in Figures 1, 3, and 4.

Extracting intermolecular interactions from
enzyme–ligand complexes

For each enzyme considered here we downloaded the
structures of all complexes available in the RCSB PDB,
including those of close homologues. Non-bonded inter-
actions and hydrogen bonds have been determined
using the SAS program†. For each amino acid residue
we counted the number of interactions, and determined
how these interactions distribute among the various resi-
dues, as shown in Figures 1, 3, and 4. Details of the inter-
actions and a description of the roles of individual
residues in each enzyme are available electronically‡.
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