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ABSTRACT 
When multiple cracks approach to each other, the stress 

intensity factor is likely to change due to the interaction of the 

stress field. This causes change in the growth rate and the shape 

of cracks. Because of the orientation with respect to the loading, 

and existing of KII and KIII which can develop and increase with 

interaction, the shape of cracks becomes non-planar. In this 

study, the complex growth of interacting cracks is evaluated by 

using the S-Version finite element method, in which local 

detailed finite element mesh (local mesh) is superposed on 

coarse finite element model (global mesh) representing the 

global structure. The effect of relative size and spacing of 

cracks on the growth behavior is investigated. It is shown that 

the smallest crack stops growing due to the interaction when the 

difference in size of two cracks is large enough.  

 

INTRODUCTION 
Fatigue fracture of mechanical components sometimes 

causes a catastrophic accident.  It is very important to predict 

the fatigue crack growth. Fracture mechanics can predict the 

crack growth rate by using Paris’ law.  Under mixed mode 

loading condition, crack growth direction can also be estimated 

well.  For these predictions, precise numerical analysis is 

needed.  Presently, FEM is generally used for this purpose. 

But re-meshing of crack model for new crack configurations is 

a bottleneck of FEM analyses.  To solve this problem, many 

studies have been done and new methods were proposed for 

easy re-modeling of the problem.  These are the Element Free 

Galerkin Method [1], Free Mesh Method [2], X-FEM [3] and S-

version FEM
 
[4].   

In this paper, interaction of two surface cracks problem is 

solved.  By changing size of one crack and distances between 

two cracks, parametric studies are done.  For this purpose, S-

version FEM (S-FEM) is employed by combining auto-mesh 

generation technique, and fully automatic fatigue crack growth 

simulation system is developed by one of authors [5]. By using 

this system, parametric studies become easy even for 3-

dimensional problems.  In the followings, effects of relative 

size and spacing of two cracks on the interaction behavior and 

fatigue life are studied and discussed. And a criterion to 

evaluate interaction between two cracks is proposed. The 

detailed description of S-FEM is skipped here because it is 

described by one of authors’ previous paper [6].  

 

CRACK GROWTH CRITERION FOR 3-D. PROBLEM 
In the mixed mode loading condition, crack growth 

direction changes in a complicated manner.  In the 2-

dimensional problem, MTS (Maximum Tangential Stress) 

criterion is widely used to determine the crack growth direction, 

and it is verified that it gives correct prediction.  In the 3-

dimensional problem, several criteria have been proposed [7]-

[10]. But there is no commonly accepted criterion for crack 

growth direction.   

To predict the crack growth rate, widely known Paris’ law can 

be used in 3-dimensional case as well as in 2-dimensional case.   

 
n

eqKCdNda )(/                            (1) 

 

Copyright © 2009 by ASME

Proceedings of the ASME 2009 Pressure Vessels and Piping Division Conference  
PVP2009 

July 26-30, 2009, Prague, Czech Republic 

Downloaded From: https://proceedings.asmedigitalcollection.asme.org on 06/29/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use



2  

In the 3-d.case, KIII component should be included for the 
evaluation of effective Stress Intensity Factor, Keff. For the 
definition of Keff, several equations have been proposed[7]-[10].  

Through careful studies, criteria proposed by Richard et al. 
[10] are employed in this study.  They are shown in the
following equations. The crack growth angle is determined by 
the next equation.  Fig.1 shows the direction of crack growth.  
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(2)
where  00 for 0IIK and  00 for 0IIK .

Fig.1 Crack growth direction.

Equivalent stress intensity factor is defined by the 
following equation.
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EVALUATION OF INTERACTION EFFECT ON FATIGUE 
LIFE.

It is necessary to evaluate the interaction effect on fatigue 
life of the structure.  For this purpose, an evaluation method is 
proposed in this study. In Fig.2 (a), two cracks exist on different 
levels.  In this case, virtual crack is assumed and the length of 
this virtual crack is defined as Rx, which is the distance of outer 
crack tips, as shown in the figure. In Fig.2 (b), only one crack of 
these two cracks is assumed to exist, and this crack length is rx.
Two sets of numerical simulations are carried out for this 
problem. One is fatigue crack growth simulation of two parallel 
cracks, and another one is the same simulation but only 
considering a single crack in Fig.2 (b).

Fig.2 Two simulation models and definitions of Rx and rx.

The first simulation is conducted until interaction effect 
saturates to some state, and final Rx value is obtained. The 
second simulation is conducted until this crack length, rx,
becomes the same Rx value, obtained in the first simulation. 
Through both simulations, numbers of loading cycles until the 
final states are counted, and they are called NR for Fig.2 (a) and 
Nr for Fig.2 (b), respectively.  If NR is smaller than Nr, it 
means that fatigue life becomes shorter by the interaction effect 
between two cracks. On the other hand, if NR is nearly same as 
Nr, it means that interaction effect which crack1 received from 
crack2 is negligibly small. In this study, by comparing NR with 
Nr interaction effect which crack1 received from crack2 is 
evaluated.

SIMULATION OF TWO PARALLEL SURFACE CRACKS
ON DIFFERENT LEVELS.

As shown in Fig.3, two surface cracks exist on a plate
under cyclic tension stress. The stress ratio is, R=0.1. Two 
cracks, crack 1 and crack 2, are parallel to each other, and are
located on different levels. The initial crack size is, 
2c1=2c2=10mm, and aspect ratio, a/c, of theses cracks is 0.8,
where a is crack depth and c is half crack length at the surface.
The distances between these cracks are :  along horizontal line, 
S=10mm, and along vertical line, H=10mm. The sizes of plate 
are: the thickness T=300mm, the height h=500mm, the width 
W=500mm. Material is assumed to be A533B steel, and C and 
n values of Paris’ law are: C=1.67x10-12[(m/Cycle)/(MPa m1/2)n]
and n=3.23.

Fig.4(a) and (b) show the global and the local mesh of this 
problem.  It is not necessary to consider the connectivity 
between global and local mesh, it is easy to set initial S and H
values arbitrary. 

Fig.3 Two parallel surface cracks.

(a) Global mesh       (b) Local mesh
Fig.4 Global mesh and local mesh.
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Before fatigue crack growth simulation, static analysis is 
carried out and stress intensity factor distributions along crack 
front are obtained.  As the crack tip is not in pure mode I stress 
state, KI, KII and KIII are evaluated.  Stress intensity factor is 
calculated from energy release rate along crack front, which is 
evaluated by VCCM (virtual crack closure method) [11]-[12].  
Ratios of KII and KIII values with respect to KI value are shown 
in Fig. 5.  KII and KIII components are very small comparing 
with KI value.  In general, it is known that fatigue crack 
growth occurs mainly under pure mode I stress state.  

Fig.5 KII/KI and KIII/KI values along initial crack front.

(a) N=0              (b) N=3.1x106

(c ) N=4.5x106

Fig.6 Changes of crack shapes.
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Fig.7 Changes of KI distributions.

Fig.6 (a)-(c) show shapes of two surface cracks during 
fatigue growth process.  First figure is the original shape, 
second one shows crack shape when Number of loading cycles, 
N, is 3.1x106, and third one is for N=4.5x106. After overlapping 
of inner crack tips, two cracks change the growing direction, 
and grow to be nearer to each other.

Fig.7 shows changes of stress intensity factor of two 
cracks.  At first, KI is the largest at the bottom of crack
(deepest point), and by fatigue crack growth, it becomes nearly 
constant along crack front, and finally, KI decreases largely by 
overlapping. 

As the next problem, the size of crack 2 is changed to 
2c2=5mm, and other parameters are kept the same.  Crack 
shapes and stress intensity factors distributions are shown in 
Fig.8 and Fig.9, respectively. It is noticed from Fig.8 that 
crack growth occurs mainly in larger crack, crack 1.  Smaller 
crack, crack 2, also grows larger, but after overlapped with 
crack 1, crack 2 stops growing.  It is clear from KI
distributions.  KI value of crack 2 increases until overlapping 
occurs.  After overlapping, KI of crack 2 decreases a lot. And 
KI of crack 1 keeps increasing, and distribution of it along the 
crack front is nearly constant. By the observations of crack 
growth behaviors and changes of KI distributions, shown from 
Fig.6 to Fig.9,

(a)N=0 (b) N=3.8x106

(c ) N=5.1x106

Fig.8 Changes of crack shapes. 
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Fig.9 Changes of KI distributions.

N=0              (b) N=3.1
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interaction patterns of two cracks are classified into two cases, 
as shown in Fig.10. Case A suggests that crack 2, smaller crack, 
continues to grow. And case B suggests that smaller crack, 
crack 2, stops growing any more (or growth of crack2 is 
negligibly small) after overlapped with crack 1, then crack 1 
continues to grow and becomes large as a single crack. In case 
2c1=2c2=10mm (Fig.6 and Fig.7), interaction patterns are 
classified as case A. In case 2c1=10mm, 2c2=5mm (Fig.8 and 
Fig.9), interaction patterns are classified as case B. So, it is 
necessary to determine how to judge which case to be 
classified .

It is possible to judge it by comparing KIc1 with KIc2. KIc1 and 
KIc2 are defined in Fig.10. Stress Intensity Factor of inner crack 
tip of crack 1 is called KIc1, and KI of outer crack tip of crack 2 
is called KIc2. By the fatigue crack growth, both crack overlap, 
and KI value decreases.  But if KIc2 is larger than KIc1,
interaction patterns are classified case A. When KIc2 becomes 
smaller than KIc1, interaction patterns are classified case B.
Fig.7 and Fig.9 agree with this rules.

Fig.10 Difference of crack propagation.

At this moment, when comparing NR with Nr about case 
2c1=2c2=10mm(case A) and 2c1=10mm,2c2=5mm(case B), in 
case 2c1=2c2=10mm, NR/Nr=0.88. And in case 2c1=10mm, 
2c2=5mm, NR/Nr=1.00. This results suggest that in case A, 
fatigue life NR is smaller than Nr, which means interaction 
effect can’t be neglected. And in case B, NR is nearly the same 
as Nr, which means interaction effect which crack1 received 
from crack2 is negligibly small. This means interaction effect 
which crack1 received from crack2 can be evaluated by 
observing that smaller crack stops growing or not.

To examine this assumption, besides four problems were 
solved. In these problems size of crack 2 is changed to
2c2=9mm, 8mm, 7mm, 6mm. These results agree with the 
assumption judging from KIc2, KIc1 and NR/Nr.

Fig.11 shows how interaction effect changes when size of 
crack 2 is changed(2c2=10mm, 9mm, 8mm, 7mm, 6mm, 5mm) .
In this figure, ordinate is NR value, and abscissa is c2 value. NR
is normalized by Nr. c2 is normalized by c1.In this case if 
c2/c1 is less than 0.6 NR is nearly same as Nr, which means 

interaction effect which crack1 received from crack2 is 
negligibly small.

Then distances between two cracks is changed.  Sized of 
crack 1 and crack 2 are assumed to be same as the previous case 
(2c1=10mm, 2c2=5mm), and S0 is changed to 15mm and H0 is 
assumed to be 5mm. Results are shown in Fig.12 and Fig.13.  
From Fig.12, it is shown that crack 2, smaller crack, does not 
stop growing after overlapping, and inside crack tip of crack 1, 
larger crack, stops growing.  It means that the interaction 
effect can’t be neglected until final state, and interaction effect 
should be considered.  KI distribution shows this result more 
clearly.  At the final state, KI value of outer crack tip of crack 
2 is larger than that at inner crack tip of crack 1.  KI of crack 1 
decreases largely and inside crack tip of crack 1stops growing.  
Difference of this model from the previous model is the change 
of distances between two cracks. 

Fig.11 Changes of interaction effect.

(a)N=0 (b)N=4.4x106

(c)N=5.1x106

Fig.12 Changes of crack shapes.
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Fig.13 Changes of KI distributions.

(c)N=5.1x106

Fig.12 Changes of crack shapes.

N=0
N=4.4×106

N=5.0×106

Changes of interaction effect.

N=4.4x106(b)N=4.4

Fig.11

(a)N=0

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

c2/c1

N
R
/N

r

N=5.0×106
N=4.4×106
N=0
Crack2

Crack1

Copyright © 2009 by ASME

Downloaded From: https://proceedings.asmedigitalcollection.asme.org on 06/29/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use



 5 

Based on the assumption that the interaction that effect which 

crack1 receives from crack2 can be evaluated by observing that 

smaller crack stops growing or not, parametric studies are 

carried out by changing distances between the two cracks in 

many cases.  In the parametric study, crack lengths of crack 1 

and crack 2 are fixed as 2c1=10mm and 2c2=5mm.  S and H 

values are changed from c1 to 3c1 in three cases, totally 9 cases 

are simulated.  By the behaviors of crack 2, interaction of two 

cracks is evaluated.  Results are summarized in Fig.14.  In 

this figure, abscissa is S value, and ordinate is H value.  Both 

are normalized by c1.  Cross mark means crack 2 does not 

stop, and interaction is observed clearly. Circle mark shows 

that crack 2 stopped growing, and interaction effect which 

crack1 received from crack2 is negligibly small. By this figure, 

it is concluded that H value is important parameter to determine 

interactions between two surface cracks. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Fig.14 Result of parametric studies. 

 

 

 

SUMMARY 
   Using fully automatic fatigue crack growth simulation 

system, interaction effect of two surface cracks is evaluated. 

And parametric studies are carried out for parallel surface 

cracks with different crack size. By changing distances between 

two cracks, effect of S and H values on the interaction behavior 

is studied. Based on parametric studies, new criterion to 

evaluate interaction between two surface cracks is proposed. 

This criterion suggests that interaction effect which larger crack, 

crack1 received from smaller crack, crack2 is negligibly small 

when crack2 stops growing (or growth of smaller crack is 

negligibly small). 

  Based on this study, it is concluded that not only the relative 

size but also the distance H is an important factor to determine 

the interaction.   
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