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ABSTRACT

The least mean squares (LMS) algorithm is one of the most
popular recursive parameter estimation methods. In its stan-
dard form it does not take into account any special charac-
teristics that the parameterized model may have. Assuming
that such model is sparse in some domain (for example, it has
sparse impulse or frequency response), we aim at developing
such LMS algorithms that can adapt to the underlying spar-
sity and achieve better parameter estimates. Particularly, the
example of channel estimation with sparse channel impulse
response is considered. The proposed modifications of LMS
are the lp-norm and reweighted l1-norm penalized LMS algo-
rithms. Our simulation results confirm the superiority of the
proposed algorithms over the standard LMS as well as other
sparsity-aware modifications of LMS available in the litera-
ture.

Index Terms— Compressed sensing, gradient descent,
least mean squares, sparsity

1. INTRODUCTION

Depending on the available information about the system
and its statistics several recursive parameter estimation meth-
ods have been developed in signal processing literature [1].
Among such methods are the least mean squares (LMS) al-
gorithm [2], recursive least squares (RLS) algorithm, Kalman
filter and their different modifications. The aforementioned
standard recursive parameter estimation methods do not uti-
lize the information about sparsity of the system characteris-
tics if such characteristics are indeed sparse, and thus, may
perform poorly [3]. Among the algorithms which exploit the
sparsity of a system, the methods based on sequential partial
updating [3] and statistical detection of active taps [4] were
historically developed first. In parallel, the methods based
on the idea of adding a penalty term in the cost function,
which enforces the sparse solution, have been developed in
geophysics [5].
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As well as the sparsity-aware estimation method of [5],
the recent theory of compressed sensing (CS) deals with the
recovery of sparse signals from undersampled and incomplete
measurements [6], [7]. Note that a signal is sparse if only a
small percentage of its coefficients in a known transform do-
main is nonzero or significantly different from zero. The CS
theory has already been used in a variety of applications such
as sensor networks [8], cognitive radios [9], etc. In these ap-
plications the underlying problem is the estimation of sparse
signal or system parameters. Some efforts have been made
for incorporating the information about sparsity of a signal or
a system into the estimation problem in order to design more
accurate or less complex estimation algorithms. For exam-
ple, a CS-based Kalman filter algorithm has been developed
in [10], where the author considered a time varying sparsity
pattern for the signal. The initial support is estimated using
CS, and as long as the support does not change, the Kalman
filter restricted on the support set is used. A change in the sup-
port set leads to an increase in filtering error. In this case, CS
is used to estimate the change in the support set. A time- and
norm-weighted least-absolute shrinkage and selection opera-
tor (Lasso) scheme with l1-norm weights obtained from the
recursive least-squares (RLS) algorithm has been developed
in [11] and its consistency has been established. Moreover, a
variation of the LMS algorithm with l1-norm penalty term in
the standard LMS cost function has been developed in [12].
It has been also shown that such sparsity-aware LMS algo-
rithm achieves a better performance than the standard LMS
algorithm.

The focus of this paper is on LMS, and the main objec-
tive is developing and testing the sparsity-aware modifica-
tions of LMS, which can improve over the performance of
the method of [12]. Particularly, we consider the sparse chan-
nel estimation problem and aim at estimating the channel im-
pulse response (CIR) by exploiting the knowledge that CIR
is sparse. For example, a time sparse finite impulse response
(FIR) channel is the one for which the vector of channel coef-
ficients has only a small number of nonzero taps. We develop
the sparsity-aware modifications of LMS by considering the
lp-norm and reweighted l1-norm penalty terms. For the for-
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mer penalty term, the overall cost function becomes noncon-
vex and the theoretical convergence and consistency results
become problematic. However, for the latter penalty term,
the corresponding cost function is convex and such results can
be developed. We test the proposed sparsity-aware modifica-
tions of LMS by simulations and show their superiority to the
other LMS-based algorithms for estimating the parameters of
sparse systems.

2. SYSTEM MODEL

Consider a communication system shown in Fig. 1. The data
sequence x(n) is sent over the FIR channel with CIR h(n) =
(h(n), h(n− 1), . . . , h(n−N + 1))T where N is the size of
the channel memory and (·)T denotes the transposition. It is
assumed that the CIR is real-valued. In Fig. 1, v(n) denotes
the noise at the receiver end, ĥ(n) stands for the CIR estimate,
e(n) = d(n) − ĥ

T
(n)x(n) is the instantaneous error with

d(n) = y(n) + v(n), and y(n) and ŷ(n) denote the system
output and its estimate, respectively.

x(n) h(n)
y(n)

v(n)

ĥ(n)
ŷ(n)

d(n)

e(n)

Fig. 1. The communication system.

3. LMS AND SPARSITY-AWARE LMS

The cost function for the standard LMS is given as
L(n) = (1/2)e2(n). The gradient descent method can be
used to find the minimum of the cost function L(n). Then the
update equation can be written as

ĥ(n + 1) = ĥ(n) − µ
∂L(n)
∂ĥ(n)

= ĥ(n) + µe(n)x(n) (1)

where µ is the step size such that 0 < µ < λ−1
max with λmax

being the maximum eigenvalue of the covariance matrix of
x(n). Since the cost function is convex, the gradient descent
algorithm is guaranteed to converge to the optimum point un-
der the aforementioned condition on µ.

Assuming that the CIR is sparse, i.e., most of the coef-
ficients in the vector h(n) are zeros or insignificant in value,
the following sparsity-aware modifications of LMS have been
developed [12]. In order to penalize the non-sparse solutions,
the l1-norm of ĥ(n) can be added in the standard LMS cost
function so that the new cost function becomes LZA(n) =

(1/2)e2(n)+γZA‖ĥ(n)‖l1 , where ‖ ·‖ l1 denotes the l1-norm
of a vector and γZA is the weight assigned to the penalty
term. Note that this cost function is convex, and therefore, it
is guaranteed that the gradient descent method converges un-
der some conditions. The corresponding algorithm is called
the zero attracting LMS (ZA-LMS) and its update equation is

ĥ(n + 1) = ĥ(n) + µe(n)x(n) − ρZAsgn(ĥ(n)) (2)

where ρZA = µγZA and sgn(·) is the sign function which
operates on every component of the vector separately and it is
zero for x = 0, 1 for x > 0, and −1 for x < 0.

The other way to penalize the non-sparse solutions is to
consider the exact measure of sparsity, that is, the l0-norm.
Since the complexity associated with the use of the l0-norm
is high, a logarithmic penalty that resembles the l0-norm can
be considered and the the cost function becomes

LRZA(n) = (1/2)e2(n) + γRZA

N∑

i=1

log

(
1 +

[ĥ(n)]i
ε′RZA

)

(3)
where [ĥ(n)]i is the i-th element of the vector ĥ(n) and γRZA

and ε′RZA are some positive numbers. Note that the same
penalty term is also used, for example, in [5]. Since the log-
arithmic penalty in (3) resembles the l0-norm better than the
l1-norm penalty in ZA-LMS method, one can expect that the
corresponding algorithm called in [12] as the reweighted zero
attracting LMS (RZA-LMS) will exhibit a better performance
than the ZA-LMS. The update equation for the RZA-LMS is

ĥ(n+1) = ĥ(n) + µe(n)x(n)−ρRZA
sgn(ĥ(n))

1 + εRZA|ĥ(n)|
(4)

where ρRZA = µγRZAεRZA, εRZA = 1/ε′RZA, and | · | is the
component-wise absolute value operator. However, the cost
function (3) is not convex and the convergence and consis-
tency analysis is problematic for (4).

4. NEW SPARSITY-AWARE LMS ALGORITHMS

We develop here two other sparsity-aware modifications of
LMS based on the idea of introducing a penalty term which
forces the solution to be sparse.

lp-norm (0 < p < 1) penalty: Motivated by the fact that
the RZA-LMS shows a better performance than the ZA-LMS
[12] because the logarithmic penalty term of the RZA-LMS
is closer to the l0-norm penalty, we consider another function
of ĥ(n) that is more similar to the l0-norm. Such function is
the lp-norm of ĥ(n) with 0 < p < 1. The smaller the value of
p is the more the lp-norm resembles the l0-norm. In this case,
the cost function for the lp-norm penalized method becomes

Llp(n) = (1/2)e2(n) + γp‖ĥ(n)‖lp (5)

where ‖ ·‖ lp stands for the lp-norm of a vector and γp is the
corresponding weight term. Similar to the cost function of
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the RZA-LMS, the cost function (5) is not convex and the
analysis of the global convergence and consistency of the cor-
responding algorithm is problematic. However, as it will be
seen in the next section, the method based on (5) shows better
performance than the RZA-LMS which faces the same prob-
lems. Using gradient descent, the update equation based on
(5) can be derived as

ĥ(n + 1) = ĥ(n) + µe(n)x(n)

− ρp

(
‖ĥ(n)‖lp

)1−p
sgn(ĥ(n))

|ĥ(n)|(1−p)
(6)

where ρp = µγp. Practically, we need to impose an upper
bound on the last term in (6) in the situation when an entry
of ĥ(n) approaches zero, which is the case for a sparse CIR.
Then the update equation (6) is modified as

ĥ(n + 1) = ĥ(n) + µe(n)x(n)

− ρp

(
‖ĥ(n)‖lp

)1−p
sgn(ĥ(n))

εp + |ĥ(n)|(1−p)
(7)

where εp is a value which bounds the last term in (6).
Reweighted l1-norm penalty: Another way to enforce

the sparsity of the solution is to use the reweighted l1-norm
penalty term in the cost function. Note that the reweighted
l1-norm minimization for recovering sparse signals has been
recently used in, for example, [13]. This method provides
better performance results than the standard l1-norm mini-
mization. Our reweighted l1-norm penalized LMS considers
a penalty term proportional to the reweighted l1-norm of the
coefficient vector. The corresponding cost function can be
written as

Lrl1(n) = (1/2)e2(n) + γr‖w(n)ĥ(n)‖l1 (8)

where γr is the weight associated with the penalty term and
elements of w(n) are set to

[w(n)]i =
1

εr + |[ĥ(n − 1)]i|
, i = 1, . . . , N (9)

with εr being some positive number. The update equation can
also be derived from the gradient descent algorithm, and it is

ĥ(n + 1) = ĥ(n) + µe(n)x(n) − ρr
sgn(ĥ(n))

εr + |ĥ(n − 1)|
(10)

where ρr = µγr. Note that although the weight vector w(n)
changes in every stage of this sparsity-aware LMS algorithm,
the cost function Lrl1(n) is convex unlike the cost func-
tion for the lp-norm penalized LMS and RZA-LMS of [12].
Therefore, the algorithm is guaranteed to converge to the
global minimum under some conditions. The analytical study
of (10) will be reported in the consequent journal paper. The
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Fig. 2. Example 1, case 1: MSEs of different estimation al-
gorithms vs number of iterations.

choice of γp and γr in (5) and (8) affects the performance
of the penalized LMS methods. Assuming some prior dis-
tribution for the data, the optimum values for γp and γr can
be chosen using, for example, the approach of [14]. Here in
order to investigate the performance of the proposed algo-
rithms and compare it to that of the ZA-LMS and RZA-LMS
algorithms, computer simulations are performed.

5. SIMULATION RESULTS

In our first example, we estimate a CIR of length N = 16.
Two different cases with different sparsity levels, denoted as
case 1 and case 2, are considered. In case 1, only one of 16
taps in the CIR is nonzero, while the position of the nonzero
tap is chosen randomly. In case 2, two random taps of the CIR
are nonzero. The values of the nonzero taps are chosen from
a zero mean Gaussian distribution with a unit variance.

The performance of the proposed lp-norm penalized and
reweighted l1-norm penalized LMS algorithms is compared
to that of the ZA-LMS, RZA-LMS, and standard LMS. For
the lp-norm penalized method, p is set to 1/2. The other pa-
rameters of the proposed algorithms are set to ρp = ρr =
5 × 10−4 and εp = εr = 0.05. The parameters for the ZA-
LMS and RZA-LMS are set to ρZA = ρRZA = 5 × 10−4

and εRZA = 10 as suggested in [12]. The step size is set to
µ = 0.05 for all algorithms. Two signal-to-noise ratio (SNR)
values of 10 dB and 20 dB are considered. The algorithms
tested are compared based on the achievable mean square er-
ror (MSE) between the actual and estimated CIR. MSEs are
averaged over 1500 simulation runs.

Fig. 2 shows the MSEs of the algorithms tested versus the
number of iterations used to estimate the CIR for the sparsity
case 1. The MSE results for the sparsity case 2 are shown in
Fig. 3. It is expected that as the sparsity level of the CIR in-
creases the MSE performance of the sparsity-aware parameter
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Fig. 3. Example 1, case 2: MSEs of different estimation al-
gorithms vs number of iterations.

estimation algorithms degrades. This indeed can be observed
by comparing Figs. 2 and 3. For all cases tested, the ZA-
LMS and RZA-LMS algorithms exhibit almost the same per-
formance which for the low SNR situation is not better than
that of the standard LMS. However, as we increase the SNR,
these algorithms outperform the standard LMS. Based on the
MSE curves in Figs. 2 and 3 it can be also concluded that
among the two proposed algorithms, the lp-norm penalized
LMS has in general better performance than the reweighted
l1-norm penalized LMS. However, in the case SNR = 20 dB
in Fig. 3 the reweighted l1-norm penalized LMS has a better
performance. By examining Figs. 2 and 3 it can also be seen
that both the reweighted l1-norm penalized and the lp-norm
penalized LMS algorithms have faster convergence rate and
better performance than ZA-LMS and RZA-LMS algorithms.

Our second simulation example considers the case of a
CIR of length N = 256 with a sparsity level of 16. Therefore,
16 random taps of the CIR are nonzero. Tap values are chosen
from a zero mean Gaussian distribution with a variance of
1. SNR is set to 10 dB and the parameter values are chosen
as µ = 0.005, ρZA = ρRZA = 2 × 10−4, εRZA = 10,
ρp = 5 × 10−6, ρr = 5 × 10−5, εr = 0.01, and εp = 0.05.
Fig. 4 shows the MSEs for the algorithms tested. The same
conclusions as in the previous example apply here.

6. CONCLUSIONS

The channel estimation problem for channels with sparse
CIRs has been considered. The LMS principle has been used
as a baseline for parameter estimation. New sparsity-aware
lp-norm penalized and reweighted l1-norm penalized LMS
algorithms have been introduced. The performance of these
algorithms has been compared to that of the ZA-LMS and
RZA-LMS which are also the examples of sparsity-aware
LMS. Simulation results show that the proposed algorithms
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Fig. 4. Example 2: MSEs of different estimation algorithms
vs number of iterations, SNR=10 dB.

in general have better performance than the ZA-LMS and
RZA-LMS.
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