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A Recovery-Athene Glide Creep Model 
A theoretical recovery-creep model which takes the distribution of dislocation link 
lengths into account is developed. The recovery process is assumed to be climb controlled. 
The glide process is critically discussed and is found to be an athermal process. As a 
consequence of the athermal glide process the model predicts a time interval with the 
strain rate equal to zero after a small stress reduction. The model is able to simulate 
the strain-time behavior both in the primary and secondary stage and to simulate the 
distribution of dislocation link lengths. The stress dependence of the model is evaluated. 

Introduction 
Based on a description of the dislocation structure as a net­

work consisting of dislocation links in a spectrum of sizes, models 
have recently been presented for high temperature creep as well 
as plastic flow at ambient temperatures [1, 2].1 The creep model 
suffered from certain inadequacies. In particular, experimental 
work subsequent to these publications has shown quite un­
equivocally that the effective stress for dislocation glide is es­
sentially zero during high temperature creep. Hence this implies 
that glide is an athermal process during creep conditions. The 
assumption made in this model and in a number of other in­
vestigations that the effective stress takes a substantial propor­
tion of the applied stress is therefore erroneous. 

The aim of the present work is to develop a dislocation model 
for high temperature creep based on the ideas and concepts in­
troduced in the model mentioned above. The effort will be to 
overcome the shortcomings of this model. Particularly it will 
be developed to be consistent with the finding that the glide 
process is athermal. 

General Ideas About Creep 
During plastic deformation the dislocations can often be as­

sumed to exist in a complex three-dimensional network built up 
by dislocation links joined in nodes. In particular, such a descrip­
tion of the dislocation structure appears to be valid during 
creep deformation [3]. The dislocation links are known to be of 
quite varying lengths [4]. 

In the temperature range of creep (T > 0.5 Tm) the disloca­
tion network recovers. The average dislocation mesh increases 
its size by means of climb, and the dislocation density decreases 
[4]. Dislocation links which have increased their lengths suf-
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ficiently will be able to surmount the obstacles which oppose 
glide. The links start to glide, expand into loops, and are'eventual-
ly arrested by the surrounding network. This process provides 
strain and an increase of the dislocation density. The glide and 
recovery process will repeat themselves. Since the glide process 
is directly dependent on the recovery event and since they have 
opposite effect on the dislocation production, they will tend to 
balance each other. 

To describe the creep mechanism accurately we must know if 
the obstacles opposing glide are of thermal or athermal type. 
These two cases can be sorted out by studying the variation of 
the flow stress (at a certain plastic strain) with temperature. 
Results from experiments with pure single-crystals of copper 
and aluminum show that the flow stress compensated for the 
temperature dependence of the shear modulus falls with increas­
ing temperature up to about room temperature and is constant 
from this temperature to about 0.4 Tm. For Cu the compensated 
flow stress is constant between 250K and 470K. The strain 
rates of these experiments are slightly higher than the initial 
strain-rate in the creep experiment which will be simulated by 
this model [5, 6]. This means that below 250K the obstacles 
controlling glide can be surmounted by means of stress assisted 
thermal activation. Examples of such obstacles are the creation 
of jogs in dislocations gliding through a forest of dislocations and 
the thermal creation of point defects at jogs in moving screw dis­
locations. Evidently the obstacles which can be surmounted by 
means of thermal activation become insignificant in the vicinity 
of room temperature. The fact that the temperature compensated 
flow stress is constant for copper in the temperature range 250K 
to 470K implies that the obstacles controlling glide are athermal 
in this range. These athermal obstacles are generally assumed to 
be the attractive junctions and/or the general long-range stress 
fields of the network. They are associated with long-range elastic 
fields and the energy needed for a dislocation to surmount any 
of them is several hundred electron volts. Consequently the at­
tractive junctions and the long range stress fields will remain 
athermal at much higher temperatures, i.e., in the temperature 
range of creep. Because of this and because it is bascially im­
possible for a new type of thermally activatable obstacle to ap­
pear as the controlling factor of the glide process beyond an 
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athermally controlled range it has to be concluded that the glide 
in the creep range is an athermal event and is controlled by the 
overcoming of the attractive junctions and/or the long-range 
stress fields of the dislocation network. 

A consequence of the assumptions in the previous section is 
that the time it will take a dislocation link to grow long enough 
to surmount its obstacle must be much longer than the time for 
the movement from one athermal obstacle to the next. This im­
plies that at a certain moment the creep process can be charac­
terized by a three-dimensional network in which practically all 
dislocation links are at rest. Many dislocation links, especially 
the shorter ones, will probably never surmount their obstacles. 

The shear stress needed for a dislocation link to surmount an 
athermal obstacle is given by the equation 

n = aGb/l (1) 

where a is the strength of the obstacle, G is the shear modulus, 
6 is the burgers vector, and I is the length of the dislocation link. 
Equation (1) is appropriate for attractive junctions and/or long-
range stress fields. The value of a depends on the special cir­
cumstances. Different links will in general have different values 
of a. The applied shear stress is T«. If the dislocation link is 
arrested by the obstacle this implies that Ta < Ti. The local ef­
fective stress for glide can now be defined as 

Te = Ta - Ti (2) 

For all arrested links Te is negative. For a moving link T« is 
positive. According to the earlier reasoning that virtually all 
links are arrested in the network an average value of all the 
local effective stresses for glide must be negative. 

In this model the recovery process is considered to be a climb 
controlled shrinkage of small meshes in the network and a growth 
of the large ones. This will be discussed in detail later. For a 
dislocation link whose length is continually increasing by re­
covery,-the local effective stress for glide, T«, will continually in­
crease its value. When re reaches zero the link surmounts the 
obstacle, moves quickly and is arrested at obstacles where re is 
less than zero. The rate at which the dislocation links surmount 
their obstacles, and consequently the strain rate, is according to 
this reasoning entirely determined by the recovery process. 

The results of the earlier discussion can be used to predict 
what will happen if we make a small stress reduction, AT,,, in a 
creep experiment. Instantaneously before the stress reduction 
virtually all dislocation links are arrested in the network. These 
links will therefore determine the main behavior after the stress 
reduction. Those links which are moving instantaneously before 
the stress reduction are such a small fraction of the total number 
of links that they will not be able to alter the main behavior 
after the stress reduction. For the arrested links the range of 
the local effective stresses for glide is re < 0 instantaneously be­
fore the stress reduction. The links with re equal to zero will, if 
by means of recovery they increase their lengths infinitesimally, 
surmount their obstacles. According to equation (2) the effect 
of the stress reduction is to subtract Ara from all the rc's. In­
stantaneously after the stress reduction none of the links will 
therefore be able to surmount their obstacles. After a certain 
time some of the links have by means of recovery increased 
their lengths enough to make their re's equal to zero. During 
this time interval the strain rate will virtually cease. The length 
of the time inverval is determined by the recovery process and 
it should be longer the larger the stress reduction is. These 
predictions of the model are experimentally confirmed by stress 
reduction experiments [7, 8], 

A Specific Model 
The Physical Background. The general ideas about creep in 

the previous part are not dependent on any specific structural 
feature of the dislocation network or on any special type of 

obstacle opposing glide as long as the obstacles are athermal. 
For simplicity we will in this specific model make some assump­
tions about the physical background. 

The subgrain formation is typical for high-temperature creep. 
In the model presented below no special allowance is made for 
subgrain formation and it is therefore strictly applicable only in 
the regions where subgrains are absent. Some materials do not 
exhibit subgrain formation until late in the secondary stage 
[3, 9, 10]. It has therefore been suitable to use one of these ma­
terials, a 20 percent Cr-35 percent Ni steel, to test the model. 

The distribution of link sizes in the dislocation network will 
in accordance with earlier works [1, 2, 4] be described by a fre­
quency function <j>(l). The number of links per unit volume with 
lengths shorter than U is equal to N(U) 

N(h) = r°<t>(l)dl (3) 
a/0 

This means that the number of links in the small interval (I, 
I + Al) is about equal to <j>{l)'Al. By means of the frequency 
function the total dislocation density can now be expressed as 

Pit) = I l-W, t)dl (4) 

where the time dependence is included. 
We assume that the dislocation links in the network are joined 

in attractive junctions and that the athermal obstacles of the 
glide process correspond to the breakage of attractive junctions. 
The strength of an attractive junction depends on the character 
of the joining dislocations and the geometry of the junction and 
it can be of quite varying size [11]. It is possible to compare the 
calculated values of the strengths of the attractive junctions 
with the values of the strengths of the obstacles in the real net­
work. If we examine equation (1) it turns out that the strength 
of an obstacle which has arrested a link of length I must be at 
least a = rJ/Gb, i.e., amax = rdmax/Gb, The applied shear 
stress, Ta, is supposed to equal the applied tensile stress divided 
by the Taylor factor which equals 3.1 for fee metals. In a recent 
creep study the longest links of the network were estimated to be 
about 10~6 m at a creep stress of 108 MN/m2. The resulting 
value of amax, using G = 6.104 MN/m2 and 6 = 2.5.10"10 m, 
is 2.3. This means that the strengths of the obstacles in the net­
work are all less than about 2.3. This is in good agreement with 
the calculated values for attractive junctions [11]. 

In the dislocation network the creep process may be considered 
to take place by the following three subprocesses. 

1 By climb controlled shrinkage of small meshes and growth 
of large meshes the average mesh size will grow. 

2 Under the action of the applied stress the growing disloca­
tion links will, when they have gained an appropriate 
length, be released by the breakage of junctions in the net­
work. 

3 The released links expand to loops by glide. The expanding 
loops will be blocked by adjacent parts of the network, 

The subprocess (1) is a recovery process and produces always 
a decrease in the dislocation density. The subprocesses (2) and 
(3) are together a strain hardening process which always produces 
an increase in the dislocation density. 

Formulation of the Model. We will now describe the three 
subprocesses, one at a time, in a mathematical form. 

1 The treatment of the recovery process is the same as in an 
earlier work [1]. Direct measurements of the distribution of 
mesh sizes [4, 9] have shown that the recovery of the dislocation 
structure during creep conditions occurs by a shrinkage and 
eventual disappearance of the small meshes and a growth of the 
large meshes, the net result of which is a growth of the meshes 
of the network. This process requires that the dislocation links 
of the meshes are in general free to move in any crystal-plane 
and not only in the slip planes. During high temperature con-
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ditions the climb process provides this freedom and therefore it 
is generally assumed that the recovery is climb-controlled. The 
driving force of the process is the self-energy or the line-tension 
of the dislocations. Hence, we notice that there is quite a close 
resemblance between the growth process of the dislocation 
meshes and grain growth. Therefore, in accordance with the 
theory for grain growth [12] we will assume that the individual 
meshes will change their radius (R) with time as 

dt H 
\ Rcr R I 

(5) 

/3 is a numerical constant which is expected to equal 0.5-1.0 
from the theory of grain growth and therefore we put /3 = I. 
M is the mobility of the climbing dislocations. T is the disloca­
tion line tension. We use T = Gb*/2. T(l/R„ - \/R) is the 
driving force for the growth or shrinkage. Rer is the critical size 
above which the meshes grow and below which they shrink. The 
mesh growth/grain growth analogy fails on one point. The dis­
location links interact elastically over long ranges, whereas a 
corresponding long range interaction is negligible for grain 
boundaries. However, it appears that this difference does not 
affect the analogy seriously, since experiments have shown that 
the variation of mesh size with time, due to recovery, follows 
closely the relation for the growth law of average grain size (R), 
which can be derived from equation (5) (dR/dt <* M/R) [4]. 
It may be that the long range elastic interaction between the 
links on the average cancels out, and therefore has no major in­
fluence on the overall process. 

The change of mesh sizes according to equation (5) results in 
an exchange of links between neighboring size classes. The 
change of the number of links in a size class (R, R + AR) during 
the time interval (t, I + At) may be written as 

A<t>(R, t) • AR 

- ( 
(t>(R + AR) 

dR 

dt 
(R + AR) - 4>(R) 

dR 

' dt • ( « ) 

This relation gives the differential equation 

d<t>(R, t) 
dt dR \ <t>(R, t) 

dR 
dt 

Al 

(6) 

(7) 

which thus describes the change of <j> due to the continuous mesh 
growth. The mesh radius, R, will only differ from the link 
length of the mesh, I, by a constant factor, not very far from one. 
We simply assume, therefore, that R equals I. By substitution 
of equation (5) into equation (7) we obtain the final expression 
for the change of (j> due to recovery. 

d<t>d, t) 
dt ' T - ~ 

MT( -L - M 
V lcr{t) I ) 

&4>H, t) 
dl 

MT.j *ft 0 (8) 

The remaining problem is to calculate l„(t). This will be dis­
cussed later. 

2 The implication of the physical description of creep given 
above is that only the growing links in the recovery process will 
be able to break their junctions and glide, thereby adding strain 
to the creep. Hence, according to the mathematical formulation 
of the recovery, equation (5), only links larger than l„ will have 
a chance to participate in the glide process. When the links of 
this category have gained sufficient length to satisfy equation 
(1), Ta - aGb/l, glide occurs. 

If the attractive junctions could be adequately described by 
one single strength (a) the creep rate should be directly given 

by the flux of dislocation links caused by the recovery proco,« 
passing through the link size aGb/ra. However, as iilroadv 
pointed out the junctions may occur in a spectrum of strength, 
This means that in a loaded specimen, like a creep sp('cil11!;il 

the attractive junction opposing a particular link of lengih / 
will have a strength equal to or larger than a = rJ/Gb. Link,, 
opposed by weaker junctions will of course never be formed. 
There will always be one type of junction .which has the larger 
possible strength, aw*, and this will correspond to the; maxi-
mum link length existing in the dislocation network through the 
relationship lma* = alm^Gb/Ta. Evidently the spec|-nm 

of junction strengths for a particular link length will be. larger 
the smaller the link size is. For the extremes of the growing 
links, I Cr and /max, the range of strength will shrink from oiillu -. 
ar.r to a single value ctm^. As a consequence of this it will he 
only a small fraction of all the links with lengths close In I, 
that will be able to break free from their obstacles by an in­
finitesimal recovery growth. The remaining part needs to grow 
more. The stronger the junction is the more length mu«t the 
link gain before it can break free. Close to £„mx, on the. o her 
hand, all the opposing junctions will have strengths e-Iiwc to 
a„mx. and accordingly the majority of the links can here surmount 
their obstacles after an infinitesimal growth. These effects are 
demonstrated in Fig. 1(a) which shows that the relative numher 
of links contributing to the creep process at any particular time 
increases as I increases from l„ to imax. However, if this idea ii 
pursued in detail it turns out that the model produces a si eiulily 
increasing creep rate, hence indicating that the picturo of the 
glide process in Fig. 1(a) is oversimplified. Apparently the num­
ber of dislocation links producing glide is drastically over­
estimated by the idea sketched in Fig. 1(a) as l„ decreases during 
the creep process. We believe that the main reason for ill's is 
that during recovery not only do the link lengths increase, but 
so do also their strengths. During the recovery profess the 
dislocations will arrange themselves in low energy positions and 
as a consequence the junctions will tend to be stronger. I'nr the 
rather small growth rates of links close to lc, this probably means 
that the increase of a overrules the increase of I and that. Hie 
links in this size range will never break free from their juncliniw. 
Whereas the decrease of l„ during creep will tend to enlarge Hie 
region of links contributing to glide in Fig. 1(a) this effect will 
tend to shrink it. As a very simple approximation of this <•• im­
plex situation we will assume that a constant fraction of the exist­
ing dislocation links will participate in the glide process above a 
certain link size I as demonstrated in Fig. 1(6). It is quile pos­
sible that I undergoes a variation during primary civcp and 
reaches a constant value only in the secondary stage. Lacking 
information of the details of this complex situation wo will 
simply assume it to be constant throughout a creep tesl. l t s 

depencence of stress is assumed to obey equation (1), I = rtOb TV 
The change of the frequency function due to such a glide proi'i'-'S 
can be expressed mathematically as 

d<t>d, t) 
dt 

= - B • (j>(l, t) • H(l - I) 

H(l) is defined by 

H(l) 
0 if I < 0 

1 if I >. 0 

l« 

(10) 

B is a constant which will be related to the rate of the recovery 
process close to I = I and will therefore be expected to be q1""-8 

strongly temperature dependent. 
3 When a link has been released by the breakage of a junction 

it expands into a loop until it is arrested by the adjacent ncl" 
work. In Fig. 2 we have sketched a network and a loop which 
has been arrested in it. The figure shows that for each link whin1 

is hit three new links are formed. These three new links havo in 
general different lengths but for simplicity we make the foil"*" 
ing assumption. When a link of length l/k(t) (k(l) < 1) is ,llt 
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lCr(t) 1,1,* Al 

Fig. 1(a) 

Fig. 2 A dislocation loop AB is arrested in the dislocation network. 
The figure shows schematically that for each dislocation link which 
is hit (1-2) three new links (1, 2, 3) are created. 

I = const. 
Fig. 1(b) 

Fig. 1 The shaded areas correspond to the links which will break their 
Junctions during the time interval (t, t + At) due to the recovery 
process. In (a) the behavior is shown if the strengths of the junctions 
are not changed by the recovery process and in (b) the behavior is 
shown due to the approximation in this model. 

U" k / 
k-l, max 'max 

Fig. 3 When a dislocation link in the interval V/k, (/ + A/)/fr) is hit 
by an expanding loop three new dislocation links In the interval 
(/, l+M) are created. A drawback of this simplification is that there 
will be no supply of new links due to the strain hardening process in 
the interval (fc/mai, /max). 

the three links will have a length of I, which we may associate 
with the mean of their actual lengths. The assumption that 
k(t) < 1 is due to the experimental fact that the dislocation 
density increases during a strain-hardening process, i.e., the 
mean link length decreases. 

We make one more assumption. The probability that a link 
of length I will be hit by an expanding loop during the time in­
terval (t, t + At) is equal to C(t) • I • At. C(t) depends for in­
stance on the strain rate. 

We are now able to express the net increase in the number of 
links in the interval (l, I + Al) during the time interval (t, 
t + At). 

A<t>d, t) • Al = 3 • C • (l/k) • At • <t>(l/k, t) • (Al/k) 

- C • I • At • <j>{l, t) • Al (11) 

aence 

foft 0 
dt 

= C(t) • I • 

The first term in equation (11) expresses the supply of new 
links in (I, I + Al) due to links which are hit in the interval 
(l/k, (I -f- Al/k)). The second term expresses the number of links 
which are hit in the interval (I, I + Al). This formulation has 
a drawback which is illustrated in Fig. 3. The function k(t) is 
assumed to be a mean-value in the whole network and is there­
fore independent of I. As a consequence there will be no supply 
of new links in the interval (k • ^m„, lmax). According to the 
numerical calculations the value k is about 0.75. However, this 
drawback does not influence the results of the calculations in a 
serious way. The final expression for the change of <t>(l, t) due 
to strain-hardening can be written as 

d<t>d, t) 
dt sh 

/ B • <t>(l, t) • H(l - I) 

+ Cit)-l-(w>r - * ( ^ ' 0 " * ( U ) ) (13) 

To determine the functions C(t) and k(t) we have to make some 
assumptions. The mean free path of motion for the dislocation 
links from their release at an obstacle to their arrest at the next 
obstacle will be designated X. We assume 

x<o = L • (p(or"» (14) 

where L is a constant. The expansion of dislocation loops gives 
rise to both an increase in strain and an increase in dislocation 
density. For the relation between these two quantities we as-

-TT (15) 

where y is the shear strain. 
In a three-dimensional network where the geometry does not 

change with time the condition of constant volume is expressed 
by [12] 

dp 1 dy 
dt ' sh ~ b\ dt 

I 

bL 
. pi's . 

dy 

dt 

r iP<j>(l, t)dl = constant 

hence 

J»oo 

dt 
dl = 0 

(16) 

(17) 
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This condition is supported by experiments [4]. We assume 
that the condition of constant volume must apply independently 
of the strain hardening process, equation (13), and to the re­
covery process, equation (8). This means 

f: p 
d<j> 

dt 
I dl 

sh - / " 
d<j> 

dt 
I dl = 0 

r 
(18) 

This condition of constant volume together with the relation 
between the strain and the dislocation density, equation (15), 
determine the functions C{1) and k(t) in the strain hardening 
process. For the recovery process the condition of constant 
volume determines the value of lcr(t). 

W<) = 
/ : 

P<j>dl 

f: 
(19) 

l(j>dl 

The total change in the frequency function <j>(l, I) can now be 
expressed as the sum of the strain hardening process and the 
recovery process, i.e., the sum of equation (13) and equation (8). 

W, t) 
dt 

= - B . 4>(l, t) • H{1 - I) 

+ C(t) • I (<*ib • * (dr> ' ' )~* t t 0 ) 
\ Ut) l J 

d<t>(l, t) 
dl 

MT • - • <t>(l,t) (20) 

The remaining quantity to be determined is the strain rate. 
The number of links per unit volume which break their junctions 
per unit time are 

dN 
dt / ; 

B • <t>(l, t)dl (21) 

If A is the average area a released link passes over until it is 
pinned, the shear strain rate can be expressed as 

dy 
bA 

dN 
(22) 

By making use of the two ways of expressing the strain created 
by the dislocation loops per unit volume, A? = bAAN and 
A7 = 6XAp, it is apparent that there always exists a relation 
between A and X. However, this depends on the geometry of the 
loop. If we for simplicity assume that the loop is circular it is 
readily shown that the radius of the loop equals 2X, i.e., A = 
47rX2 = iirL2/p. The expression for the strain rate may now be 
written as 

dy 
dt 

4 T T 6 L 2 

I: B • <j>(l, l)dl (23) 

The normal strain, e, can be expressed as e = y/m, where m 
is the Taylor factor. For fee metals mis equal to 3.1. The equa­
tions determining the creep process can now be summarized. 

d<t>(l, t) 
dt 

B • ${1, t) • H(l - I) 

+ C{t) • I 
( d b •* (*sj - ' )"* ( U ) ) 

V wo i) 
ddt(l, t) 1 
-J^Z-J _ MT.-. +{l, t) (24a) 

dt 

dt 3.1 . p(t) / ; 
B • <p(l, t)dl (246) 

dp _ 3A 
dt sh bL 

(p{t))u 

dt 

£ dt 

(-Mr 

(24.1) 

The value of B is determined by equation (246) if we make 
use of the experimentally determined initial strain rate and 
initial 0-function. The remaining three parameters l, L, and .If 
are used in the simulations to obtain good fits between the cal­
culated and experimental creep curves and the calculated and 
experimental steady state ^-functions. An important feature 
of the model is that all the quantities in the model, constants awl 
functions, have a definite physical meaning. 

Simulation of Creep Deformation 
Determination of the Parameters of the Model. The objective 

of the numerical computations has been to simulate the creep 
deformation in the primary stage and the secondary stage in a '20 
percent Cr-35 percent Ni steel. This material was chosen bcciiuso 
good measurements of the variation of the creep strain and the 
frequency function <j> with time were available and its dislcma-
tion structure is fairly homogeneous in the primary and the 
early secondary state [4, 9]. To determine the parameters of 
the model we have chosen to simulate a creep experiment per­
formed at 973K and at the tensile stress 108 MN/m'. 

The calculations were started up from the experimentally 
determined frequency function 4>a{l) and initial strain rale 
€0 • <f>o corresponds to the dislocation network which exists after 
the loading and the instantaneous strain. $0 is very well ap­
proximated by the analytical function 3.2 • 1044/3 exp ( — 8.0 • 
1018P)m~4. This distribution corresponds to an initial dislocal ion 
density of 3.0 • 1012m-2. The initial strain rate was 1.45 • 10_s 

In order to solve equation (24) numerically an implicit dif­
ference method was used. The accuracy of the results has bi'on 
checked by varying the space step, SI, and the time step, 5{. 

By varying I, L, and M good fits between the calculated and 
experimental creep curves (Fig. 4) and between the calculated 
and experimental steady state (^-functions (Fig. 5) are obtained. 
The values for the good fits are I = 2.6 • lO-'m, L = 0.65, and 
M = 0.13 m2/(MN • s). It turned out that for any reasonable 
value of I a good fit between the creep curves is obtainable. The 
strain of the primary stage is mainly determined by L. Con­
sequently M was used to adjust the strain rate in the secondary 
stage. To get a good fit between the steady state $-f unctions 
at the same time as a good fit between the creep curves was ob­
tained it was necessary to vary I. The variation with tim« "f 
the calculated (^-functions is shown in Fig. 5. The calculated dis­
location density (Fig. 6) increases very fast during the primary 
stage in correspondence with the fast decrease of the strain rati'-
Both the dislocation density and the strain rate approach con­
stant values. The same is true for all other quantities. The ex­
perimental dislocation density reaches a constant value much 
later as can be seen in Fig. 6. The function k{t) varies slowly 
with time from 0.72 to 0.79. This is in accordance with the in*-
sumption of a homogeneous network. The function C(i) de­
creases very fast during the primary stage from 2.8 • 101' I" 
2.7 • 104 (m • s)_1. This means that the probability that a 
link of length 2.10-7 m is hit during one second equals 5.4 • 10" 
in the secondary stage. This is in accordance with the assumpt i"11 

that almost all links are arrested in the network and only a few 
are gliding. The function l„(t) decreases very fast from 5.5 • 1" 
to 1.7 • 10-7 m . The value of B is 1.8 • 10-2 s~i. 

A test of the model is to compare the values of I, L, and M 
obtained from the numerical simulations with values determin"1' 
in an independent way. In this model the obstacles, are assumed 
to be the attractive junctions. For a dislocation gliding throng'1 
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culation 
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(D) Calculated steady state curve 
(E) Experimental steady state curve 

a forest of dislocations about every second intersection is at­
tractive. Consequently the diameter of an expanded dislocation 
loop should be about 2 • p~1/2. This estimation is in good agree­
ment with the value of the diameter produced by the model 
which is equal to 4Lp-i« = 2.6 • p"1/2. 

The value of I corresponds to a value of a = 0.60 (equation 
(1)). This value can be compared with the value of a' in the 
relation 

ra = a'Gbp,1 (25) 

The steady state dislocation density, ps, is 3.0 • 1013 m~2 and 
the corresponding value of a' is 0.43. However, in equation 
(25) the total dislocation density is used, i.e., not only the long 
links, and this must necessarily give a smaller value of a ' than 
ft. 

The model predicts a strain rate equal to zero instantaneously 
after an arbitrarily small stress reduction. I t is, however, not 
possible to simulate stress reductions by equation (24). A rough 
estimate of the length of the time interval with zero strain rate 
after a small stress reduction in the secondary stage can be 
made. We calculate the length of this time interval in the secon­
dary stage for links of length I and assume that this value is 
representative. A link of length I which instantaneously before 
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Fig. 6 Calculated and experimental dislocation densities (108 MN/nt :) 

the stress reduction was on the verge of breaking its junction 
must after the stress reduction increase its length before it is 
able to break its junction again. The required increase in length 
for a small stress reduction, Ar„, is given by equation (1) 

Al ~ ZATO/T,, (26) 

The rate of growth of the link is given by equation (5) and for 
a small stress reduction we assume it to be constant during the 
small time interval with zero strain rate. The length of the 
time interval is now given by 

At ~ Al/ f 
dt 

• IATC/(TOMT(1/1„ - 1/0) (27) 

For a stress reduction of 1 percent this gives At = 5.2 s. 
An independent value obtained from experiments is At = 1.3 
s [8]. Hence, from this we conclude that the M-value obtained 
from the model is, within a factor of 4, in agreement with in­
dependent exper'ni^nts. In view of the incertainties in the 
measurement ai d the calculation (equation (27)) of At this 
must at the present stage be considered satisfactory. 

Dependence of the Results on the Initial Values. In a creep 
model, like the present, one would expect the steady state prop­
erties to be independent of the initial state at which creep com­
mences. To test this assumption the initial values <j>a and eo 
have been varied. The function <f>0 has been approximated by 
the function Al3 • exp (— BP). The constants A and B are 
determined by the initial dislocation density and the condition 
of constant volume (equation (16)). A variation of the initial 
dislocation density from 0.5po to 1.5po, where p0 is the experi­
mentally determined value, yields a variation in the steady state 
creep rate of 5 percsnt and in the steady state dislocation density 
of 3 percent. A variation of the initial creep rate from 0.o€0 to 
1.5eo yields a variation in the steady state creep rate of 12 percent 
and in the steady state dislocation density of 23 percent. Hence 
the steady state creep rate and the steady state dislocation den­
sity are approximately independent of the initial values. 

Dependence of the Steady State Dislocation Density on the Param­
eters. The relation between the applied stress and the steady 
state dislocation density in equation (25), ra = a'Gbp,112, is 
justified on the basis that the glide process is an athermal process. 
A consequence of this relation is that the steady state dislocation 
density should be independent of L and M. A variation of L 
from 0.5L to 1.5L and of M from 0.5 M to 1.5M where L and M 
are the values obtained from the simulations, yields a variation 
of Gbp,112 of only 4 and 8 percent, respectively. Hence the 
product Gbp,112 is approximately independent of L and M. 
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The parameter determining the steady state dislocation density 
is, as expected, I which is related to ps through the relations 
To = aGb/l and ra = a'Gb\/pa. 

Stress Dependence of the Model. The values obtained for a, 
L, and M obtained at the tensile stress 108 MN/m2 have been 
used to simulate two creep experiments at the tensile stress 
levels 78.5 and 147 MN/m2. The experimentally determined 
values of po and e0 were used. It was found that the stress de­
pendence of the steady state creep rate, expressed as the ex­
ponent in the usual power law es = Aun, is 3.2. The computed 
stress dependence of the steady state dislocation density proved 
to follow closely a relationship of the type T„ = aObp,in (cf. 
Fig. 7). It is instructive to compare these results with a simple 
recovery creep model which involves the same basic assumptions 
for the dislocation generation and recovery as the present model 
[13]. In this, the dislocation structure is assumed to be ad­
equately described by the average quantity, the dislocation 
density, and no account is taken to the distribution of dislocation 
link lengths. It predicts a steady state creep rate 

i, = 2b\MTp? (28) 

Inserting T„ = a'6bp,m and X = L • p""1'2 (equation (14)) we 
arrive at 

e, = 2bLMT \ a'Gb J 
(29) 

Hence the stress dependence of the creep rate is in rather 
close accordance between the two models. Furthermore, the 
dislocation density in the simple model is uniquely determined by 
To = a'Obp,112. The fact that p, was found to be approximately 
independent of L and M in the present model proves that also 
on this point the two models are consistent with each other. 
These results show that the use of the simple model should in 
many cases be adequate and sufficient. 

The experimentally determined stress dependence of the steady 
state creep rate is 4.7 [9]. According to our opinion a and M 
are stress independent. Hence L must depend on stress. An in­
crease of L from 0.65 to 0.91 for the stress level 147 MN/m2 

and a decrease of L from 0.65 to 0.46 for the stress level 78.5 
MN/m2 yields the stress dependence 4.7 of the steady state creep 
rate. The corresponding stress dependence of L is L & o-ii. A 
possible explanation of this stress dependence is that L depends 
on cross slip of the gliding dislocations which is a stress-assisted 
mechanism. Fig. 7 shows that the computed steady state dis­
location densities are in reasonable agreement with experimental 
data. The three creep curves corresponding to the three stress 
levels are shown in Fig. 8. Since L largely determines the primary 
creep strain a comparison between computed and experimental 
primary strains by the application of L <* o-1-1 represents an in­
dependent test of the model. Below about 120 MN/m2 the agree­
ment is quite satisfactory. Above 120 MN/m2 the model under­
estimates the primary creep strain. 

Summary and Conclusions 
A theoretical recovery creep model has been presented. The 

model includes the following features. 
1 It takes the distribution of link lengths into account. 
2 The glide process is assumed to be athermal and as a con­

sequence the effective stress for glide is shown to be nega­
tive for the majority of the dislocation links. 

3 It predicts a time interval with the strain rate equal to 
zero after arbitrarily small stress reductions. The length 
of the time interval is predicted to be longer the larger the 
stress reduction is. 

4 It is able to simulate the strain-time behavior in both the 
primary and secondary stage and the behavior of the dis­
location density and the distribution of dislocation link 
lengths. The accordance between theory and experiment 

has been obtained for values of the parameters of the model 
which are in good agreement with independent theoretical 
estimates and measurements. 
The steady state values of the strain rate and the disluca. 
tion density are approximately independent of the inriial 
dislocation density and the initial strain rate. 
The steady state dislocation density follows closely {ne 

relation r„ = a'Gbp,112. This relation is justified on the 
basis that the glide process is an athermal process. ]|. j 3 

shown, in accordance with this relation, that the steady 
state dislocation density is approximately independent of 
the magnitude of the mean free path of dislocation glidc 

and the mobility of the climbing dislocations. 
The stress dependence of the steady state creep rate and 
the steady state dislocation density is in agreement with a 
simple model for the steady state creep previously proposed 
by Lagneborg. 
To obtain the experimentally determined stress dependence 
of the steady state creep rate it is necessary to assume thai 
the factor L in the relation for the mean free path of 
dislocation glide, X = Lp~112, is stress dependent. 

50 100 
Gb /pp [MN/m2] 

Fig. 7 The tensile stress versus Gbp,1" . P, is the steady state dis­
location density, (x) indicates the calculated values and (0) the ex­
perimental values. 

15 5 10 
Time [min] 

Fig. S Calculated creep curves for the tensile stresses 78.5,108, and 
147 MN/m' 
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iV • < V > = const (6) 

(iV = total number of links per unit volume). An equally 
plausible assumption, which has more commonly been made in 
simple statistical treatments, is that there is no correlation be­
tween neighboring link lengths. In this case, volume constancy 
is expressed by 

N • < I >8 = const (c) 

It can easily be shown that equations (6) and (c) correspond, re­
spectively, to the following expressions for the total length of 
dislocation per unit volume: 

<l > M. 

3 The change of the distribution function through recovery, 
as assumed by the authors, has a number of curious features. 
Firstly, no links are supposed to disappear through mutual an­
nihilation (equation (7)). Yet one may well imagine, for example, 
that an oblong four-sided mesh can disappear through recovery 
processes: then, the two short sides shrink to zero length, but 
the two long sides annihilate each other at a finite length. A 
shrinkage of links to zero length is not precluded in this treatment, 
in principle. However, the rate of disappearance would be 
proportional to the slope of the distribution function at the origin 
(if one uses the coarsening rate specified by equation (a)). This 
slope appears to be zero in most figures, and it is zero in the 
(supposedly measured) initial distribution function used in the 
application (although a finite slope seems to appear with strain, 
see Fig. 5). Note that even in the regime in which the total num­
ber of links is not changed by recovery, the total length of dis­
location decreases. Together with the authors' specific condition 
expressing "volume constancy" (equation (6)), this means that 
the average link length decreases (equation (d)). Apart from the 
fact that this is possible only when the mesh shape changes 
(which it was assumed not to in equation (b)), one would in­
tuitively favor a model in which the total number of links as 
well as the total length of dislocations decrease, whereas the 
average link length increases. 

4 The strain-hardening model used by the authors clearly 
(and sensibly) predicts an increase in the total number of links 
with time. When this is not balanced by a decrease through re-
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