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Abstract

Active contours is a popular technique for image seg-
mentation. However, active contour tend to converge to the
closest local minimum of its energy function and often re-
quires a close boundary initialization. We introduce a new
approach that overcomes the close boundary initialization
problem by reformulating the external energy term. We treat
the active contour as a mean curve of the probability density
function p(x). It moves to minimize the Kullback-Leibler
(KL) divergence between p(x) and the probability density
function derived from the image. KL divergence forces p(x)
to “cover all image areas” and the uncovered areas are
heavily penalized, which allows the active contour to go
over the edges. Also we use deterministic annealing on the
width of p(x) to implement a coarse-to-fine search strat-
egy. In the limit, when the width of p(x) goes to zero, the
KL divergence function converges to the conventional exter-
nal energy term (which can be seen a special case) of active
contours. Our method produces robust segmentation results
from arbitrary initialization positions.

1. Introduction
Deformable models for image segmentation became

popular since 1987, when Kass, Witkin and Terzopou-
los [11] introduced their seminal work on snakes. Appli-
cations of snakes include medical image analysis [18] and
moving object tracking [19, 2]. Snake, or active contour,
is a curve in the image plane, which moves to minimize its
internal and external energy functions. The internal energy
function regularizes the shape of the contour, which is de-
fined as first and second order derivative regularization. The
external energy function is a modified image itself, such that
the smaller intensity values correspond to the desirable con-
tour location.

Close boundary initialization of snakes is crucial. First,
snakes rely on the gradient of the external energy to move;

thus, a contour initialized far from the boundary in a homo-
geneous area will make no move. Second, noise and false
boundaries create numerous local minima, where snakes
can be easily trapped. Third, snakes can not move over the
boundaries and thus requires initialization around or within
the required segmentation boundaries.

To overcome the close boundary initialization problem,
many region-based methods, including Chan and Vese [5],
Li and Yezzi [13], Bresson et al. [3], An et al. [1], have
been proposed based on Mumford-Shah formulation [16].
Region-based information helps to overcome local minima
and in some case achieve a globally optimal solution re-
gardless of the initialization. Bresson et al. [3] introduced
a fast method for global minimization of active contours
by combining variational image segmentation and denois-
ing methods. An et al. [1] proposed to use a Γ-convergence
approximation for a multi-scale piecewise smooth model to
overcomes the limitations of global region models while
avoiding the high sensitivity of local approaches. Other
researchers, including Cremers et al. [6] and Leventon et
al. [12], proposed to utilize the shape prior to find a globally
optimal solution, given the statistical shape prior is avail-
able. For a thorough overview of the active contour methods
see [13, 6, 3] and references therein.

We believe the difficulty of snakes lies in the definition
of its external energy function, which is a preprocessed im-
age itself, and has numerous local minima and flat regions.
It is hard to find a global optimum of such function from
the optimization perspective. The energy is minimized only
locally, which requires appropriate initialization and has no
guarantee of reaching the correct solution.

In this paper, we take a different approach to the formu-
lation of the active contour and its external energy. We treat
the active contour as a continuous mean curve y(s) ∈ R2

(s ∈ [0, 1]) of the probability density function p(x) (x ∈
R2). We derive another pdf F (x) from the input image, so
that F (x) has larger values at the features of interest. We
align p(x) to F (x) by minimize the Kullback-Leibler (KL)
divergence between the distributions subject to the contour
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position y(s). We gradually anneal the width of p(x) to im-
plement a coarse-to-fine search strategy. In the limit, when
the width of p(x) goes to zero, the KL divergence converges
to the conventional external energy term of active contours.
Thus the conventional external energy can be seen as a spe-
cial case of our formulation. Our method overcomes the
close boundary initialization problem of conventional active
contours and allows robust segmentation from an arbitrary
initialization position.

2. Fundamentals
Conventional snake is a curve y(s) ∈ R2, s ∈ [0, 1],

which moves over the image domain to minimize its energy
function [11]:

E(y) =

∫ 1

0

[Eint(y(s)) + Eext(y(s)]ds (1)

The internal energy, Eint, keeps the snake short and
smooth:
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The first and second order derivative regularization force
the snake to have the smallest length (tension) and the
smoothest shape (rigidity). The α and β weights control
the snake’s tension and rigidity respectively.

The external energy, Eext, is a modified image itself,
such that the lower intensity values correspond to the desir-
able snake location. The negative norm of image gradient is
usually used as the external energy:

Eext(x) = −|∇[G(x) ∗ I(x)]|2 (3)

where a Gaussian filter G is used to presmooth the image I .
A snake that minimizes E(y) must satisfy the Euler-

Lagrange differential equation:

α
∂2y(s)

∂s2
− β

∂4y(s)

∂s4
−∇Eext(y(s)) = 0 (4)

Approximating the derivatives with finite differences, the
non-linear system of equations can be iteratively solved by
by treating y as a function of time (see [11] for details).

3. Method
Key to our method is the notation of the probability-map

F (x) derived from the original image I(x), so that F (x)
has larger values at the features of interest. For instance, if
we are interested in the image edges, we can use a norm of
the image gradient as a probability-map:

F (x) =
1

∫

|∇I(x)|2
|∇I(x)|2 (5)

This notation is similar to the snakes’ external energy in
Eq. 3. The higher probability areas of F (x) represent the
desirable segmentation regions.

We represent our active contour y(s) ∈ R2, s ∈ [0, 1] as
a mean curve of the probability density function p(x):

p(x) =

∫ 1

0

1

2πσ2
exp−

‖x−y(s)‖2

2σ2 ds, (6)

p(x) can be seen as a continuous analog of Gaussian mix-
ture model with equal isotropic covariances. We also add
one more term to the p(x), a uniform distribution 1

N
(where

N is a size of the image domain), in order to account for
noise and outliers. We rewrite p(x) as:

p(x) = (1 − w)

∫ 1

0

1

2πσ2
exp− ‖x−y(s)‖2

2σ2 ds + w
1

N
, (7)

Parameter w represents the contribution of the uniform dis-
tribution (0 < w < 1).

We search for the active contour position, such that the
distribution p(x) maximally approximates F (x), by mini-
mizing Kullback-Leibler (KL) divergence between the dis-
tributions:

Efit(y) =

∫

R2

F (x) log
F (x)

p(x)
dx (8)

which we call the fitness term. To regularize the shape of the
contour we keep the original active contour regularization:

Ereg(y) =
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which we call the regularization term. The goal is to find
the function y(s) that minimizes the energy functional

E(y) = Efit(y) + Ereg(y). (10)

The influence of each term is controlled by the weights α

and β.
We note that the probabilistic approach to active con-

tours in Blake and Isard [2], where the mean curve is used
to regularize the possible active contour shape, should not
be confused with our work where the mean curve is a pa-
pameter itself that alters the form of the distribution p(x) to
align it with the probability-map F (x).

3.1. Optimization
We rewrite the energy functional ignoring the terms in-

dependent of y as:

E(y) = −
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The function y(s) that minimizes E(y) must satisfy the
Euler-Lagrange differential equation1, which we obtain by
taking the functional derivative of E(y) with respect to y:

−
1

σ2

∫

F (x)
(x − y(s)) exp− ‖x−y(s)‖2

2σ2

∫ 1

0
exp−

‖x−y(k)‖2

2σ2 dk + 2πσ2w
(1−w)N

dx

+ α
∂2y(s)

∂s2
+ β

∂4y(s)

∂s4
= 0 (12)

Discretizing the functions F (x) and y(s), we can rewrite
Eq. 12 as a non-linear system of equations:

−
1

σ2
(P diag (F)X− diag (PF)Y) +AY = 0 (13)

where YM×2 = (y1, . . . ,yM )T is the y(s) function dis-
cretized at M points. XN×2 = (x1, . . . ,xN )T are the co-
ordinates of image pixels. FN×1 denotes a column vector
of the probability-map intensity values. AM×M is a pen-
tadioganal matrix of discrete derivative approximation, the
diag () notation defines a square diagonal matrix formed by
the vector in parentheses. Matrix PM×N is defined as

pmn =
exp− ‖xn−ym‖2

2σ2

∑M

k=1 exp−
‖xn−y

k‖
2

2σ2 + 2πσ2w
(1−w)N

(14)

To solve the non-linear system in Eq. 13, we use a fixed
point optimization by iteratively solving the linear system:

(

diag (PtF) + σ2A
)

Yt+1 = Pt diag (F) X (15)

3.2. Deterministic annealing
The value of σ serves as a capture range for the active

contour. Smaller σ indicates more localized capture range.
We use deterministic annealing for σ: We start from a large
value of σ and gradually reduce it, tracking the local mini-
mum of E. This way we hope to achieve the global mini-
mum or to be very close to it at a small scale.

We use half of the image size as the initial σ, for which,
the contour converges to the only optimum of its energy
function: the mean of the probability-map. We use 0.95
annealing rate, so that the annealing process is slow enough
for the algorithm to be robust. The final value of σ is a half
a pixel (0.5).

3.3. Relation to conventional external energy
In the limit, when σ approaches zero, the KL divergence

becomes equivalent to conventional snakes external energy
1Strictly speaking, the Euler-Lagrange differential equation requires a

standard form of the functional, which we do not have. However, we still
can take the functional derivative and equate it to zero.

term.
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Here we used the fact that Gaussian approaches delta func-
tion when its width approaches zero. Thus, the conven-
tional external energy term −

∫

F (y(s))ds can be seen a
special case of the distance between two distributions p(x)
and F (x).

3.4. Computational complexity
The computational bottleneck of our method is in solv-

ing the linear system of equations (Eq. 15), which is in
general O(M3), and in updating the matrix P, which is
O(MN).

To accelerate the linear system solution, we note that
the left-hand side matrix in Eq. 15 is sparse, banded and
symmetric. We use a linear conjugate gradient (CG)
method [17], which we can initialize from the Y value of
the previous iteration (which will be close to the solution)
rather than solving each system anew. CG requires O(M 2)
to solve a sparse banded system.

To accelerate the P matrix computation, we can truncate
the Gaussian kernel so that pmn are nonzero only for the
k nearest neighbors (obtained for free from the pixel grid),
which is O(kM); or we can use the fast Gauss transform
[9], which is O(2(N + M)).

4. Results
We implemented the algorithm in Matlab, and tested it

on a Pentium4 CPU 3GHz with 4GB RAM. We show the
method’s performance on several toy and real images with
average size of 150 × 150 pixels. For all experiments, we
used α and β parameters equal one, unless explicitly stated
otherwise. We set the weight w of the uniform distribution
term equal 0.5. The algorithm requires about 50 iterations
to converge to the tolerance 10−5, for a single value of σ.
Overall, the computational time of the method is about 1
minute.



Initialization Iteration 1 Iteration 10 Iteration 20 Iteration 40
Figure 1. U-shaped object segmentation. The first figure shows the image and the active contour (red circles) initialization at the upper left
corner. We use the image itself as a probability-map F (x). At the first iteration, the active contour goes to the mean of the probability-map.
As σ decreases, the active contour enlarges and segments the probability-map. This example shows the accurate method performance in
presence of cavities and outside initialization without any image smoothing or preprocessing.

Initialization Iteration 1 Iteration 10 Iteration 20 Iteration 40
Figure 2. Corrupted U-shaped object segmentation. We corrupt the image by Gaussian noise and add several random lines. We use the
image itself as a probability-map F (x). Consecutive figures show the convergence progress of the method (please view this figure in
color).

Synthetic examples. We start from the famous U-shape
example [20]. The U-shaped image is a line-drawing, thus
we use the image itself as a probability-map F (x). Fig-
ure 3 shows an example of the contour initialization, and
the corresponding 3D view of p(x) and F (x). The conven-
tional and Gradient Vector Flow (GVF) snakes [20] have to
be initialized around the object (or inside) in order to suc-
ceed. In our experiment, we initialize the active contour far
from the object (a small red circle in the left upper corner in
Fig. 1). Figure 1 demonstrates the accurate method perfor-
mance without any extra image smoothing or preprocessing,

F(x)

p(x)

(a) (b)
Figure 3. (a) Probability-map F (x) and the location of the mean
curve y(s) (black circle). (b) Both F (x) and p(x) in the the 3D
view. We align p(x) to F (x) by minimizing the KL divergence.

even though it is initialized far on a side of the object.
We corrupted the U-shaped image with noise and ran-

dom lines to make the segmentation task more challenging
(Figure 2). We initialized the active contour far from the
object. First, the active contour converges to the mean of
the probability-map. As we anneal on σ, the active con-
tour enlarges to approximate the probability-map for a given
scale σ. The uniform distribution (second term in Equa-
tion 7) accounts for all regions not described by the ac-
tive contour distribution. As σ decreases the active con-
tour achieves the optimum of its energy functional when it
lies at the highest non-overlapping areas of the probability-
map and the curve produced by the active contour is short
and smooth. The active contour does get attracted to the
strait lines, but the shape regularization constraints forces
to choose the smoothest and the shortest match.

Real-world examples. We tested the method on several
real images. For all of them we were interested in the object
edges, thus we computed the probability-map, F (x), as the
norm of the image gradient preprocessed by the Gaussian
filter. We again initialized the active contour at an arbitrary
location far from the edges. We compare our method to
that of fast global minimization of the active contour model
(FGMAM) [3]. Figure 4 shows the helicopter segmenta-



Input image Initialization Iteration 20 Iteration 40 Our result FGMAM result
Figure 4. The helicopter segmentation. The first figure shows the input image. The second figure shows the probability-map F (x) and
the active contour initialization (far from the object). As we anneal on σ, the active contour adapts to the high intensity region of the
probability-map (please view this figure in color).

Input image Initialization Iteration 20 Iteration 40 Our result FGMAM result
Figure 5. Ultrasound image segmentation. The first figure shows the input image with short-axis view of the left ventricle. The second figure
shows the probability-map F (x) and the initial location of the active contour. Despite many high intensity regions of the probability-map,
the method produces an accurate segmentation result (please view this figure in color).

tion result. As σ decreases, the active contour adapts to the
probability-map and shows the accurate segmentation. We
note, that other image detail, including the edges from the
ground level, also attract the active contour, but the desired
helicopter shape wins, because of the higher probability and
smoother form. The FGMAM method produced satisfac-
tory helicopter segmentation, which, however, includes part
of the ground level objects.

Figure 5 shows the ultrasound image of the left ventricle
short-axis view. Here, the probability-map has many high
probability regions, which attract the active contour. How-
ever the shortest and the smoothest path corresponds to the
wall boundary, which makes it possible for the active con-
tour to produce the accurate segmentation. The segmen-
tation result is the same for various different initialization
positions we have tried. The FGMAM method has not pro-
duced a reasonable segmentation result, even though differ-
ent combinations of parameters have been tried. We note
that FGMAM has not been designed to segment only a sin-
gle closed contour, which partially explain its poor perfor-
mance. Some other local-based segmentation methods suc-
ceed to segment this example only when given the reason-
ably close-boundary initialization [14].

Finally, Figure 6 shows the X-ray image segmentation of
the lung. This is a challenging example, because many high
probability regions attract the active contour. Here, we set
β equal 5 to add some rigidity to the active contour. The ac-
tive contour segments the lung boundary accurately, starting
from an arbitrary location. Once again, the algorithm picks

the smoothest, shortest path with higher probability. How-
ever, if one is interested in weaker edges (e.g. ribs), then
different construction of the probability map is required, as
we shall discuss in Section 6. The FGMAM method has
not produced accurate segmentation result, even after heavy
parameter tuning.

We note, that the conventional snake algorithms can also
accurately segment the images in our experiments, only if
the snake is initialized reasonably close to the boundary and
on the correct side of the object. Our method does not have
such limitation. The snakes’ algorithms that incorporate a
shape prior can overcome the initialization problem, given
that the shape prior is available. In this paper, we consider
general segmentation task, where no prior information is
available. However, for the future work we can incorporate
the shape prior in our approach as well.

5. Related work
Conventional Active Contours: Comparing to the con-
ventional snakes, our method evaluate the fitness of the con-
tour over the whole image domain at every iteration. This
allows us to keep track of all possible segmentation regions
simultaneously, whereas the conventional snake uses only
local information, e.g. local intensity gradient, to direct its
movement. From the computational viewpoint the conven-
tional snakes requires numerical computation of the exter-
nal energy gradient, ∇Eext (which is errorprone), and im-
age interpolation at the snake locations, whereas our method
doesn’t require any of such operations.



Input image Initialization Iteration 10 Iteration 20 Iteration 40 Our result FGMAM result
Figure 6. X-ray image segmentation. The first figure shows the input image. The second figure shows the probability-map F (x) and the
initial active contour location. The method produces an accurate segmentation result despite faraway initialization and numerous obstacles,
such as the edges from the ribs and shoulder bones (please view this figure in color).

Region-based Methods: In region-based segmentation
methods [5, 13, 3] the energy function depends on all image
information, and thus operates on a “global”image scale.
From this perspective, our method is global, because the
data-driven (fitness) term depends on all image pixels. In
formulation, our method resembles edge-based methods,
such as conventional snake and GVF-snake. However,
our fitness term depends on all image pixels, and thus the
method is not simply edge-based.

Multi-scale Approach: Our deterministic annealing ap-
proach resambles the multiscale active contour algorithms,
where the image is iteratively segmented at increasing
scales [14]. The main difference here is two-fold: First,
we maintain the overlap of p(x) and F (x) over the whole
image domain at any scale. Second, at the fine scales of
deterministic annealing, our active contour converges to the
closed contour with 1’s along the mean curve y(s) and 0’s
elsewhere (no noise or artifacts), whereas multiscale ap-
proach converges to the noisy image itself with irrelevant
for segmentation objects.

Elastic Net: We would also like to mention the relation of
our method to the elastic net approach [7, 4]. Elastic net is a
Gaussian mixture model with a prior on its centroids, which
regularizes the shape and defines the connectivity between
the centroids, similar to the differential regularization of ac-
tive contours. The elastic net fits the data points by mini-
mizing its negative log-likelihood together with the regular-
ization term. The log-likehood function is equivalent to the
KL divergence, when the other distribution is a mixture of
delta functions centered at the data points. In this sense, our
active contour method can be seen as a continuous analog
of the elastic net. Similarly, elastic net uses deterministic
annealing approach on the width of its centroids. Appli-

cations of the elastic net mainly include multidimensional
data reduction and manifold learning [4]. Elastic net was
originally designed to find the shortest path through a set
of points with no repetitions. From this point of view, we
can formulate our active contour segmentation as a task to
find a shortest and smoothest path through the high density
regions of probability-map, which gives further insight into
the method.

6. Discussion
Motivation to use the KL divergence. Our method can
be seen as an alignment of two distributions p(x) and F (x)
subject to the transformation parameters (mean curve posi-
tion y(s)) of p(x)). Alignment of two functions has been
heavily studied in image registration community, where
both functions represent images, which is similar two our
formulation [10]. Many similarity measures, which are
common for image registration, such as sum-of-squared dif-
ferences, correlation coefficient, correlation ratio and mu-
tual information, can be also applied to align p(x) and F (x)
with relative level of success.

Our motivation to use KL divergence instead of other
similarity measures is as follows. KL divergence,
KL(F ||p), is a special case of α−divergence for α = 1. Fol-
lowing the terminology of Frey et al [8], this divergence is
inclusive; it requires p > 0 whenever F > 0, thus avoiding
“false negatives”. This divergence tries to cover as much
of F as possible, and the uncovered areas of F are heav-
ily penalized, which forces the active contour to go over the
edges if necessary [15]. It is important to emphasize that we
use KL(F ||p), which is inclusive as oppose to KL(p||F ).
Among other things, KL divergence can be derived from
log-likelihood maximization and allows us apply similar to
Expectation Maximization (EM) optimization technique.



Segmentation challenges. We also discuss the situations
where the method does not work: if the disired edges appear
weaker next to stronger edges or if there are several shape
choices. In these cases we have to construct the probability-
map F (x) in a different way than a simple image gradient
(for instance, by using more advanced preprocessing tech-
niques including anisotropic diffusion, total-variation de-
noising, etc.). If F (x) is properly constructed such that the
desired segmentation region includes higher values of F (x)
and smother shape, then our method is not sensitive to ini-
tialization and will perform well. Additionally, one can add
the shape prior information, however this approach is be-
yond the scope of this paper.

7. Conclusion
We introduce a novel method for image segmentation

based on the active contour approach. We treat the active
contour as a mean curve of the probability density func-
tion p(x). It moves to minimize the Kullback-Leibler (KL)
divergence between p(x) and the probability density func-
tion derived from the image. The advantage of the KL
divergence function is that it requires all regions of the
probability-map (image regions) to be approximated by the
model proportional to the probability-map values, which
makes active contour to account for all image regions.

We use deterministic annealing on the width of p(x) to
implement a coarse-to-fine search strategy. We start from a
large width σ and gradually reduce it, tracking down the op-
timum. Deterministic annealing does not guarantee to find
the global optimum of the function, however empirically,
the optimum found is within a few percent from the global
optimum. In the limit, when σ → 0, the KL divergence
converges to the conventional external energy term of ac-
tive contours. Thus, conventional active contours external
energy term can be seen as a special case of distance func-
tion between two distribution: one derived from the image
and the other represented by a delta functions along the con-
tour.

Our method is less sensitive to noise and outliers pre-
sented in the image due its probabilistic nature and the
ability of the contour to go over the boundaries. The seg-
mentation performance will still depend on the accuracy of
feature-map construction, but less heavily comparing to the
conventional active contours. We test our method on several
toy and real images. The method shows accurate and robust
segmentation results even with initialization far away from
the target boundary, which makes the segmentation proce-
dure almost fully automated.

References
[1] J. An, M. Rousson, and C. Xu. Γ-convergence approxima-

tion to piecewise smooth medical image segmentation. In

Medical Image Computing and Computer Assisted Interven-
tion, volume 4792, pages 495–502, 2007.

[2] A. Blake and M. Isard. Active Contours. Springer-Verlag
New York, Inc., 1998.

[3] X. Bresson, S. Esedoglu, P. Vandergheynst, J.-P. Thiran,
and S. Osher. Fast global minimization of the active con-
tour/snake model. Journal of Mathematical Imaging and Vi-
sion, 28(2):151–167, June 2007.
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