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Numerical Calculation of Three-
Dimensional Turbulent Natural 
Convection in a Cubical Enclosure 
Using a Two-Equation Model for 
Turbulence 
This paper presents a model and numerical results for turbulent natural convection 
in a cubical enclosure heated from below, cooled on a portion of one vertical side 
wall and insulated on all other surfaces. Three-dimensional balances were derived 
for material, energy, and the three components of momentum, as well as for the tur
bulent kinetic energy k and the rate of dissipation of turbulent kinetic energy e. The 
constants used in the model were the same as those used by Fraikin et al. for two-
dimensional convection in a channel. Illustrative transient calculations were carried 
out for Ra = 106 and 107 and Pr = 0.7. Both the dominant component of the vector 
potential and the Nusselt number were found to converge to a steady state. Isother
mal lines and velocity vectors for vertical cross sections normal to the cooled wall in
dicated three-dimensional effects near the side walls. A top view of the velocity vec
tors revealed a downward spiral flow near the side walls along the cooled vertical 
wall. A weak spiral flow was also found along the side walls near the wall opposing 
the partially cooled one. The highest values of the eddy diffusivity were 2.6 and 5.8 
times the molecular kinematic viscosity for Ra = 106 and 107, respectively. A coaxial 
double spiral movement, similar to that previously reported for laminar natural con
vection, was found for the time-averaged flow field. This computing scheme is ex
pected to be applicable to other thermal boundary conditions. 

1 Introduction 

Turbulent natural convection is observed in many cir
cumstances. The primary aim of this work was to study 
natural convection in large enclosures such as passive solar 
rooms with a heated floor and a cooled window. The method 
is also expected to be useful for turbulent natural convection 
in other applications such as for the equalization of 
temperature in a large nuclear reactor containment filled with 
fluid, and for removal of the heat generated within the casing 
of electronic equipment by integrated circuits. Natural convec
tion in such applications necessarily becomes turbulent and 
three-dimensional due to the large scale of a solar room 
and/or the large temperature difference. Prior numerical 
calculations of turbulent natural convection have been limited 
primarily to boundary-layer flow and to two-dimensional 
flows in enclosures. 

Turbulent free convection in the boundary layer along a ver
tical heated plate in an unconfined fluid has been computed by 
Plumb and Kennedy [1] and Lin and Churchill [2] using a two-
equation model, and by Fujii and Fujii [3] using a Glushko 
model. Farouk and Giiceri [4] computed turbulent free con
vection about a horizontal cylinder in an unconfined fluid us
ing a k-e model developed for forced convection. 

Turbulent natural convection in a square channel with 
isothermally heated and cooled vertical walls and linear 
temperature profiles along the lower and upper horizontal 
boundaries was computed by Fraikin et al. [5], also using a 
two-equation model. Their calculations were for air at 
Grashof numbers of 107, 5 x l 0 7 , and 108, which they 
postulated to be in the turbulent regime. Their maximum com
puted turbulent viscosity ranged from 4 times the molecular 
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viscosity at Gr = 107 to 9.6 times at 108. They carried out a 
sensitivity analysis of several of the constants in the k-e 
model. Perturbation of ± 10-20 percent for the constants in 
the model caused ±40-50 percent changes in the turbulent 
properties but only 10 percent or less in the Nusselt number. 
However, this result may be limited to their specific boundary 
conditions. 

Farouk and Giiceri [6] calculated turbulent natural convec
tion for Ra up to 107 using a k-e model in cylindrical coor
dinates for a horizontal concentric annulus whose inner 
cylinder was heated and outer cylinder cooled. They pointed 
out that at higher Rayleigh numbers a finer grid size would be 
necessary to compute the thin boundary layer next to the 
walls. 

Ozoe et al. [7] developed a computing scheme using a k-e 
model for two-dimensional turbulent natural convection in a 
long square channel heated on one vertical wall, cooled on the 
opposite one, and thermally insulated along the upper and 
lower horizontal walls. They carried out computations for 
water for Rayleigh numbers up to 10" and obtained good 
agreement with experimental values for the overall Nusselt 
number and fair agreement for the time-averaged vertical 
velocity. The latter agreement was improved by using 
modified values for the empirical constants in the k-e model as 
identified through a sensitivity analysis. 

A primary objective of the present study was to develop a 
program for characterizing the heat transfer in a passive solar 
room which invokes three-dimensional turbulent natural con
vection. A cubical enclosure was chosen for modeling with the 
floor heated and part of one of the vertical walls cooled to 
simulate a window. This model also simulates natural convec-
tive cooling of the casing of electronic equipment. The two-
dimensional computing scheme developed and verified ex
perimentally by Ozoe et al. [7] was utilized for this three-
dimensional problem. 
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2 Turbulent Mathematical Model 

A direct extension of the two-dimensional mathematical 
model for turbulent natural convection used by Fraiklin et al. 
[5], Farouk and Giiceri [6], and Ozoe et al. [7] was used in this 
three-dimensional investigation. As reported by Ozoe et al. 
[7], the k-e model proposed for low-Reynolds-number flow by 
Jones and Launder [8] was found to produce a numerically 
unstable solution for natural convection in a two-dimensional 
channel and was therefore not employed herein. 

The following seven equations represent in order and in 
dimensionless form the conservation of time-averaged 
momentum in the X, Y, and Z directions, of material, of 
energy, of turbulent kinetic energy, and of the rate of dissipa
tion of turbulent kinetic energy. 

The angle of inclination cf, of the X axis from a horizontal 
plane about the horizontal Y axis was included in the equa
tions. However, this angle of inclination was set to zero in the 
sample calculations in this work. 
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The dimensionless eddy diffusivity is related as follows, per 
Jones and Launder [8], to the dimensionless time-averaged 
turbulent kinetic energy and the dimensionless time-averaged 
rate of dissipation of turbulent kinetic energy 

Nomenclature 

c\ = 
c2 = 
cD = 

s = 
ct = 
D = 
E = 

g = 
H = 
H = 
K = 

k = 

L = 
I = 

L = 
n = 

Nu = 

parameter in k-e model 
parameter in k-e model 
constant = C*/4 

parameter in k-e model 
parameter in k-e model 
y length of the enclosure, m 
dimensionless time-averaged rate of dissipation of 
turbulent kinetic energy =e/(a3Ra£ / 3 /L4) 
acceleration due to gravity, m/s2 

height of the enclosure, m 
dimensionless height of the enclosure = Ra]^3 

dimensionless time-averaged turbulent kinetic 
energy = k/[(a/L)Ral

L
/3]2 

turbulent kinetic energy = (u'2 + v'2 + w'2)/2, 
m2 /s2 

x length of the enclosure, m 
length scale, m 
Prandtl mixing length, m 
normal direction, m 
overall Nusselt number 

p = time-averaged pressure, Pa 
Pr = Prandtl number = via 

RaL = Rayleigh number = g@(6h - e /)L3/(ac) 
T = dimensionless time-averaged temperature 
/ = time, s 

U = dimensionless time-averaged velocity in x direction 
= M/[(a/L)Ra| /3] 

u - component of time-averaged velocity in x direc
tion, m/s 

V = dimensionless time-averaged velocity in y direction 
= v/[(a/L) Ra^3] 

v = component of time-averaged velocity in y direc
tion, m/s 

W = dimensionless time-averaged velocity in z direction 
= w/[(a/L) Rai /3] 

w = component of time-averaged velocity in z direc
tion, m/s 

X = dimensionless x coordinate = x/(L/R&Yl) 
x = horizontal coordinate, m 
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K2 

(8) + 2 

The dimensionless time-averaged variables in the above equa
tions are defined as 
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The equations for the conservation of momentum were 
cross-differentiated and subtracted to eliminate the pressure 
terms, resulting in the following three equations for the com
ponents of the vorticity 
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Nomenclature (cont.) 

Y 
y 
z 
z 
a. 

<*t 

(3 

"o 

K 

V 

v, 

p 
a 

dimensionless y coordinate = .y/(L/Ra]/3) 
horizontal coordinate, m 
dimensionless vertical coordinate = z/(Z,/Ra[ /3) 
vertical coordinate, m 
thermal diffusivity, m2 /s 
eddy diffusivity for heat transfer, m2 /s 
volumetric coefficient of expansion with 
temperature, K _ 1 

time-averaged rate of dissipation of turbulent 
kinetic energy, m2 /s3 

temperature, K 
= (0„ + 0,)/2, K 
von Karman's constant = 0.42 
viscosity, Pa«s 
kinematic viscosity = ix/p, m2 /s 
eddy diffusivity, m2 /s 
dimensionless eddy diffusivity 
density, kg/m3 

Prandtl number = via 

,/a = c„ &/E 

aK = Prandtl number for the turbulent kinetic energy 
a, = turbulent Prandtl number = v,/a, 
ae = Prandtl number for the rate of dissipation of tur

bulent kinetic energy 
T = dimensionless time = //[_L2/(Ra2/3a)] 

TW = wall shear stress, N/m2 

4> = angle of inclination of the X axis of the cube from 
a horizontal plane about the horizontal Y axis 

\j/i = dimensionless time-averaged vector potential 
n,- = dimensionless time-averaged vorticity 

Subscripts 
0 = dimensional reference value 

1, 2, 3 = empirical constants of turbulent model, or x, y, 
and z directions 

c = center or central-plane value 
H = height as a reference value 
h = heated wall 
L = width as a reference value 
I = cooled wall 

808/Vol. 108, NOVEMBER 1986 Transactions of the ASME Downloaded From: https://heattransfer.asmedigitalcollection.asme.org on 06/29/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use



d2v* dU d2pf dU dh dU 
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The dimensionless vorticity is here defined as follows: 
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The three-dimensional vector potential is related to the 
velocity vector as follows, thereby automatically satisfying the 
continuity equation: 

d^3 d^2 
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dh 
dx 
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The vector potential is presumed to be solenoidal (V»^ = 
0), and the vector potential is therefore related to vorticity as 
follows: 

Q = V X V = - V V (14) 

Ozoe et al. [7] performed a sensitivity analysis for the con
stants of k-e turbulent model and determined different values 
for C, and a, rather than those listed below. However, since 
the applicability of these values for different geometric and 
thermal boundary conditions is not known, they were not 
employed herein. The following empirical constants recom
mended by Launder and Spalding [9] were used, except for Ce 

in the buoyant term of the E equation, which was adopted 
from Fraikin et al. [5]: C„ = 0.09, Cj = 1.44, C2 = 1.92, C£ 

= 0.7, aK = 1, ae = 1.3, and a, = 1. 
The boundary conditions for the cubic room shown in Fig. 1 

are summarized as follows: 

/ Temperature 

T=0.5 a.tZ=Ratf=7l 

T=-0.5 for Z = 0.106//" to 0.679/f at X= 0. 

dT/dn = 0 on all other walls. 

2 Velocity 

All components of the velocity are zero on the wall, i.e., 

U= V= W=0atX=0 and Ra#3(ZVi7) 

Y = 0 and Raj/3 (D/H) (15) 

Z = 0 a n d R a # 3 

3 Vorticity 

The components of vorticity are extrapolated from the fluid 
velocity at one time step earlier. (This approximation holds 
rigorously at the final steady state.) Thus 

dW dV 
0, =o , 0, = ~ , Q3 = - ^ r at X=Q and Ra#3 (L/H) dX dX 

dW dU 
Q, = _ 1 ^ - , Q2 = 0, fi3 = - — at 7 = 0 and Ra#3 {D/H) 

(16) 
W dU 

"1 — , ^ , "2 ~ " 
dZ dZ 

fi3=0at Z = 0 a n d R a # 3 

0.679H 

Fig. 1 Thermal boundary conditions for illustrative calculations for a 
cubical box 

4 Vector potential 

The following boundary conditions by 
Heliums [10] for a rigid wall were adopted 

_ i i = fa = fa = 0 at X= 0 and Ra#3 (L/H) 
dX 

Hirasaki and 

h = 
Hi 
dY 

•-fa = 0 at Y = 0 and Ra]/3 (D/H) (17) 

*i- az -.fa=^-LL = o at Z = 0 and Ra#3 

5 Dimensionless turbulent kinetic energy K 

The turbulent kinetic energy K was set to zero on all of the 
walls. 

6 Rate of dissipation of dimensionless turbulent kinetic 
energy E 

The rate of dissipation of turbulent kinetic energy is propor
tional to k3/2/l, where / is a characteristic length expressing the 
scale of the turbulence. Since both k and / are zero on the wall, 
the value of e is indeterminant. However, the rate of dissipa
tion e at a short distance from the wall can be derived as 
follows according to Kawamura [11]. First, let 

kV2 

e = CD— (18) 

where CD is an unknown constant to be decided. Near the wall 
the characteristic length can be taken as equal to the Prandtl 
mixing length l„, = I = x.y where y is the distance from the 
wall. Since TW = pvt du/dy and v, = P-m du/dy, du/dy = 
u*/lm where u* is the friction velocity Vr^/p. Then v, = lmu* 
and v, = CM k2/e = C„ ky2lm/CD. Hence k = (CDu*/C^f. 
Presuming local equilibrium, i.e., a rate of production equal 
to the rate of dissipation, then gives \u'v'\ du/dy = vt 

(du/dy)1 = e. Finally considering v, = CM k2/e and du/dy = 
u*/l, we get k = C„ (u*)2/C%. Hence CD = C3/4 and eAy = 
C3/4 £3/2/(K A_y) at y = Ay. Fraikin et al. [5] used this approx
imation, although they did not describe the derivation in 
detail. 

The E equation was solved only in a reduced region ex
cluding the walls. A finite-difference approximation was 
developed for equations (5) to (7) and (9) to (12), using a first-
order forward approximation for the time step and a second-
order central difference for the length derivatives. 

According to Ozoe et al. [7] too coarse a grid Size in com
parison to the velocity resulted in too large a cell Reynolds 
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Fig. 2 Computed velocity vectors in vertical planes normal Jo the 
healed and cooled walls at Ra = 107 and Pr = 0.7: (a) Y = 0.05H; (b) Y 
= 0.5H 
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Fig. 3 Computed isothermal lines in vertical planes normal to the 
heated and cooled walls at Ra = 107 and Pr = 0.7: (a) Y = 0.05H; (b) Y 
= 0.5H 

number and a strange mode of flow for two-dimensional tur
bulent natural convection. They therefore adopted a hybrid 
scheme suggested by Patankar [12] in which the upwind 
scheme was employed only when the matrix coefficient 
became negative. This scheme yielded the stable, experimen
tally observed mode of flow. A similar scheme was employed 
in this work. The numerical scheme of integration, which 
utilized the A.D.I, method, is the same as that of [7]. 

3 Computed Results 

The turbulent regime begins at Gr = 109 for convection 
along a heated vertical wall in an unconfined fluid and at Ra 
= 2 x 104 for convection in an enclosure heated from below 
and cooled from above. The boundary conditions of this in
vestigation encompass these two limiting cases. Hence the 
primary calculations were carried out for Ra = 106 and 107 

and Pr = 0.7. The number of divisions are 20 by 10 by 10 for 

HOT Th = 0.5 

Fig. 4 Computed isothermal lines in vertical planes parallel to the cool
ed wall at Ra = 107andPr = 0.7: (a) X = 0.041 H;(b)X = 0.904H 

Ra = 106 and 24 by 10 by 14 for Ra = 107 in the X, Y, and Z 
directions, respectively. Closer spacings were employed near 
the surfaces except for the one in the Y direction at Ra = 106. 
The grid sizes were determined on a trial basis. At least two 
grid points were taken beteween the surface and the point of 
local peak velocity for the boundary-layer-type flow over the 
vertical cooled wall and over the hot horizontal floor. This 
scheme was based on the experience obtained from the com
putations for the two-dimensional turbulent natural convec
tion by Ozoe et al. [7]. 

The overall Nusselt number on the heated floor and the Y 
component of the vector potential at the center of the region 
were used as a measure of convergence. The criterion of con
vergence was a relative change of the average Nusselt number 
on the heated floor of less than 10~4. The Ycomponent of the 
vector potential was also used as an indication of the trend of 
convergence. The number of iterations required for Ra = 106 

was 1600 and for Ra = 107 was 1400. The initial condition for 
Ra = 106 was the numerical solution for the laminar model. 

The converged overall Nusselt number on the heated floor 
was 6.04 at Ra = 106 and 13.27 at Ra = 107. The ratio of 
these two Nusselt numbers is 2.2, suggesting the proportionali
ty of the overall Nusselt number to the 1/3 power of the 
Rayleigh number, as is known to hold for the turbulent 
regime. 

Representative results, mostly for Ra = 107 and Pr = 0.7, 
are shown in graphic form as follows. The computed velocity 
vectors at a steady state of Ra = 107 and Pr = 0.7 are de
scribed in Fig. 2 for two vertical planes of constant Y. The 
length of the arrow represents the magnitude of the velocity 
projected on the indicated vertical X-Z plane. The velocity 
vectors at Y = 0.21// (not shown) and 0.5 H are similar to 
each other but that at Y= 0.05 H differs greatly due to the 
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Fig. 5 Computed velocity vectors in vertical planes parallel to the 
cooled wall at Ra= 107 and Pr = 0.7: (a)X = 0.016H;(b)X = 0.14H;(c)X 
= 0.5H;(d)X = 0.935 H 

presence of the wall and the resulting three-dimensional effect. 
Boundary-layer-type flow can be seen along the vertical cold 
window and the heated floor in Fig. lib). 

The computed isothermal lines at Ra = 107 and Pr = 0.7 
are shown in Fig. 3 for two vertical planes of constant Y and in 
Fig. 4 for two vertical planes of constant X. The isothermal 
lines are dense over the left window due to the cooling and also 
over the heated floor, especially under the window. Thê  
isothermal lines at Y = 0.05J7 differ from those at Y = 0.57/ 
due to the presence of the side wall. The computed isothermal 
lines for two vertical planes of constant X can be seen in Fig. 
4. The isothermal lines are symmetric with respect to Y = 
0.5// due to the symmetric boundary condition. The sym
metry of the computed values about Y = 0.5// assures to 
some extent the reliability of the computations. A cold area 
prevails along the side walls at Y = 0 and H as seen in Fig. 
4(a) atX = 0.041//, but in Fig. 4(b) atX = 0.904//two cold 
areas like cat eyes appear near the rear wall. These 
characteristics are apparently due to the three-dimensional 
effects. 

The three dimensionality of the flow can also be seen in the 
vertical view of the velocity vectors as shown in Fig. 5 for 
various planes of X. These vectors are those seen Jrom the 
window side. The symmetry with respect to Y = 0.5//is clear. 
The downward velocity near the X = 0 plane is described for 
X = 0.016//in Fig. 5(a). Near the.rear wall at X = 0.935//, 
the flow is upward as seen in Fig. 5(d). An interesting_but 
weak pattern of flow can be seen at X = 0.14i/and 0.5H in 
Fig. 5(6)_and Fig. 5(c), respectively. Near the side walls at Y 
= 0 and Hin Fig. 5(c), a weak spiral motion appears to exist 
with its axis in the direction of the main flow. 

The three dimensionality of the flow is best indicated by 
velocity vectors in the horizontal plane, as shown in Fig. 6 for 
various heights at Ra = 107. On the right-hand side of each 
graph, the arrow of the maximum velocity is drawn to indicate 
the relative magnitude of the velocity components. The flow 
pattern is symmetric with respect to the Y = 0.5//plane. The 
main flow near the top plane is toward the cooled window at X 
= 0, as seen in Fig. 6(a). Figure 6(d) shows flow in the 
reverse direction just above the floor, as expected from Fig. 2. 
However, as seen in Figs. 6(6) and 6(c) a secondary flow in 
the form of a spiral apparently occurs along the vertical corner 
over the cooled window adjacent to the two side walls. The 
velocity component in the Y direction is one order less than 
that in the X direction, and these spiral velocity components 
may not be strong enough to make a complete spiral at the in
dicated locations, even though they reveal some deflection 
from the main circulating flow. 

& i W, 
>i[?//»/»/»//>/>>,///////t/t/in77/. 

\ \ 
\ \ 

u 
\1 

i i i i 
i i i i 

i i i i 
i \ 

I 

/ / 
/ / 
1 / 

<nn~7//li//iiiiiii/iif'//*/r/ii/////7i. 

Fig. 6 Computed velocity vectors in horizontal planes at Ra =_ 107 and 
Pr = 0.7: (a) Z = 0.05H;(b)Z = 0.5H;(c)Z = 0.79H;(d)Z = 0.98H 

( a ) 

(fa) 

Fig. 7 Computed contours ot the dimensionless eddy diffusivity in ver
tical planes perpendicular to the heated and cooled walls at Ra= 106 

and Pr = 0.7: (a) V = 0.1 H;(b) Y = 0.5H 

The turbulent intensity is not strong, and the maximum 
values of the dimensionless eddy diffusivity are 1.84 and 4.03 
for Ra = 106 and 107, respectively. As shown in Table 1, these 
are 2.6 and 5.8 times the molecular kinematic viscosity. 
Contour maps of the eddy diffusivity at Ra = 106 are shown 
in Fig. 7, and those at Ra = 107 in Fig. 8. The peak value of v* 
occurs in the vertical plane Y = 0.1//at Ra = 106, and in the 
plane Y = 0.05H at Ra = 107 as shown in Figs. 7(a) and 
8(a). The eddy diffusivity is also relatively large along the 
heated floor. Contour maps for a symmetric plane are shown 
in Figs. 1(b) and 8(6) for Ra = 106 and 10\ respectively. 
The maximum eddy diffusivity probably occurs near the side 
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Table 1 Summary of the computed results 

Ra = 106 107 

Nu on the floor 6.04 13.27 
Dimensionless maximum velocity, W 3.025 5.350 
Maximum of v* 1.84 4.03 
Maximum of v*/v 2.6 5.8 

Fig. 8 Computed contours of the dimensionless eddy diffusivity in ver
tical planes at Ra= 107 and Pr = 0.7: (a) Y = 0.05H; (b) V = 0.5H; (6) X 
= 0.0046H 

wall because of the downward spiral movement seen in Figs. 
6(b) and 6(c). This is more evident in the contourjnaps of 
the eddy diffusivity in a vertical plane X = 0.0046// as seen 
from the cold window per Fig. 8(c). The eddy diffusivity has 
a peak value near the side walls adjacent to the corner over the 
vertical cooled window. These characteristics, which were 
observed for both Ra = 106 and 107, confirm the importance 

812/Vol. 108, NOVEMBER 1986 

Fig. 9 Computed contours In a vertical plane at V = 0.5H perpen
dicular to the heated and cooled walls at Ra = 107 and Pr = 0.7: (a) 
dimensionless time-averaged turbulent kinetic energy; (b) dimen
sionless time-averaged rate of dissipation of turbulent kinetic energy 

Fig. 10 Perspective view of a computed streakline for the time-
averaged velocity^ Ra = 106, Pr = 0.7; starting point (X0, Y0, Z0) ^ 
(0.66H, 0JH, 0.63H); duration T = 1500; eye point (X, Y, Z) = ( - 12H, 
12H, - 5 H ) 

of three-dimensional computations for the turbulent 
convection. 

The contour maps of the turbulent kinetic energy and the 
rate of dissipation of turbulent kinetic energy are shown in 
Fig. 9 at Ra = 107 and_Pr = 0.7, both in the vertical plane of 
symmetry at Y = 0.5//. The peak values of these turbulent 
properties occur both along the cold window and over the 
heated floor due to the strong shear in a fluid stream between 
a rigid wall and a stagnant core. 

The flow characteristics can be identified more clearly from 
plots of streaklines than from the velocity vectors. Figure 10 is 
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a perspective view for Ra = 10s and Pr = 0.7 of the streakline 
for the time-averaged velocity of a particle starting from (X0, 
Y0, Z0) = (0.66/7, 0.1H, 0.63//) as shown by the rectangular 
symbol. This streakline reveals the characteristic coaxial dou
ble spiral movement computed and observed experimentally 
by Ozoe et al. [13] for laminar natural convection in various 
enclosures. The particle should return to the starting point 
following a reduction in its radius of circulation near Y = H. 
The axis of the strong circulating flow is not at the center of 
the X-Z cross section but lower and away from the cooled 
area due to the nonsymmetric thermal boundary conditions. 
The velocity is very slow at the initial, small radius of circula
tion due to the rather stagnant core. However, once the parti
cle joins the main flow along the walls, its circulating velocity 
increases greatly. In this example, 80 percent of the time of the 
particle generating this streakline was spent in the central 
spiral of small radius. This result suggests that such a spiral 
movement exists for the time-averaged velocity field even in 
the turbulent regime in spite of significant differences in the 
geometric and thermal boundary conditions, and also that this 
spiral movement is a general characteristic of natural convec
tion in a confined regime. 

Although the computation was limited up to Ra = 107 due 
to the computational time of more than an hour, the scheme 
itself would be expected to be applicable at least up to Ra = 
10", if a finer grid size were used, based on our experience 
with two-dimensional natural convection in [7]. 

Summary 
A three-dimensional k-e model for turbulent natural con

vection in a cubical room heated on the floor and cooled on a 
part of one of the vertical walls was solved numerically for Ra 
= 106 and 107 and Pr = 0.7. The maximum eddy diffusivity 
was 2.6 and 5.8 times the molecular kinematic viscosity at Ra 
= 106 and 107, respectively. The overall Nusselt numbers on 
the heated floor were 6.04 and 13.27 for Ra = 106 and 107, 
respectively, suggesting proportionality of the Nusselt number 
to the 1/3 power of the Rayleigh number. 

Complicated spiral vectors were found to exist in the 
downward and horizontal time-averaged flows both for Ra = 
106 and 107. 

The computed values of all variables were found to be sym
metric in terms of the central vertical plane normal to the cool
ed area, thus confirming to some extent the reliability of the 
computations. A coaxial double spiral movement, similar to 
that previously reported for laminar natural convection, was 
found for the time-averaged flow field. 

The computational scheme developed herein is expected to 
be applicable for other thermal boundary conditions which 
generate turbulent three-dimensional natural convection in a 
confined regime. 

Although the computed results in this paper are for a 
cubical enclosure oriented horizontally, and for a particular 

set of boundary conditions, the finite-difference model is ap
plicable for other aspect ratios, arbitrary boundary condi
tions, and arbitrary inclinations. 

Experimental measurements apparently do not exist to test 
these particular computations critically. However, the model 
itself has been tested and found to be reliable for closely 
related two-dimensional convection [7]. 

The computations were necessarily limited by computer 
demands to 24 grids or fewer in each direction. However, 
based on tests of similar two-dimensional calculations, this 
grid is presumed to be sufficient to reveal the correct pattern 
of flow. 
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