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Abstract—The original rough set theory deals with precise
and complete data, while real applications frequently contain
imperfect information. A typical imperfect data studied in rough
set research is the missing values. Though there are many ideas
proposed to solve the issue in the literature, the paper adopts
a probabilistic approach, because it can incorporate other types
of imperfect data including imprecise and uncertain values in
a single approach. The paper first discusses probabilities of
attribute values assuming different type of attributes in real
applications, and proposes a generalized method of probability
of matching. It also discusses the case of continuous data as well
as discrete one. The proposed probability of matching could be
used for defining valued tolerance/similarity relations in rough
set approaches.

I. INTRODUCTION

Classical Rough set theory [23], [24] provides a mathemati-
cal tool to analyse databases under objects description. Objects
characterized by some attributes may be indiscernible in view
of the available information about them. The original rough
sets approach presupposes that all objects in an information
system have precise and complete attribute values. Problems
arise when information systems contain imperfect data, which
occasionally happens in the real world. Therefore, it is nec-
essary to develop a theory which enables classifications of
objects even if there is only partial information available.

Controversial rough set research mostly considers that
imperfect data in information systems comes from missing
values [7], [9], [10], [12], [13], [14], [26], [27], [29], [31].
An information system with missing values is called incom-
plete information system [13], [14]. In incomplete information
systems, Table I for example [10], objects may contain several
unknown attribute values. Unknown values are denoted by
special symbol “*”. In studies of rough set in incomplete
information systems, some probabilistic solutions have been
introduced based on the possibility of “missing value” [7],
[19], [20], [26], [27]. Among them, some approaches [7],
[26] suppose a priori assumption that there exists a uniform
probability distribution on every attribute domain and compute
valued tolerance (or similarity) classes based on the joint
probability distribution. In this paper, we aim to generalize
the method of determining the probability that two object
may be tolerant of (similar to) each other on an attribute.
The probability of matching will be defined based on the
probability that two objects may take the same values on an
attribute in the dataset.

TABLE I. AN EXAMPLE OF A DATASET WITH MISSING VALUES

Cases Temperature Headache Nausea Flu

x1 High * no yes
x2 Very-high yes yes yes
x3 * no no no
x4 High yes yes yes
x5 High * yes no
x6 Normal yes no no
x7 Normal no yes no
x8 * yes * yes

TABLE II. AN INFORMATION SYSTEM WITH UNCERTAINTIES

Employees
Deterministic Stochastic

Department Quality Bonus

Jon Smith Toy
0.4[Great Yes]
0.4[Good Yes]
0.1[Fair Yes]

Fre Jones Housewares 1.0[Good Yes]

Besides the missing values, there are many reasons why
imperfect data are produced in datasets [16]. Imprecision is
another type of possible imperfect data. Stored information is
imprecise when it denotes a set of possible value and the real
value is one of elements of this set. For example, John’s age
is between 30 and 35 or John’s age is over 30.

One more possible type of imperfect data is Uncer-
tainty [16]. Whereas the statement “John’s age is either 31
or 32” is in the form of imprecision, the statement “John
is probably 32” or “John’s age is 32 with confidence 0.6”
denotes uncertainty. Both imprecise and uncertain values can
be represented by probabilistic data [4]. Table II [1] illustrates
an information system with probabilistic information.

Hence, in information systems containing missing, impre-
cise and uncertain values, it is not appropriate to apply to the
systems a method that can deal only with missing values. We
must rely on a probabilistic approach that could be applied
to these types of imperfect data. Therefore, it is important
to define probability of matching as a step to define valued
tolerance/similarity relations in information systems which
contain both attributes with missing values and attributes with
probabilistic data.

This paper is organized as follows; Section II re-introduces
rough set theory as well as probabilistic relation definitions.
Section III will suggest several methods to determine Probabil-
ity of object attribute values in case of imprecise and missing
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values. Then, in section IV, we will generalize Probability
of matching definitions. The probability of matching can be
also extended for the case of continuous values in section V.
Eventually, section VI briefly introduces an application of the
proposed approach.

II. PROBABILISTIC RELATION IN ROUGH SET APPROACH

Studies in [7], [19], [20], [26], [27] introduce probabilistic
relations as follows: first, a probability distribution is defined
on the domain of each attribute, and the probability that a pair
of objects are tolerant of (similar to) each other on the attribute
is determined. Then, the degree that two objects are tolerant
of (similar to) each other on a set of attributes is calculated,
for example, using the joint probabilities. This section will
summarize the rough set approach as well as some concepts
in probabilistic relation definitions. The problems of the former
probability-based rough set approaches are also addressed in
this section.

An information system in rough set study is defined as a
pair I = (U,A), where U is a non-empty finite set of objects
called the universe and A is a non-empty finite set of attributes
such that fa : U → Va for every a ∈ A [23], [24]. The
non-empty discrete value set Va is called the domain of a.
The original rough set theory deals with complete information
systems in which ∀x ∈ U , a ∈ A, fa(x) is a precise value.

The relation EQUP (x, y), P ⊆ A denotes a binary relation
between objects that are equivalent in terms of values of
attributes in P [23]. The equivalence relation is reflexive,
symmetric, and transitive. Let EP (x) = {y ∈ U |EQUP (y, x)}
be the set of all objects that are equivalent to x by P , and is
called equivalence class.

Any information system of the form I = (U,A ∪ {d})
is called decision table where d /∈ A is called decision
and the elements of A are called conditions. We assume
Vd = {d1, ..., dr}. The decision d determines a partition of
the universe U , where Ck = {x ∈ U |fd(x) = dk}, 1 ≤ k ≤ r.
The set Ck is called the decision class or concept on U .

In this paper, fa(x) = ∗ denotes attribute value of x is
missing on a. However, we assume that any attribute domain
does not contain the special symbol “*” representing the
missing value and that the real value could be found in the
domain.

Now, for an information system, in which some attribute
values of objects are missing and/or associated with proba-
bilistic data, we define probabilities of attribute values. For a
discrete attribute, Probability of object attribute value denoted
by Pra(fa(x) = v) represents the probability that x ∈ U
takes the value v ∈ Va on attribute a ∈ A. Several methods
to estimate the probabilities of object attribute values will be
discussed in the next section.

Based on the probability of object attribute value, Proba-
bility of matching between two objects x, y ∈ U on attribute
a ∈ A denoted by θa(x, y) defines the probability that object
x takes the same value as object y on attribute a. In [7],
[26], [27], it is supposed that there is an uniform probability
distribution on an attribute, and the probability of matching
is defined as θa(x, y) = Pra(fa(x) = vk)) × Pra(fa(y) =
vk) = 1/|Va|2 where vk is a value in the domain of “a”.

The definition is clearly inadequate when we suppose the
attribute values of both “x” and “y” are missing on “a”.
The definition of probability of matching is discussed and
calculated in several cases in section III.

From the probability of matching between two objects, we
can induce the degree that x, y ∈ U are tolerant of (similar to)
each other on a set of attributes P ⊆ A, which is denoted
by RP . The degree of tolerance/similarity can be defined
as the probability that two objects have the same values on
all attributes in set P [7], [26], [27] and calculated by joint
probability RP =

∏
a∈P θa(x, y). Other methods of tolerance

(similarity) degree definitions can be found in [19], [20].

III. PROBABILITY OF OBJECT ATTRIBUTES VALUES

In some studies with missing values [7], [26], [27], the
probability of object attribute values is determined by uniform
probability distribution. In this kind of attribute, assuming that
the set of possible values on this attribute is discrete we do
not know any information about probability distribution of
attribute values. Hence, we have to make the hypothesis that
all values have the same probability to be associated to an
element of data set. Consider an attribute a ∈ A and its
domain Va = {v1, v2, ..., vm}, given an object x ∈ U , if
fa(x) = ∗ the probability Pra(fa(x) = vi) = 1/|Va| for
any vi ∈ Va. However, depending on their characteristics,
there are possibly numerous kinds of distribution on attribute
domains. This section will discuss some cases where they are
not uniform probability distributions.

A. Probability of attribute values in case of imprecision

In case of imprecision, the value of object attribute is
described by a set of possible value. Thus, we are able to
suppose that the probabilities of every values in the set of
choice are equal, such that Pra(fa(x) = v) = 1

|Ta(x)|
if

v ∈ Ta(x). Actually, precise value and missing value can
be considered as two extreme kinds of imprecision [16]. A
value is precise when the set of possibilities is a singleton. In
this case |Ta(x)| = 1. Missing value with equal probability
could be regarded as imprecise information where the set of
possible values encompasses the entire attribute domain, such
that Ta(x) = Va. In this research, we distinguish missing
and imprecise values. Probability of attribute value in case
of missing value can be determined based on various kind of
distribution.

B. On attributes with pre-defined probability distribution of
values

On some attributes, it may be possible to assume that there
exists a pre-defined probability distribution among attribute
values. One example is a game of four people playing with
dice. Their scores can be calculated based on the sum of two
dice thrown for each of them. Table III shows their scores.
In this table, as we can see that the score of Tom is unknown
due to some reasons. However, the probability of each value
for Tom’s score can be identified by probability distribution
for the sum of two dice. The probability that Tom’s score is 7,
for example, is 1/6. On the other hand, the probability that his
score equals to 11 is 1/18. Hence, the probability of object
attribute value can be assigned the probability function, such
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TABLE III. THE SCORES OF A DICE GAME.

Players Score

Terry 3
David 6
Tom *
Anna 8

TABLE IV. PROBABILITY OF ATTRIBUTE VALUES

Attributes Values Probability

Temperature very-hig 0.17
Temperature high 0.50
Temperature normal 0.33
Headache yes 0.67
Headache no 0.33
Nausea yes 0.57
Nausea no 0.43

that Pra(fa(x) = v) = λa(v) if fa(x) = ∗, where “v” is an
element of Va, λa(v) is the probability mass function on “a”.

C. Method of the frequency of attribute value

We first study the method in [19]. The approach is based
on the notion of “The most common method”. This is a
method of handling missing value summarized by Grzymala-
Busse [8], [10], in which, missing values are replaced by the
most common value of the attribute. The method of handling
missing attribute values is implemented, e.g., in well-known
machine learning algorithm CN2 [6].

Suppose the value domains are known. First, we define the
probability that each value of the attribute appears based on
the frequency of the available value in dataset. The probability
that a value v ∈ Va appears as a value of a certain object is
define by:

ρa(v) =

⎧⎪⎪⎨
⎪⎪⎩

|Va(v)|

|U − Va(∗)|
if Va(∗) ⊂ U ,

1

|Va|
otherwise.

(1)

where Va(v) and Va(∗) are sets of objects whose attribute value
is “v” and the set of objects whose value on “a” is missing,
respectively. The symbol “⊂” denotes a proper subset. As seen
in the equation, the probability ρa(v), v ∈ Va is defined by
the ratio of the value “v” among objects whose values are
not missing. If Va(∗) = U , that is, values of attribute “a”
are missing in all objects, the equal probability distribution is
given. The value of ρa(v) is greater than zero if there is at
least an object such that fa(x) = v. Since it could be zero for
many values if the size of U is small, the size of U should be
large enough when using the approach.

The probabilities of attribute values are illustrated in the
Table IV. From this table, we can see that the value “high” of
“Temperature” occurs more frequently than the other values.
The most frequent values of “Headache” and “Nausea” happen
to be “yes”.

Now, we define the probability of object attribute values by
the frequency of values in a dataset. Formally, in incomplete
information system I = (U,A), an attribute a ∈ A and its
domain Va = {v1, v2, ...vm}, ρa(vi) denotes the frequency of

TABLE V. PROBABILITY OF ATTRIBUTE VALUES RELATED TO

CONCEPTS

Attributes Values
Probability in concepts

Flu=Yes Flu=No

Temperature very-hig 0.33 0.00
Temperature high 0.67 0.33
Temperature normal 0.00 0.67
Headache yes 1.00 0.33
Headache no 0.00 0.67
Nausea yes 0.67 0.50
Nausea no 0.33 0.50

each value vi ∈ Va in the dataset. Given an object x ∈ U , if
fa(x) = ∗ the probability Pra(fa(x) = vi) = ρa(vi) for any
vi ∈ Va.

D. Method of the frequency of attribute value related to
concepts

This method is first discussed in [20] and is an extension of
the previous method. Observing some systems, we recognized
that attribute values might relate to some concepts. Supposed
the value domains are known, the probability that a value v ∈
Va appears as a value of objects contained in a concept X ⊆ U
is defined as follows:

ρa(v)X =

⎧⎪⎪⎨
⎪⎪⎩

|Va(v)X |

|X − Va(∗)X |
if Va(∗)X ⊂ X ,

1

|Va|
otherwise.

(2)

where Va(v)X and Va(∗)X are sets of objects in concept X
whose attribute value is “v” and the set of objects whose value
on “a” is missing, respectively.

From Table V, we can see that flu relates to high and
very-high temperature, headache and nausea. Meanwhile non-
flu corresponds to the cases of low temperature, no headache.

Like the previous method, it is possible to define the
probability of object attribute values by the frequency of values
in a dataset. Formally, in incomplete information system I =
(U,A), an attribute a ∈ A and its domain Va = {v1, v2, ...vm},
ρa(vi)X denotes the frequency of each value vi ∈ Va in
concept X . Given an object x ∈ X , if fa(x) = ∗ the
probability Pra(fa(x) = vi) = ρa(vi)X for any vi ∈ Va.

IV. PROBABILITY OF MATCHING

This section will re-define the degree that two object have
the same value on an attribute if at least one of the two objects
has the missing, imprecise or uncertain value on the attribute.

Definition 4.1: Given an information system I = (U,A),
on an attribute a ∈ A with its domain Va, the probability that
the value of “x” matching with the value of “y” on “a” is
given by:

θa(x, y) =
∑

vi∈Va

Pra(fa(x) = vi|fa(y) = vi)Pra(fa(y) = vi)

(3)

when x 
= y. Otherwise θa(x, y) = θa(x, x) = 1.
Pra(fa(x) = vi|fa(y) = vi) denotes the conditional prob-
ability of fa(x) = vi given fa(y) = vi.
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It is not common to see that the occurrence of fa(y) = vi
affect the probability of fa(x) = vi. Hence, in the rest of the
paper, to define probability of matching, we assume that two
events fa(x) = vi and fa(y) = vj , x, y ∈ U , a ∈ A are
independent with each other for any vi, vj ∈ Va.

A. Probability of matching on attribute with probabilistic
values

Let I = (U,A) be an information system, an probabilistic
associated attribute a ∈ A. In case of uncertainty, for each
object x ∈ U , the probability Pra(fa(x) = v) for any
possible value v ∈ Va is given in the dataset. Otherwise,
for imprecision, the probability of attribute value can be
calculated by the method shown in section III. Formally, let
Ta(x) = {v ∈ Va|Pra(fa(x) = v) > 0}, the probability of
matching between two objects on “a” is given by:

θa(x, y) =

⎧⎪⎪⎨
⎪⎪⎩

∑
vi∈Ta(x)∩Ta(y)

Pra(fa(x) = vi)Pra(fa(y) = vi)

if Ta(x) ∩ Ta(y) 
= ∅,

0 if Ta(x) ∩ Ta(y) = ∅,
(4)

when x 
= y. Otherwise θa(x, y) = θa(x, x) = 1.

In case of probabilistic associated attribute, the probability
that two objects have the same value for an attribute is given
by the joint probability of the attribute value. Thus, to calculate
the probability of matching between two objects, the sum of
the probabilities should be taken for the set of values so that
these values and their probability would be available for both
two objects.

B. Probability of matching on attribute with missing values

In incomplete information system I = (U,A), on a at-
tribute a ∈ A with its domain Va , the probability of matching
between two objects on “a” is given as follows:

θa(x, y) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Pra(fa(y) = fa(x)) if fa(x) 
= ∗, fa(y) = ∗,

Pra(fa(x) = fa(y)) if fa(x) = ∗, fa(y) 
= ∗,∑
vi∈Va

Pra(fa(x) = vi)Pra(fa(y) = vi)

if fa(x) = ∗, fa(y) = ∗,
(5)

when x 
= y. Otherwise θa(x, y) = θa(x, x) = 1.

If one of the two objects has a certain value, fa(x) for
example, the probability value that fa(y) = fa(x) is given by
Pra(fa(y) = fa(x)). If both of them are missing, for each
value of the domain, the probability that they are equal is
given by the joint probability of attribute value. For the whole
domain, the sum of such joint probability should be taken.

In (5), if two objects x, y ∈ U contain missing value on
an attribute, depending on the characteristics of the attribute,
the probabilities of attribute value of the two objects may
and may not be the same for each value. For example,
in incomplete information systems with pre-defined value
probability distribution λa(v) of attribute “a”, the probabil-
ity of matching between two separate objects x, y ∈ U is
θa(x, y) =

∑
vi∈Va

{λa(vi)}2 if fa(x) = ∗, fa(y) = ∗. On the
other hand, when the probability of attribute is defined based

on the Method of the frequency of attribute value related to
concepts, the probability of matching between x ∈ X ,y ∈ Y is
θa(x, y) =

∑
vi∈Va

ρa(vi)Xρa(vi)Y if fa(x) = ∗, fa(y) = ∗.

V. DISCUSSION FOR CONTINUOUS VALUES

In information system coming with continuous value,
keeping the consistency of information systems, continuous
attributes have to be transformed into discrete ones. The
solution is the discretization of these attributes into ranges
where each interval is mapped to a discrete value [2], [3],
[21], [30]. In general, the target of such studies is to find the
minimum interval without weakening the discernibility in the
dataset.

On continuous attributes containing imperfect data, the
indiscernibility relation is not available at all. There exists
a way to deal with them using rough set technique. First
discretizing the continuous data to discrete data [5], and then
finding the attribute reduction using methods proposed in [9],
[11], [12], [13], [14], [26], [27], [29], [31].

Let I = (U,A) be an information system. Any pair
(a, c), where continuous attribute a ∈ A, c ∈ R, will
be called a cut on Va. For a ∈ A, any set of cuts
{(a, ca1), (a, c

a
2), ..., (a, c

a
k)} on Va = [vamin, v

a
max) ⊂ R

defines a partition V ′
a = {[ca0 , c

a
1), [c

a
1 , c

a
2), ...[c

a
k, c

a
k+1)} where

vamin = ca0 < ca1 < ... < cak < cak+1 = vamax), and
Va = [ca0 , c

a
1) ∪ [ca1 , c

a
2) ∪ ... ∪ [cak, c

a
k+1). Therefore, any set

of cuts defines a new attribute domain V ′
a on “a” and the

equivalence between two object on “a” [21] is defined as

EQU{a}(x, y)⇔
(
iff fa(x), fa(y) ∈ [cai , c

a
i+1)

)
(6)

On attributes associated with continuous values, two ob-
jects are equivalent if their attribute values fall in the same
interval. If there is a missing, uncertain or imprecise value , the
equivalence relation cannot be determined. We have to define
the degree of tolerance (similar) instead. For continuous values,
the probability that an attribute value of x ∈ U on attribute
a ∈ A falls into an interval, say [c1, c2) ⊆ Va, is given by
Pra(c1 ≤ fa(x) < c2). From the probability of object attribute
value, we are able to define a valued tolerance/similarity
relation.

A. Continuous attributes with uncertainty and imprecision

In case of uncertainty, the possible values and their prob-
ability is provided in the data set. Let Ta(x) = ∪{v ∈
Va|Pra(fa(x) = v) > 0}, we define the probability that
continuous value falls in interval [c1, c2) as the following
equation:

Pra(c1 ≤ fa(x) < c2) =
∑

v∈Ta(x)
c1≤v<c2

Pra(fa(x) = v) (7)

In case of imprecision, the possible value of object attribute
value is often described by a set of possible ranges. The
probability that continuous values of a range falls in an interval
could be defined as how large the interval cover the range.
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Formally, let [v1, v2], v1, v2 ∈ R, v2 > v1 denotes a possible
range of an imprecise value. The probability that a continuous
value v in the range falls in interval [c1, c2] can be determined
as follows:

Pra(c1 ≤ v ≤ c2) =
min(c2, v2)−max(c1, v1)

v2 − v1
(8)

Let Ta(x) = {[v1,1, v1,2], [v2,1, v2,2], ..., [vt,1, vt,2]} be the
set of possible range, which is described in the data set
for object x with imprecision, we define the probability that
continuous value falls in interval [c1, c2) as follows:

Pra(c1 ≤ fa(x) < c2)

= lim
ε→0

t∑
i=1

min(c2 − ε, vi,2)−max(c1, vi,1)

vi,2 − vi,1

=

t∑
i=1

min(c2, vi,2)−max(c1, vi,1)

vi,2 − vi,1
(9)

Now we define the probability of matching for objects
containing uncertainty and imprecision. Let I = (U,A) be
an information system, an attribute a ∈ A with uncertainty
or imprecision. The probability of attribute value can be
determined by (7) and (9). Note that in case of precise value,
say fa(x) = v ∈ Va, Pra(c

a
i ≤ fa(x) < cai+1) = 1 if v ∈

[cai , c
a
i+1) . Let T ′

a(x) = {cai |Pra(c
a
i ≤ fa(x) < cai+1) > 0},

we define the probability of matching as follows:

θa(x, y) =

⎧⎪⎪⎨
⎪⎪⎩

∑
ca
i
∈T ′

a(x)∩T ′
a(y)

Pra(c
a
i ≤ fa(x) < cai+1)Pra(c

a
i ≤ fa(y) < cai+1)

if T ′
a(x) ∩ T ′

a(y) 
= ∅,

0 if T ′
a(x) ∩ T ′

a(y) = ∅,

(10)
when x 
= y. Otherwise θa(x, y) = θa(x, x) = 1.

B. Continuous attributes with missing values

When a random variable takes values from a continuous
range, in some cases, we have to do experiments to estimate
probability distribution of the data. In other cases, the data
is already described by a known probability distribution such
as Gaussian, Laplace, Gamma distribution [15], [22]. In in-
formation system I = (U,A), suppose a probability function
λa(v), v ∈ Va (that is called probability density function for
continuous values). The probability that continuous value falls
in interval [c1, c2] is determined by an integral:

Pra(c1 ≤ fa(x) ≤ c2) =

c2∫
c1

λa(v)d(v) (11)

For the interval [c1, c2) ⊆ Va, the probability is

Pra(c1 ≤ fa(x) < c2) = lim
ε→0

c2−ε∫

c1

λa(v)d(v) (12)

In incomplete information system, when the attribute val-
ues of the two objects are present, the relation between these
objects can be determined by (6). If at least one of two object

TABLE VI. KANSEI INFORMATION TABLE FOR MOBILE PHONE DESIGN

U a1 a2 a3 a4 D

x1 2 1 0 0.8[metal],0.2[plastic] deluxe
x2 {1,2} 1 {0,1} 1.0[metal] deluxe
x3 2 {0,1} 1 0.7[metal],0.3[plastic] deluxe
x4 0 2 {1,2} 0.1[metal],0.8[plastic] cute
x5 1 0 2 0.2[metal],0.8[plastic] cute
x6 1 {0,1} 1 1.0[plastic] sporty
x7 1 0 {0,1} 0.1[metal],0.9[plastic] sporty
x8 2 0 0 1.0[plastic] sporty

attribute values is missing, probability of matching can be
defined as the following equation:

θa(x, y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Pra(cai ≤ fa(y) < ca
i+1

)

if fa(x) ∈ [ca
i
, ca

i+1
), fa(y) = ∗,

Pra(vai ≤ fa(x) < ca
i+1

)

if fa(y) ∈ [ca
i
, ca

i+1
), fa(x) = ∗,

c
a
k∑

ci=ca0

Pra(c
a

i ≤ fa(x) < cai+1)Pra(c
a

i ≤ fa(y) < cai+1)

if fa(x) = ∗, fa(y) = ∗,

(13)
when x 
= y. Otherwise θa(x, y) = θa(x, x) = 1.

Hence, with a pre-defined probability distributed function
λa(v), the probability of matching between two separate object
is:

θa(x, y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

lim
ε→0

c
a
i+1−ε∫

ca
i

λa(v)d(v) if fa(x) ∈ [cai , c
a

i+1), fa(y) = ∗,

lim
ε→0

c
a
i+1−ε∫

ca
i

λa(v)d(v) if fa(y) ∈ [ca
i
, ca

i+1), fa(x) = ∗,

lim
ε→0

vmax−ε∫

vmin

(λa(v))
2 d(v) if fa(x) = ∗, fa(y) = ∗,

(14)

Equation (10) and (13) show that in information systems
containing continuous attributes with missing, uncertain or
imprecise values, it is possible to use probability of matching
for defining probabilistic based tolerance (similarity) rela-
tions. On the other hand, in such kind of information sys-
tems, we may be able to define a distance function such as
distancea(fa(x), fa(y)) = 1−θa(x, y) for defining similarity
relation based on distance [28].

VI. APPLICATION IN KANSEI ENGINEERING

In actual application, there are many situation in which, we
have to describe examples in imprecise as well as uncertain
representation rather than singleton values such as human
feeling and impression used in Kansei engineering [17], [18].
Data of a WEB-based form feature extraction system for
mobile phone design [25], [32] is an example of imperfect in-
formation. Let the product feature set be A = {a1, a2, a3, a4},
which denotes body shape, body ratio, bottom shape and
material, respectively, and Kansei adjectives set be Vd =
{deluxe, cute, sporty}. Each kind of body shape, body ratio,
conner shape can be shown by a picture (see [25] for more
detail). Considered material types are plastic and metal [32].
Then numerous interviewees were invited to give their felling
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about a desired product. Using numbers to represent the type
of features, the Kansei data is illustrated in Table VI. Now,
we want to extract Kansei knowledge from the data collected
using rough set theory. It probably is impracticable to employ a
simple traditional solution in this situation. However, working
with probabilistic method may help us define a rough set
model. Consequently, Kansei knowledge acquisition methods
[25], [32] within the proposed approach can be used in this
kind of information.

VII. CONCLUSION

In this paper, the method Probability of Matching is
introduced. The approach can be used in any study about
valued tolerance/similarity relations in information systems
containing imperfect data. The method allows defining prob-
abilistic rough set models with both discrete and continuous
values. Furthermore, it avoids the inadequateness of the former
studies.

To calculate probability of matching, the paper also sug-
gests several ways to determine Probability of object attribute
values. In some cases, the probability distributions of attribute
values are provided. In the other cases, we have to use equal
probability or statistic method such as method of the frequency
of attribute values to define the probability of attribute values.
It depends on the characteristic of each information system.
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