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Abstract. We study maintenance of network connectivity in robotic
swarms with discrete-time communications and continuous-time motion
capabilities. Assuming a network topology induced by spatial proximity,
we propose a coordination scheme which guarantees connectivity of the
network by maintaining a spanning tree at all times. Our algorithm is
capable of repairing the spanning tree in the event of link failure, and of
transitioning from any initial tree to any other tree which is a subgraph
of the communications graph.

1 Introduction

Given a group of robots with processing, motion, and communication capabilities
executing a motion coordination algorithm, we address the following problem:
how can we guarantee that the interaction graph induced by the inter-agent
communication remains connected?

One strategy is to make custom modifications to each motion control algo-
rithm to guarantee connectivity. It is desirable, however, to synthesize a general
methodology that goes beyond a case by case study, and can be used in conjunc-
tion with any motion coordination algorithm. In this paper we take on this aim
and propose an approach based on the preservation of a spanning tree of the un-
derlying communication graph. The idea is to synthesize a distributed algorithm
to agree upon “safe” re-arrangements of the spanning tree (i.e., re-arrangements
that do not break connectivity) based on preferences specified by the motion
coordination algorithm. Space constraints prevent us from presenting more than
a rough sketch of our algorithm design and analysis results. A complete version
of our discussion here can be found in [13].

Literature review. The fundamental importance of spanning trees to dis-
tributed algorithms motivate a vast collection of literature, see e.g., [7, 9], which
explores their properties and designs algorithms to construct them. Spanning
trees are especially crucial for the specific case of distributed computation over



ad-hoc networks. For a survey of spanning tree repair algorithms for ad-hoc net-
works, see [4]. In cooperative control and robotics, several works have studied
how to constrain the motion of the agents to preserve connectivity. For brevity,
we only mention a few here. [1, 6, 5, 10] maintain the connectivity of the network
by constraining robot motion to maintain a fixed set of links. The centralized
solution proposed in [15] allows for a general range of agent motions. Many
works [16, 3, 14, 12] control the algebraic connectivity of a robotic network.

2 Connectivity Maintenance Algorithm

The Connectivity Maintenance (CM) Algorithm is an algorithm to main-
tain a spanning tree of the communication graph. The intent is that if robot mo-
tion is constrained to not break any links of the spanning tree, the underlying
graph will remain connected as well. An informal algorithm description follows.

[Informal description:] Each robot maintains a reference to its parent
in the spanning tree. At pre-arranged times, each robot is allowed to
change its parent. Connectivity is preserved in the following way. Each
robot keeps an estimate of its depth, i.e., distance from the root in the
spanning tree. If no robot picks a robot of greater depth than its parent’s,
then no robot will pick one of its current descendants as a parent node. To
allow robots to attach to potential parents of the same depth estimate,
a tie-breaking algorithm based on UIDs is used to prevent potential
formation of cycles, thus maintaining the spanning tree property.

The CM Algorithm should be coupled with two other algorithms:

– The first is a modification of the underlying motion coordination algorithm,
modified to preserve the links of the spanning tree maintained by CM Algo-

rithm. We refer to an algorithm which satisfies the constraints required for
this role as one which is motion compatible with CM Algorithm. This algo-
rithm also specifies which neighbors each agent would prefer to be connected
to as an order relation. The relation we use in the simulations presented in
Section 4 is roughly “each agent prefers to attach to agents which are closer
to its position in physical space.”

– The second algorithm is one which tells the robots to artificially increase
their depth estimates at particular times. Doing so allows a robot of a lower
actual depth to attach to a robot of a higher actual depth, at the expense
of making the “depth estimates” diverge from the actual depth (hopefully
only for short periods of time). Care must be taken to ensure that such an
algorithm does not cause robot depth estimates to grow in an unbounded
fashion. We specify a series of constraints on such an algorithm so that it
still guarantees correctness of CM Algorithm. We refer to an algorithm
which satisfies these constraints as one which is depth compatible with CM

Algorithm. The simplest such algorithm, called Null Depth Increment

Algorithm, never tells an agent to artificially increase its depth estimate.



We show in [13] that CM Algorithm can recover from a wide variety of
states (positions and topologies) resulting from link failures of the form “a link
between two agents disappears who are instantly made aware of the link failure.”

3 Reachability analysis: Cycle-detecting Depth Increment

Algorithm

We introduce an algorithm which is depth compatible with CM Algorithm

called Cycle-detecting Depth Increment Algorithm. When this algo-
rithm is combined with CM Algorithm, the resulting strategy satisfies a very
nice property: the combined algorithm can induce the constraint tree to match
any tree, T2, which is a subgraph of the communication graph. Specifically, if a
tree, T2, is a subgraph of the current graph, and every edge of T2 is preferred
by its parent, i, in T2 to each of i’s neighbors, then the tree stored by CM

Algorithm will eventually become T2.
An informal description of Cycle-detecting Depth Increment Algo-

rithm is as follows.

[Informal description:] Each robot stores a “start number”, a “number
of descendants” and a “mapping from child UID to child start number.”
At each round, in addition to the tree constraint info, each node sends
the following info to each neighbor. If the neighbor is a child, it sends the
appropriate entry in its mapping, or, if the child is not in the mapping, it
sends its own start number. It always sends its “number of descendants.”
If the neighbor is not a child, it sends its own start number. With the
messages received, each node updates its numbers in the following way.
Its “number of descendants” is the sum of the “number of descendants”
info received from each child, plus one (for itself). Its “start number” is
the number its parent sends it. For each child it receives a message for,
it adds an entry to its map that is indexed by that child’s UID and has
a value of “the sum, over all children with lesser UID, of the number of
descendants of those children, plus one plus its own start number.”

4 Simulations

Here we illustrate the performance of the Connectivity Maintenance Algo-

rithm in several simulations. We combine the algorithm with Cycle-detecting

Depth Increment Algorithm and the deployment algorithm presented in [2].
The proximity graph of the robotic network is the r-disk proximity graph. The
deployment algorithm assumes that each robot has a sensor coverage disk. It
moves the robots to maximize sensor coverage of a “region of interest” repre-
sented by a density function ρ : R

2
7→ R given sensors which cover disks of

radius rd. We assume the robots have a maximum velocity of vspeed.
Links of the constraint tree are preserved via a modification of the procedure

described in [1]. To preserve a link between two robots, we constrain the motion



of the two robots to a circle of radius r

2
centered at the midpoint of the line

between their positions. Because each robot has a “target” it moves towards, we
can find the closest point to the target in the intersection of the circles generated
by the constraint edges.

The algorithm resulting from the combination of the deployment algorithm
with the Connectivity Maintenance Algorithm is executed in our Java
simulation platform [11]. This platform provides a software implementation of
the modeling framework introduced in [8]. Our results are shown in Figure 1.

(a) (b) (c)

Fig. 1. The plots show an execution of Connectivity Maintenance Algorithm,
showing (a) the paths taken by the robots, (b) a contour plot of the density field and
the sensor coverage regions of the robots, (c) the final network constraint tree.

Figure 2 shows the evolution of the algorithm when repairing an initially
disconnected tree.

(a) (b) (c)

Fig. 2. Progress of repair starting with an initially disconnected constraint tree. Agents
are labeled by “agent id/root id” : those in blue have not yet completed repair.

5 Conclusions and future work

We have designed a tree-rearrangement algorithm for connectivity with reacha-
bility and repair capabilities. The algorithm can be shown to be provably correct,
and is easily composable with other motion coordination algorithms. Future work
will include understanding how the resulting trees of our algorithm compare to
minimum spanning trees, developing systematic ways to encode preference re-
arrangements in connection with other coordination algorithms, and exploring
the properties of the algorithm in conjunction with other proximity graphs, such
as the visibility graph.
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