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We study lightlike hypersurfaces of a semi-Riemannian product manifold. We introduce a class
of lightlike hypersurfaces called screen semi-invariant lightlike hypersurfaces and radical anti-
invariant lightlike hypersurfaces. We consider lightlike hypersurfaces with respect to a quarter-
symmetric nonmetric connection which is determined by the product structure. We give some
equivalent conditions for integrability of distributions with respect to the Levi-Civita connection
of semi-Riemannian manifolds and the quarter-symmetric nonmetric connection, and we obtain
some results.

1. Introduction

The theory of degenerate submanifolds of semi-Riemannian manifolds is one of important
topics of differential geometry. The geometry of lightlike submanifolds of a semi-Riemannian
manifold, was presented in [1] (see also [2, 3]) by Duggal and Bejancu. In [4], Atçeken and
Kılıç introduced semi-invariant lightlike submanifolds of a semi-Riemannian product man-
ifold. In [5], Kılıç and Şahin introduced radical anti-invariant lightlike submanifolds of
a semi-Riemannian product manifold and gave some examples and results for lightlike
submanifolds. The lightlike hypersurfaces have been studied by many authors in various
spaces (for example [6, 7]).

In [8], Hayden introduced a metric connection with nonzero torsion on a Riemannian
manifold. The properties of Riemannian manifolds with semisymmetric (symmetric) and
nonmetric connection have been studied by many authors [9–14]. In [15], Yaşar et al.
have studied lightlike hypersurfaces in semi-Riemannian manifolds with semisymmetric
nonmetric connection. The idea of quarter-symmetric linear connections in a differential
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manifold was introduced by Golab [11]. A linear connection is said to be a quarter-symmetric
connection if its torsion tensor T is of the form:

T(X,Y ) = u(Y )ϕX − u(X)ϕY, (1.1)

for any vector fields X,Y on a manifold, where u is a 1-form and ϕ is a tensor of type (1,1).
In this paper, we study lightlike hypersurfaces of a semi-Riemannian product

manifold. As a first step, in Section 3, we introduce screen semi-invariant lightlike
hypersurfaces and radical anti-invariant lightlike hypersurfaces of a semi-Riemannian
product manifold. We give some examples and study their geometric properties. In Section 4,
we consider lightlike hypersurfaces of a semi-Riemannian product manifold with quarter-
symmetric nonmetric connection determined by the product structure. We compute the
Riemannian curvature tensor with respect to the quarter-symmetric nonmetric connection
and give some results.

2. Lightlike Hypersurfaces

Let (M,g) be an (m + 2)-dimensional semi-Riemannian manifold with index (g) = q ≥ 1 and
let (M,g) be a hypersurface of M, with g = g |M . If the induced metric g on M is degenerate,
thenM is called a lightlike (null or degenerate) hypersurface [1] (see also [2, 3]). Then there
exists a null vector field ξ /= 0 on M such that

g(ξ, X) = 0, ∀X ∈ Γ(TM). (2.1)

The radical or the null space of TxM, at each point x ∈ M, is a subspace Rad TxM defined by

Rad TxM =
{
ξ ∈ TxM|gx(ξ, X) = 0, ∀X ∈ Γ(TM)

}
, (2.2)

whose dimension is called the nullity degree of g. We recall that the nullity degree of g
for a lightlike hypersurface of M is 1. Since g is degenerate and any null vector being
perpendicular to itself, TxM⊥ is also null and

Rad TxM = TxM ∩ TxM
⊥. (2.3)

Since dim TxM
⊥ = 1 and dimRad TxM = 1, we have Rad TxM = TxM

⊥. We call Rad TM a
radical distribution and it is spanned by the null vector field ξ. The complementary vector
bundle S(TM) of Rad TM in TM is called the screen bundle of M. We note that any screen
bundle is nondegenerate. This means that

TM = Rad TM ⊥ S(TM). (2.4)
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Here ⊥ denotes the orthogonal-direct sum. The complementary vector bundle S(TM)⊥

of S(TM) in TM is called screen transversal bundle and it has rank 2. Since Rad TM is a
lightlike subbundle of S(TM)⊥ there exists a unique local section N of S(TM)⊥ such that

g(N,N) = 0, g(ξ,N) = 1. (2.5)

Note that N is transversal to M and {ξ,N} is a local frame field of S(TM)⊥ and there exists
a line subbundle ltr(TM) of TM, and it is called the lightlike transversal bundle, locally
spanned byN. Hence we have the following decomposition:

TM = TM ⊕ ltr(TM) = S(TM) ⊥ Rad TM ⊕ ltr(TM), (2.6)

where ⊕ is the direct sum but not orthogonal [1, 3]. From the above decomposition of a semi-
Riemannian manifold M along a lightlike hypersurface M, we can consider the following
local quasiorthonormal field of frames ofM along M:

{X1, . . . , Xm, ξ,N}, (2.7)

where {X1, . . . , Xm} is an orthonormal basis of Γ(S(TM)). According to the splitting (2.6), we
have the following Gauss and Weingarten formulas, respectively:

∇XY = ∇XY + h(X,Y ),

∇XN = −ANX +∇t
XN,

(2.8)

for any X,Y ∈ Γ(TM), where ∇XY,ANX ∈ Γ(TM) and h(X,Y ),∇t
XN ∈ Γ(ltr(TM)). If we set

B(X,Y ) = g(h(X,Y ), ξ) and τ(X) = g(∇t
XN, ξ), then (2.8) become

∇XY = ∇XY + B(X,Y )N, (2.9)

∇XN = −ANX + τ(X)N. (2.10)

B and A are called the second fundamental form and the shape operator of the lightlike
hypersurface M, respectively [1]. Let P be the projection of S(TM) on M. Then, for any
X ∈ Γ(TM), we can write

X = PX + η(X)ξ, (2.11)

where η is a 1-form given by

η(X) = g(X,N). (2.12)

From (2.9), we get

(∇Xg
)
(Y,Z) = B(X,Y )η(Z) + B(X,Z)η(Y ), ∀X,Y,Z ∈ Γ(TM), (2.13)
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and the induced connection ∇ is a nonmetric connection on M. From (2.4), we have

∇XW = ∇∗
XW + h∗(X,W)

= ∇∗
XW + C(X,W)ξ, X ∈ Γ(TM),W ∈ Γ(S(TM)),

∇Xξ = −A∗
ξX − τ(X)ξ,

(2.14)

where ∇∗
XW and A∗

ξ
X belong to Γ(S(TM)). C, A∗

ξ
and ∇∗ are called the local second funda-

mental form, the local shape operator and the induced connection on S(TM), respectively.
Also, we have the following identities:

g
(
A∗

ξX,W
)
= B(X,W), g

(
A∗

ξX,N
)
= 0,

B(X, ξ) = 0, g(ANX,N) = 0.
(2.15)

Moreover, from the first and third equations of (2.15) we have

A∗
ξξ = 0. (2.16)

Now, we will denote R and R the curvature tensors of the Levi-Civita connection ∇ on
M and the induced connection ∇ on M. Then the Gauss equation ofM is given by

R(X,Y )Z = R(X,Y )Z +Ah(X,Z)Y −Ah(Y,Z)X

+ (∇Xh)(Y,Z) − (∇Yh)(X,Z), ∀X,Y,Z ∈ Γ(TM),
(2.17)

where (∇Xh)(Y,Z) = ∇t
X(h(Y,Z))−h(∇XY,Z)−h(Y,∇XZ). Then the Gauss-Codazzi equations

of a lightlike hypersurface are given by

g
(
R(X,Y )Z, PW

)
= g(R(X,Y )Z, PW)

+ B(X,Z)C(Y, PW) − B(Y,Z)C(X, PW),

g
(
R(X,Y )Z, ξ

)
= (∇XB)(Y,Z) − (∇YB)(X,Z)

+ B(Y,Z)τ(X) − B(X,Z)τ(Y ),

g
(
R(X,Y )Z,N

)
= g(R(X,Y )Z,N),

g
(
R(X,Y )ξ,N

)
= g(R(X,Y )ξ,N)

= C
(
Y,A∗

ξX
)
− C

(
X,A∗

ξY
)
− 2dτ(X,Y ),

(2.18)

for any X,Y,Z,W ∈ Γ(TM), ξ ∈ Γ(Rad TM).
For geometries of lightlike submanifolds, hypersurfaces and curves, we refer to [1–3].
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2.1. Product Manifolds

Let M be an n-dimensional differentiable manifold with a tensor field F of type (1,1) on M
such that

F2 = I. (2.19)

Then M is called an almost product manifold with almost product structure F. If we put

π =
1
2
(I + F), σ =

1
2
(I − F), (2.20)

then we have

π + σ = I, π2 = π, σ2 = σ,

σπ = πσ = 0, F = π − σ.
(2.21)

Thus π and σ define two complementary distributions and F has the eigenvalue of +1 or −1.
If an almost product manifold M admits a semi-Riemannian metric g such that

g(FX, FY ) = g(X,Y ), (2.22)

for any vector fields X,Y on M, then M is called a semi-Riemannian almost product mani-
fold. From (2.19) and (2.22), we have

g(FX, Y ) = g(X,FY ). (2.23)

If, for any vector fields X,Y onM,

∇F = 0, that is ∇XFY = F∇XY, (2.24)

thenM is called a semi-Riemannian product manifold, where∇ is the Levi-Civita connection
on M.

3. Lightlike Hypersurfaces of Semi-Riemannian Product Manifolds

Let M be a lightlike hypersurface of a semi-Riemannian product manifold (M,g). For any
X ∈ Γ(TM)we can write

FX = fX +w(X)N, (3.1)

where f is a (1,1) tensor field and w is a 1-form on M given by w(X) = g(FX, ξ) = g(X,Fξ).
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Definition 3.1. Let M be a lightlike hypersurface of a semi-Riemannian product manifold
(M,g):

(i) if F Rad TM ⊂ S(TM) and F ltr(TM) ⊂ S(TM) then we say that M is a screen
semi-invariant lightlike hypersurface;

(ii) if FS(TM) = S(TM) then we say that M is a screen invariant lightlike hypersur-
face;

(iii) if F RadTM = ltr (TM) then we say that M is a radical anti-invariant lightlike
hypersurface.

We note that a radical anti-invariant lightlike hypersurface is a screen invariant light-
like hypersurface.

Remark 3.2. We recall that there are some lightlike hypersurfaces of a semi-Riemannian
product manifold which differ from the above definition, that is, this definition does not cover
all lightlike hypersurfaces of a semi-Riemannian product manifold (M,g). In this paper we
will study the hypersurfaces determined above.

Now, let M be a screen semi-invariant lightlike hypersurface of a semi-Riemannian
product manifold. If we set D1 = F Rad TM,D2 = F ltr(TM) then we can write

S(TM) = D ⊥ {D1 ⊕ D2}, (3.2)

where D is a (m − 2)-dimensional distribution. Hence we have the following decomposition:

TM = D ⊥ {D1 ⊕ D2} ⊥ Rad TM,

TM = D ⊥ {D1 ⊕ D2} ⊥ {Rad TM ⊕ ltr(TM)}.
(3.3)

Proposition 3.3. The distribution D is an invariant distribution with respect to F.

Proof. For any X ∈ Γ(D) and U ∈ Γ(D1), V ∈ Γ(D2)we obtain

g(FX,U) = g(X,FU) = 0,

g(FX, V ) = g(X,FV ) = 0.
(3.4)

Thus there are no components of FX in D1 and D2. Furthermore, we have

g(FX, ξ) = g(X,Fξ) = 0,

g(FX,N) = g(X,FN) = 0.
(3.5)

Proof is completed.
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If we set D = D ⊥ Rad TM ⊥ F Rad TM, we can write

TM = D ⊕ D2. (3.6)

From the above proposition we have the following corollary.

Corollary 3.4. The distribution D is invariant with respect to F.

Example 3.5. Let (M = R5
2, g) be a 5-dimensional semi-Euclidean space with signa-

ture (−,+,−,+,+) and (x, y, z, s, t) be the standard coordinate system of R5
2. If we set F(x, y, z,

s, t) = (x, y,−z,−s,−t), then F2 = I and F is a product structure on R5
2. Consider a hyper-

surface M inM by the equation:

t = x + y + z. (3.7)

Then TM = Span{U1, U2, U3, U4}, where

U1 =
∂

∂x
+

∂

∂t
, U2 =

∂

∂y
+

∂

∂t
, U3 =

∂

∂z
+

∂

∂t
, U4 =

∂

∂s
. (3.8)

It is easy to check thatM is a lightlike hypersurface and

TM⊥ = Span{ξ = U1 −U2 +U3}. (3.9)

Then take a lightlike transversal vector bundle as follow:

ltr(TM) = Span
{
N = −1

4

{
∂

∂x
+

∂

∂y
+

∂

∂z
− ∂

∂t

}}
. (3.10)

It follows that the corresponding screen distribution S(TM) is spanned by

{W1 = U4,W2 = U1 −U2 −U3,W3 = U1 +U2 −U3}. (3.11)

If we set D = Span{W1}, D1 = Span{W2} and D2 = Span{W3}, then it can be easily checked
that M is a screen semi-invariant lightlike hypersurface ofM.

Example 3.6. Let (x, y, z, t) be the standard coordinate system ofR4 and ds2 = −dx2−dy2+dz2+
dt2 be a semi-Riemannian metric on R4 with 2-index. Let F be a product structure on R4 given
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by F(x, y, z, t) = (z, t, x, y). We consider the hypersurface M given by t = x + (1/2)(y + z)2

[1]. One can easily see that M is a lightlike hypersurface and

Rad TM = Span
{
ξ =

∂

∂x
+
(
y + z

) ∂

∂y
− (

y + z
) ∂

∂z
+

∂

∂t

}
,

ltr(TM) = Span

⎧
⎨

⎩
N = − 1

2
(
1 +

(
y + z

)2)
(

∂

∂x
+
(
y + z

) ∂

∂y
+
(
y + z

) ∂

∂z
− ∂

∂t

)
⎫
⎬

⎭
,

S(TM) = Span
{
W1 = −(y + z

) ∂

∂x
+

∂

∂y
,W2 =

∂

∂z
+
(
y + z

) ∂

∂t

}
.

(3.12)

We can easily check that

Fξ = W1 +W2, FN =
1

2
(
1 +

(
y + z

)2){W1 −W2}. (3.13)

Thus M is a screen semi-invariant lightlike hypersurface with D = {0}, D1 = Span{Fξ} and
D2 = Span{FN}.

Example 3.7. Let (R4
2, g) be a 4-dimensional semi-Euclidean space with signature (−,−,+,+)

and (x1, x2, x3, x4) be the standard coordinate system of R4
2. Consider a Monge hypersurface

M of R4
2 given by

x4 = Ax1 + Bx2 + Cx3, A2 + B2 − C2 = 1, A, B, C ∈ R. (3.14)

Then the tangent bundle TM of the hypersurface M is spanned by

{
U1 =

∂

∂x1
+A

∂

∂x4
, U2 =

∂

∂x2
+ B

∂

∂x4
, U3 =

∂

∂x3
+ C

∂

∂x4

}
. (3.15)

It is easy to check thatM is a lightlike hypersurface (p.196, Ex.1, [3])whose radical distribu-
tion Rad TM is spanned by

ξ = AU1 + BU2 − CU3 = A
∂

∂x1
+ B

∂

∂x2
− C

∂

∂x3
+

∂

∂x4
. (3.16)

Furthermore, the lightlike transversal vector bundle is given by

ltr(TM) = Span
{
N = − 1

2(C2 + 1)

(
A

∂

∂x1
+ B

∂

∂x2
+ C

∂

∂x3
− ∂

∂x4

)}
. (3.17)

It follows that the corresponding screen distribution S(TM) is spanned by

{
W1 =

1
A2 + B2

(
B

∂

∂x1
−A

∂

∂x2

)
,W2 =

1
A2 + B2

(
∂

∂x3
+ C

∂

∂x4

)}
. (3.18)
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If we define a mapping F by F(x1, x2, x3, x4) = (x1, x2,−x3,−x4) then F2 = I and F is a product
structure on R4

2. One can easily check that FS(TM) = S(TM) and F Rad TM = ltr(TM).
Thus M is a radical anti-invariant lightlike hypersurface of R4

2. Furthermore, this lightlike
hypersurface is a screen invariant lightlike hypersurface.

Theorem 3.8. Let (M,g) be a semi-Riemannian product manifold andM be a screen semi-invariant
lightlike hypersurface ofM. Then the following assertions are equivalent.

(i) The distribution D is integrable with respect to the induced connection ∇ of M.

(ii) B(X, fY ) = B(Y, fX), for any X,Y ∈ Γ(D).

(iii) g(A∗
ξ
X, PfY ) = g(A∗

ξ
Y, PfX), for any X,Y ∈ Γ(D).

Proof. For any X,Y ∈ Γ(D), from (2.9), (2.24), and (3.1), we obtain

f∇XY +w(∇XY )N + B(X,Y )FN = ∇XfY + B
(
X, fY

)
N. (3.19)

Interchanging role of X and Y we have

f∇YX +w(∇YX)N + B(Y,X)FN = ∇YfX + B
(
Y, fX

)
N. (3.20)

From (3.19), (3.20) we get

w([X,Y ]) = B
(
X, fY

) − B
(
Y, fX

)
(3.21)

and this is (i) ⇔ (ii). From the first equation of (2.15), we conclude (ii) ⇔ (iii). Thus we have
our assertion.

From the decomposition (3.6), we can give the following definition.

Definition 3.9. Let M be a screen semi-invariant lightlike hypersurface of a semi-Riemannian
product manifold M. If B(X,Y ) = 0, for any X ∈ Γ(D),Y ∈ Γ(D2), then we say that M is a
mixed geodesic lightlike hypersurface.

Theorem 3.10. Let (M,g) be a semi-Riemannian product manifold andM be a screen semi-invariant
lightlike hypersurface ofM. Then the following assertions are equivalent.

(i) M is mixed geodesic.

(ii) There is no D2-component of AN .

(iii) There is no D1-component of A∗
ξ
.

Proof. Suppose that M is mixed geodesic screen semi-invariant lightlike hypersurface of M
with respect to the Levi-Civita connection ∇. From (2.24), (2.9), (2.10), and (3.1), we obtain

∇XFN + B(X,FN)N = −fANX + τ(X)FN −w(ANX)N, (3.22)
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for any X ∈ Γ(D). If we take tangential and transversal parts of this last equation we have

∇XFN = −fANX + τ(X)FN,

B(X,FN) = −w(ANX).
(3.23)

Furthermore, since w(ANX) = g(ANX,Fξ), we get (i) ⇔ (ii). Since g(FN, ξ) = g(N,Fξ) = 0,
we obtain

g(ANX,Fξ) = −g
(
A∗

ξX, FN
)
. (3.24)

This is (ii) ⇔ (iii).

From the decomposition (3.6), we have the following theorem.

Theorem 3.11. LetM be a screen semi-invariant lightlike hypersurface of a semi-Riemannian product
manifoldM. ThenM is a locally product manifold according to the decomposition (3.6) if and only if
f is parallel with respect to induced connection ∇, that is ∇f = 0.

Proof. Let M be a locally product manifold. Then the leaves of distributions D and D2 are
both totally geodesic in M. Since the distribution D is invariant with respect to F then, for
any Y ∈ Γ(D), FY ∈ Γ(D). Thus ∇XY and ∇XfY belong to Γ(D), for any X ∈ Γ(TM). From
the Gauss formula, we obtain

∇XfY + B
(
X, fY

)
N = f∇XY +w(∇XY )N + B(X,Y )FN. (3.25)

Comparing the tangential and normal parts with respect to D of (3.25), we have

∇XfY = f∇XY, that is
(∇Xf

)
Y = 0, (3.26)

B(X,Y ) = 0. (3.27)

Since fZ = 0, for any Z ∈ Γ(D2), we get ∇XfZ = 0 and f∇XZ = 0, that is (∇Xf)Z = 0. Thus
we have ∇f = 0 on M.

Conversely, we assume that ∇f = 0 on M. Then we have ∇XfY = f∇XY , for any
X,Y ∈ Γ(D) and ∇UfW = f∇UW = 0, for any U,W ∈ Γ(D2). Thus it follows that ∇XfY ∈
Γ(D) and ∇UW ∈ Γ(D2). Hence, the leaves of the distributions D and D2 are totally geodesic
in M.

From Theorem 3.11 and (3.27)we have the following corollary.

Corollary 3.12. Let M be a screen semi-invariant lightlike hypersurface of a semi-Riemannian
product manifold M. If M has a local product structure, then it is a mixed geodesic lightlike
hypersurface.
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LetM be a radical anti-invariant lightlike hypersurface of a semi-Riemannian product
manifold M. Then we have the following decomposition:

TM = S(TM) ⊥ {Rad TM ⊕ F Rad TM}. (3.28)

Theorem 3.13. Let M be a radical anti-invariant lightlike hypersurface of a semi-Riemannian
product manifold M. Then the screen distribution S(TM) of M is an integrable distribution if and
only if B(X,FY ) = B(Y, FX).

Proof. If a vector field X on M belongs to S(TM) if and only if η(X) = 0. Since M is a radical
anti-invariant lightlike hypersurface, for anyX ∈ Γ(S(TM)), FX ∈ Γ(S(TM)). For anyX,Y ∈
Γ(S(TM)), we can write

∇XFY = ∇XFY + B(X,FY )N. (3.29)

In this last equation interchanging role of X and Y , we obtain

F[X,Y ] = ∇XFY − ∇YFX + (B(X,FY ) − B(Y, FX))N. (3.30)

Since η([X,Y ]) = g([X,Y ],N) = g(F[X,Y ], FN), we get

η([X,Y ]) = (B(X,FY ) − B(Y, FX))g(N,FN). (3.31)

Since g(N,FN)/= 0, η([X,Y ]) = 0 if and only if B(X,FY ) = B(Y, FX). This is our assertion.

4. Quarter-Symmetric Nonmetric Connections

Let (M,g, F) be a semi-Riemannian product manifold and ∇ be the Levi-Civita connection
onM. If we set

DXY = ∇XY + u(Y )FX, (4.1)

for any X,Y ∈ Γ(TM), then D is a linear connection on M, where u is a 1-form on M with U
as associated vector field, that is

u(X) = g(X,U). (4.2)

The torsion tensor of D on M denoted by T . Then we obtain

T(X,Y ) = u(Y )FX − u(X)FY, (4.3)
(
DXg

)
(Y,Z) = −u(Y )g(FX,Z) − u(Z)g(FX, Y ), (4.4)
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for any X,Y ∈ Γ(TM). Thus D is a quarter-symmetric nonmetric connection on M. From
(2.24) and (4.1)we have

(
DXF

)
Y = u(FY )FX − u(Y )X. (4.5)

Replacing X by FX and Y by FY in (4.5) and using (2.19)we obtain

(
DFXF

)
FY = u(Y )X − u(FY )FX. (4.6)

Thus we have

(
DXF

)
Y +

(
DFXF

)
FY = 0. (4.7)

If we set

′F(X,Y ) = g(FX, Y ), (4.8)

for any X,Y ∈ Γ(TM), from (4.1) we get

(
DX

′
F
)
(Y,Z) =

(
∇X

′
F
)
(Y,Z) − u(Y )g(X,Z) − u(Z)g(X,Y ). (4.9)

From (4.1) the curvature tensorR
D
of the quarter-symmetric nonmetric connectionD is given

by

R
D
(X,Y )Z = R(X,Y )Z + λ(X,Z)FY − λ(Y,Z)FX, (4.10)

for anyX,Y,Z ∈ Γ(TM), where λ is a (0, 2)-tensor given by λ(X,Z) = (∇Xu)(Z)−u(Z)u(FX).

If we set R
D
(X,Y,Z,W) = g(R

D
(X,Y )Z,W), then, from (4.10), we obtain

R
D
(X,Y,Z,W) = −RD

(Y,X,Z,W). (4.11)

We note that the Riemannian curvature tensor R
D
of D does not satisfy the other curvature-

like properties. But, from (4.10), we have

R
D
(X,Y )Z + R

D
(Y,Z)X + R

D
(Z,X)Y =

(
λ(Z, Y ) − λ(Y,Z)

)
FX

+
(
λ(X,Z) − λ(Z,X)

)
FY

+
(
λ(Y,X) − λ(X,Y )

)
FZ.

(4.12)

Thus we have the following proposition.



International Journal of Mathematics and Mathematical Sciences 13

Proposition 4.1. LetM be a lightlike hypersurface of a semi-Riemannian product manifoldM. Then
the first Bianchi identity of the quarter-symmetric nonmetric connection D on M is provided if and
only if λ is symmetric.

LetM be a lightlike hypersurface of a semi-Riemannian product manifold (M,g)with
quarter-symmetric nonmetric connection D. Then the Gauss and Weingarten formulas with
respect to D are given by, respectively,

DXY = DXY + B(X,Y )N (4.13)

DXN = −ANX + τ(X)N (4.14)

for any X,Y ∈ Γ(TM), where DXY , ANX ∈ Γ(TM), B(X,Y ) = g(DXY, ξ), τ(X) = g(DXN, ξ).
Here, D, B and AN are called the induced connection on M, the second fundamental form,
and the Weingarten mapping with respect to D. From (2.9), (2.10), (3.1), (4.1), (4.13), and
(4.14)we obtain

DXY = ∇XY + u(Y )fX, (4.15)

B(X,Y ) = B(X,Y ) + u(Y )w(X), (4.16)

ANX = ANX − u(N)fX,

τ(X) = τ(X) + u(N)w(X),
(4.17)

for any X, Y ∈ Γ(TM). From (4.1), (4.4), (4.13), and (4.16)we get

(
DXg

)
(Y,Z) = B(X,Y )η(Z) + B(X,Z)η(Y )

− u(Y )g
(
fX,Z

) − u(Z)g
(
fX, Y

)
.

(4.18)

On the other hand, the torsion tensor of the induced connection D is

TD(X,Y ) = u(Y )fX − u(X)fY. (4.19)

From last two equations we have the following proposition.

Proposition 4.2. Let M be a lightlike hypersurface of a semi-Riemannian product manifold (M,g)
with quarter-symmetric nonmetric connection D. Then the induced connection D is a quarter-
symmetric nonmetric connection on the lightlike hypersurface M.

For any X,Y ∈ Γ(TM), we can write

DX PY = D∗
XPY + C(X, PY )ξ,

DX ξ = −A∗
ξX + ε(X)ξ,

(4.20)
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where D∗
XPY A

∗
ξX ∈ Γ(S(TM)), C(X, PY ) = g(DXPY,N), and ε(X) = g(DXξ,N). From

(2.14), (16), and (4.15), we obtain

C(X, PY ) = C(X, PY ) + u(PY )η
(
fX

)
, (4.21)

A
∗
ξX = A∗

ξX − u(ξ)PfX, ε(X) = −τ(X) + u(ξ)η
(
fX

)
. (4.22)

Using (2.15), (4.16) and (4.22) we obtain

B(X, PY ) = g
(
A

∗
ξX, PY

)
+ u(PY )w(X)

+ u(ξ)g(FX, PY ),
(4.23)

for any X,Y ∈ Γ(TM).
Now, we consider a screen semi-invariant lightlike hypersurface M of a semi-

Rieamannian product manifoldMwith respect to the quarter symmetric connectionD given
by (4.1). Since w(X) = g(FX, ξ), for any X ∈ Γ(D), w(X) = 0. Thus we have the following
propositions.

Proposition 4.3. Let M be a screen semi-invariant lightlike hypersurface of a semi-Riemannian
product manifold (M,g) with quarter-symmetric nonmetric connection. The second fundamental
form B of quarter-symmetric nonmetric connection D is degenerate.

Proposition 4.4. Let (M,g) be a semi-Riemannian product manifold and M be a screen semi-
invariant lightlike hypersurfaces of M. If M is D totally geodesic with respect to ∇, then M is D

totally geodesic with respect to quarter-symmetric nonmetric connection.

Theorem 4.5. Let (M,g) be a semi-Riemannian product manifold andM be a screen semi-invariant
lightlike hypersurfaces of M. Then the following assertions are equivalent.

(i) The distribution D is integrable with respect to the quarter symmetric nonmetric connection
D.

(ii) B(X, fY ) = B(Y, fX), for any X, Y ∈ Γ(D).

(iii) g(A
∗
ξX, PfY ) = g(A

∗
ξY, PfX), for any X, Y ∈ Γ(D).

The proof of this theorem is similar to the proof of the Theorem 3.8.
From (4.23), for any X ∈ Γ(D) and Y ∈ Γ(D2), we have B(X, PY ) = g(A

∗
ξX, PY ). If we

set D
′ = D ⊥ D2, then, from Theorem 3.10, we have the following corollary.

Corollary 4.6. Let (M,g) be a semi-Riemannian product manifold andM be a screen semi-invariant
lightlike hypersurface ofM. Then the distribution D

′ is a mixed geodesic foliation defined with respect
to quarter symmetric nonmetric connection if and only if there is no D1 component of A

∗
ξ .
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From (4.15), we obtain

RD(X,Y )Z = R(X,Y )Z + u(Z)
{(∇Xf

)
Y − (∇Yf

)
X
}

+ λ(X,Z)fY − λ(Y,Z)fX,
(4.24)

where λ is a (0, 2) tensor on M given by λ(X,Z) = (∇Xu)(Z) − u(Z)u(fX).
From (4.24), we have the following proposition which is similar to the Proposition 4.1.

Proposition 4.7. Let M be a lightlike hypersurface of a semi-Riemannian product manifold M. One
assumes that f is parallel on M. Then the first Bianchi identity of the quarter-symmetric nonmetric
connection D on M is provided if and only if λ is symmetric.

Now we will compute Gauss-Codazzi equations of lightlike hypersurfaces with
respect to the quarter-symmetric nonmetric connection:

g
(
R

D
(X,Y )Z, PW

)
= g(R(X,Y )Z, PW)

+ B(X,Z)C(Y, PW) − B(Y,Z)C(X, PW)

+ λ(X,Z)g
(
fY, PW

) − λ(Y,Z)g
(
fX, PW

)
,

g
(
R

D
(X,Y )Z, ξ

)
= (∇XB)(Y,Z) − (∇YB)(X,Z)

+ λ(X,Z)w(Y ) − λ(Y,Z)w(X),

g
(
R

D
(X,Y )Z,N

)
= g(R(X,Y )Z,N)

+ λ(X,Z)η
(
fY

) − λ(Y,Z)η
(
fX

)
,

(4.25)

for any X, Y , Z, W ∈ Γ(TM).
Now, letM be a screen semi-invariant lightlike hypersurface of a (m + 2)-dimensional

semi-Riemannian product manifold with the quarter-symmetric nonmetric connection D
such that the tensor field f is parallel on M. We consider the local quasiorthonormal basis
{Ei, Fξ, FN, ξ,N}, i = 1, . . . m − 2, of M along M, where {E1, . . . , Em−2} is an orthonormal
basis of Γ(D). Then, the Ricci tensor of M with respect to D is given by

RD(0,2)(X,Y ) =
m−2∑

i=1

εig
(
RD(X,Ei)Y, Ei

)
+ g

(
RD(X,Fξ)Y, FN

)

+ g
(
RD(X,FN)Y, Fξ

)
+ g

(
RD(X, ξ)Y,N

)
.

(4.26)
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From (4.24) we have

RD(0,2)(X,Y ) = R(0,2)(X,Y )

+
m−2∑

i=1

εi
{
λ(X,Y )g

(
fEi, Ei

) − λ(Ei, Y )g
(
fX, Ei

)}

− λ(Fξ, Y )η(X) − λ(ξ, Y )η
(
fX

)
,

(4.27)

where R(0,2)(X,Y ) is the Ricci tensor of M. Thus we have the following corollary.

Corollary 4.8. Let M a screen semi-invariant lightlike hypersurface of a (m + 2)-dimensional semi-
Riemannian product manifold with the quarter-symmetric nonmetric connection D such that the
tensor field f is parallel on M and R(0,2)(X,Y ) is symmetric. Then RD(0,2) is symmetric on the
distribution D if and only if λ is symmetric and λ(fX, Y ) = λ(fY,X).
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