
Research Article
An FPGA Task Placement Algorithm Using Reflected Binary
Gray Space Filling Curve

Senoj Joseph Olakkenghil1 and K. Baskaran2

1 Department of Electronics andCommunication Engineering, Sri KrishnaCollege of Technology, Coimbatore, Tamilnadu 641042, India
2Department of Computer Science Engineering, Government College of Technology, Coimbatore, Tamilnadu 641013, India

Correspondence should be addressed to Senoj Joseph Olakkenghil; senoj joseph@yahoo.com

Received 30 September 2013; Revised 30 December 2013; Accepted 24 January 2014; Published 16 April 2014

Academic Editor: Koen L. M. Bertels

Copyright © 2014 S. J. Olakkenghil and K. Baskaran. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

With the arrival of partial reconfiguration technology, modern FPGAs support tasks that can be loaded in (removed from) the
FPGA individually without interrupting other tasks already running on the same FPGA. Many online task placement algorithms
designed for such partially reconfigurable systems have been proposed to provide efficient and fast task placement. A new approach
for online placement of modules on reconfigurable devices, by managing the free space using a run-length based representation.
This representation allows the algorithm to insert or delete tasks quickly and also to calculate the fragmentation easily. In the
proposed FPGAmodel, the CLBs are numbered according to reflected binary gray space filling curve model. The search algorithm
will quickly identify a placement for the incoming task based on first fit mode or a fragmentation aware best fit mode. Simulation
experiments indicate that the proposed techniques result in a low ratio of task rejection and high FPGA utilization compared to
existing techniques.

1. Introduction

Reconfigurable devices with partial reconfiguration capabili-
ties allow multitasking applications on a single chip. Embed-
ded applications like cryptography, video communication,
image processing, and so forth can exploit this capability.
Efficient placement and scheduling algorithm can improve
FPGA resource utilization and overall execution time of
applications.

One of themost interesting problems is to decidewhere to
locate the bitmap of a new task in the FPGA when it must be
run. A data structure is required to keep track of the available
free area, and the algorithm must find out the best location
for the arriving task, trying to use the reconfigurable area
as efficiently as possible. In online placement system, due to
dynamic addition and deletion of tasks, the empty area of
FPGA becomes highly fragmented and FPGA area cannot be
utilized efficiently.

In this paper, a new data structure based on one-
dimensional run-length encoding is developed tomanage the

empty area. Using this data, structure placement algorithm
can locate a suitable location to place the incoming task
quickly. A new fragmentation metric gives an indication of
continuity of free space. The FPGA surface is modeled by
a matrix coded according to reflected binary gray curve.
The results show significant improvement over placement
using well-known algorithms like bottom left, 2D adjacency
based placement, least interference fit technique, and CLook
algorithm.

This paper is organized as follows. Section 2 presents
an overview of the problem of scheduling and placement
in dynamic reconfigurable devices. A brief review of var-
ious placement and scheduling techniques are given in
Section 3. In Section 4, a new technique called reflected
binary gray curve based placement is proposed. Section 5
describes the experimental setup made for performance
analysis. Results of average device utilization, task rejec-
tion ratio, average task waiting time, and so forth are
discussed in Section 6. Finally, conclusions are presented in
Section 7.

Hindawi Publishing Corporation
International Journal of Reconfigurable Computing
Volume 2014, Article ID 495080, 7 pages
http://dx.doi.org/10.1155/2014/495080

2 International Journal of Reconfigurable Computing

2. Problem of Scheduling and Placement in
Dynamic Reconfigurable Devices

Theproposed online placement systemmodel consists of host
CPU and partially reconfigurable FPGA. The reconfigurable
resources on FPGA are a set of CLB organized in a two-
dimensional array. The placement module running on the
host CPU consists of a scheduler, a placer, and a loader. The
scheduler determineswhich of the tasks in themodule library
should be loaded and executed next. The placer will manage
free space and find out the optimum placement for the task.
The loader loads the configuration data of tasks in the FPGA.
When a task is completed the resources occupied by it will be
released.

The system assumes that the tasks arrive online. As long
as free area is available in the FPGA, the incoming task will be
placed in an unoccupied area on the FPGA. If there is no free
space and the task cannot be delayed, then the task is rejected.
A good placement algorithm should reduce rejection rate.

The tasks are nonpreemptive. Once a task is loaded
into the FPGA, it runs to termination. The tasks should
be independent without any precedence constraints. These
task parameters are defined as follows: for a task 𝑡

𝑖
=

(ℎ
𝑖
, 𝑤
𝑖
, 𝑎
𝑖
, 𝑠
𝑖
, 𝑑
𝑖
, 𝑥
𝑖
, 𝑦
𝑖
), ℎ
𝑖
and 𝑤

𝑖
represent its height and

width, respectively, and are measured in number of cells and
𝑎
𝑖
, 𝑠
𝑖
, and 𝑑

𝑖
are the task arrival time, execution time, and

deadline time. The rectangular area is assigned to the task by
its top left corner (𝑥

𝑖
, 𝑦
𝑖
) where 𝑥

𝑖
is the row number and 𝑦

𝑖

is the column number. The size, arrival time, execution time,
and deadline are uniformly distributed in a predefined region
and a priori unknown.

3. Related Works

Bazargan et al. [1] proposed an algorithm for managing free
space by keeping track of nonoverlapping rectangles. The
main disadvantage is that the number of empty rectangles
produced quickly increases with more task insertions. This
can lead to some tasks being rejected even though there
is adequate space to accommodate them but this space is
divided between two nonoverlapping rectangles. To solve this
problem, they presented the idea of allowing overlapping
of the empty rectangles, specifically overlapping maximal
empty rectangles MERs. For 𝑛 tasks, we can have 𝑂(𝑛)
nonoverlapping rectangles and, in the case of MERs, we can
have 𝑂(𝑛2) rectangles.

Walder et al. [2] proposed three partition algorithms
based on Bazargan method: enhanced Bazargan, on the
fly, and enhanced on the fly. The third is based on a 2D
hashing table to find a feasible task placement with a run
time complexity of 𝑂(1), but they did not account for
reconfiguration time and also they did not account for the
update time needed to update the hashing table.

Ahmadinia et al. [3–6] proposed horizontal line algo-
rithm in which two horizontal lines are used: one above
and another below the placed tasks. They also presented a
free space management based on the contour of the union
of rectangles algorithm. Handa and Vemuri [7–9] proposed

staircase algorithm for finding themaximal empty rectangles.
The bottleneck is time for constructing staircase and finding
MERs. Tabero et al. [10–12] used vertex lists to store free
space where each vertex is a possible location for an input
task. Tomono et al. [13] proposed a method in which module
connectivity to the remainder of the system is taken into
account. Jin et al. [14] proposed a set of algorithms called
scan line algorithm. But finding maximum key elements
and the MER is time consuming. Marconi et al. [15, 16]
proposed an intelligent merging technique to speed up
Bazargan algorithm without losing its placement quality. It
is a combination of three techniques selected based on the
task characteristics.The techniques are as follows: merge only
if needed, partial merging, and direct combine. Deng et al.
[17] proposed an algorithm which packs tasks densely called
2D and 3D adjacency method. Lee et al. [18, 19] proposed a
CLook and CSAF method, also multistrategy fit algorithm.
Bassiri and Shahhoseini [20] considered reconfiguration time
by classifying tasks into significant or nonsignificant. Steiger
et al. [21–23] proposed stuffing techniques for combined
placement and scheduling. Belaid et al. [24] proposed an
offline algorithm for placement of tasks. ELfarag et al. [25]
and Esmaeildoust et al. [26] proposed various fragmentation
aware techniques. Lu et al. [27, 28] proposed flow scan
algorithm for placement of online tasks.

4. Proposed Work

The proposed work is based on a novel representation for
vacant space inside FPGA. A data structure called run-length
matrix has been introduced to describe the FPGA area. Run-
length representation consists of a list of tuples. Each tuple
(𝑚, 𝑛) indicates an empty slot where𝑚 and 𝑛 are the starting
location and size of empty slot, respectively. In Figure 1, the
area inside the dark shaded box indicates the task already
placed. In this figure, three tasks 𝑇

1
, 𝑇
2
, and 𝑇

3
are already

placed at locations 12, 54, and 24, respectively, on an FPGA
of size 8 × 8. The remaining free area can be described using
free space run-length matrix as shown below:

FRL = {(0, 12) , (16, 8) , (32, 16) , (56, 8)} . (1)

This representation is possible, because the FPGA cells
are labeled using reflected binary gray space filling curve.
This space filling curve has excellent spatial locality property.
Therefore, when this array is mapped into one-dimensional
array the run-length representation will be very compact.
Secondly, the size of this depends only on the fragmentation
level. The size of run-length list is independent of size of
FPGA and the number of tasks running.

The width and height of the incoming task is assumed
to be even. The algorithm first scans the run-length and
identifies probable candidates for placement. For example, if
the incoming task size is 4 × 4, it will first search the run-
lengthmatrix list for vacant space of 16 ormore cells.The idea
is that a 4 × 4 task placed at this location will occupy a single
contiguous region. If it is not able to find such a location,
then it will try to obtain a location which is a multiple of 8
and selected regions can be represented by two regions of 8

International Journal of Reconfigurable Computing 3

00

01 02

03

04

0506

07 08

0910

11

12

13 14

15

16

17
18

19

20

21 22

23
24

25 26

27

28

29

39

30

31 32

33

34

35

36

37 38

40

41 42

43

44

4546

47

48

49 50

51

52

5354

55 56

5758

59

60

61 62

63

T2

T1

T3

AB

Figure 1: FPGA with some tasks already placed.

cells which are adjacent in 2D and so on. In order to avoid
checking the same place again and again in the same instance
the checked locations are stored in a list. For each probable
location, the algorithm extracts a region of width and height
equivalent to the incoming task (in this example 4×4). The
region can be slided in the horizontal and vertical direction
to get other possible locations. The extracted regions are
analyzed to check whether they are vacant. In the above
example, the algorithm finds two positions for placing the
incoming task shown as A and B, in Figure 1. For placing at
A, we need vacant space (32, 16) and placing at B requires
vacant space TRL = {(16, 8), (40, 8)}. Based on resulting
fragmentation one among these will be selected for placing
the incoming task. If location A is selected, the FRL will be
updated to {(0, 12), (16, 8), (56, 8)}.

Let 𝑟 and 𝑐 indicate the row and column of the candidate
location cell 𝑋. Loop can be U shaped or inverted U shaped.
Loop direction can be explored by checking the position
of 𝑋 + 1 and 𝑋 + 3 using a look up reflected binary gray
matrix. Each loop will have an entry which can be vertical or
horizontal. This can be found by examining row and column
of 𝑋 − 1 cell. The U shaped loops at locations 12 and 48
have vertical entry of distance 4 and 8 rows, respectively.
U shape loops at 24 and 40 have horizontal entry of length
4 column place. Similarly, we have inverted U loop with
vertical entry at 16, 44, and so forth and horizontal entry
at 32 and 56, respectively. This information will be useful
while sliding task. When the task 𝑇

1
placed at position 12 get

expired, here, again we find the blocks to be removed TRL =
{(12, 4), (48, 4)}. The run-length matrix will be updated as
follows FRL = {(0, 24), (56, 8)}.

In algorithms based on area matrix methods, whenever a
new task is added or deleted the cells have to be recalculated.
This takes a considerable amount of time. The run-length
will be smaller in size (worst case will be one eighth of the

number of CLB’s) and hence less number of entries only need
to be checked. Updating the run-length is also having less
complexity.

The quality of placement algorithm can be improved by
finding all feasible solutions and then selecting one based
on fragmentation. Best fit finds the fragmentation index of
all the feasible solutions and place the task in a position
that reduces the resulting fragmentation. Due to the run-
length representation, we make use of a new method to
measure continuity of free space. Compared to othermethods
proposed in literature, this is faster and gives better results.
Fragmentation is calculated using the method given by Gehr
and Schneider [29]. Consider

𝐹 = 1 −
∑
𝑛

𝑖=1
𝑓𝑖
𝑝

(∑
𝑛

𝑖=1
𝑓𝑖)
𝑝
𝑝 = 1, 2, . . . , 𝑛. (2)

Here, 𝑝 is taken as 2. If the entire space is free, then
fragmentation will be 0. In the worst case of checkerboard
pattern, it will be almost 1.

The first fit method tries to place task in the first available
location that can accommodate the incoming task. Best fit
tries to fix the task in a place which reduces the overall
fragmentation. It does not guarantee optimal results because
it is a heuristic and the future inputs are unpredictable.

Mapping a task with odd dimension on to a reflected
binary gray space will increase the fragmentation. To reduce
complication, we consider the size of the task as the nearest
even number.Therefore, the allotted space for the task will be
slightlymore than actual space required.This leads to internal
fragmentation. In this paper, the tasks are assumed to have
even tasks. The pseudocode is given below:

Input: incoming task 𝑡
𝑖
, Free space run-length FRL

Set Best frag = 1, found= 0; Select 𝑛 such that 2𝑛 ≤ 𝑤∗
ℎwhere𝑤 and ℎ are width and height of the incoming
task.
While 𝑛 > 0 do
Check FRL for a vacant space of size more than 2𝑛

Find a feasible location G inside the vacant space.
Select a region sufficient to occupy the incoming task
and including G and represent it in run-length form
TRL.
Try to insert TRL into FRL.
If any task already existing or the region exceeds
FPGA boundary this will fail.
If fail then slide the region and try previous two steps.
If there is no overlap then insertion is success. If First
fit then report G as the location for the incoming task
and quit. If best fit algorithm update best frag if the
new fragmentation is low, set found = 1 and continue.
If success or fail that location will be stored in a list to
avoid checking the same location again
Decrement 𝑛.
If found = 1

4 International Journal of Reconfigurable Computing

Report the location of the incoming task

else

Return fail

end

4.1. Complexity Analysis. Let 𝑚 be number of empty slots in
FRL and let 𝑔 be the number of blocks to be inserted as in
TRL. To find out the number of empty slots examined by
the algorithm to place all the tasks, we consider the worst
case which occur when the placed task splits the empty slot
into two. Suppose all the blocks come inside the last slot. We
examine 𝑚 − 1 slots for fixing the blocks. While examining
the 𝑚th slot, we place the first block creating new slot. We
place the second block in this new slot creating another
slot and so on. Therefore, by placing 𝑔 blocks, we generate
𝑔 new slots. Therefore, the total number of slots becomes
𝑚 + 𝑔 of which the last slot created need not be examined
to place task because all the 𝑚 blocks have been placed.
Hence, the loop needed to be run only up to a maximum of
𝑚+𝑔− 1 iterations. For best case loop needed to be run only
𝑔 iterations. Complexity of finding fragmentation is 𝑂(𝑚).
The clustering property assures that 𝑔 and 𝑚 will be small.
Selecting regions and representing them into run-length are
having complexity 𝑂(1). Worst case complexity of sliding of
the region is 𝑂(𝑤 × ℎ) but 𝑤 and ℎ are width and height of
incoming task and are small compared to size of FPGA.

To show that size of 𝑔 is small, we calculated the size
of TRL for blocks of all possible widths and heights on all
possible locations. A histogram in Figure 2 is plotted for a
16 × 16 FPGA based on the size of TRL. From the figure, it
is clear that in 90% of cases the size of TRL will be less than
5 and the average value is 3.905. This is true for bigger FPGA
also. The maximum TRL size for a 8 × 8, 16 × 16, and 32 × 32
block on a 64 × 64 FPGA are 10, 22, and 46, respectively.

5. Experimental Setup

Simulation framework has been done using Matlab 7.8 run-
ning on 2.2GHz Intel core i3 processor. The simulation is
done using randomly generated data for evaluating the algo-
rithm.This has been done in the past, because it is impossible
to generate real data for future technological advancement.
In this section, we present two methods: the first one is a
fast placement (GFF) and the other is a fragmentation aware
placement technique (GBF). These techniques are compared
with standard placement techniques like bottom left, 2D
adjacency based placement, least interference fit technique,
and CLook algorithm. Bottom left (BL) is a classical bin
packing algorithmwhich places the incoming task first empty
slot available starting from bottom left corner of the FPGA.
2D adjacency based technique (Deng) chooses the location
of the incoming tasks to make tasks placed “densely,” in
order to have a larger continuous free area remains. The
2D adjacency of a candidate cell is equal to the number of
adjoining tasks/boundaries of the incoming task, if the base
cell of the incoming task is placed here.The least interference
technique (LIF) will select a location which minimizes the

0.00
20.00
40.00
60.00
80.00

100.00
120.00

1 2 3 4 5 6 7 8 9 10

To
ta

l t
es

t c
as

es
 (%

)

Task run-length (TRL) size

Cumulative number of test cases

Figure 2: Cumulative graph of distribution of TRL size.

number of columns disturbed to minimize the number of
running tasks getting halted during reconfiguration. CLook
method is explained in Trong [14].

In order to evaluate the effectiveness of algorithm, simula-
tion is performed for an FPGAwith 16×16, 32×32, and 64×64
CLBs.The space filling curve requires the FPGA to be square
shaped with dimension as a power of two. To demonstrate
the impact of rejection rate on various parameters, we have
used 16 × 16 FPGA. This model is adopted because the
previous studies most relevant to this work used FPGA of
similar size for their simulations and the space filling curve
works on surface with size power of two. Sixty sets of 500
tasks each are randomly generated for each experimental
environment and the results shown in the next section are
the average over these sets. The height and width of the tasks
are chosen randomly between 1 and a maximum value of 8
CLBs.The lifetime of the tasks is generated randomly between
1 and 500 time units. Delay between two consecutive tasks
is also chosen between 1 and user defined 𝐿 time units. The
workload can be controlled using different upper bound 𝐿. A
smaller 𝐿means that the tasks arrivals aremore frequent, and
FPGA area utilization is higher. All parameters are assigned
by sampling a uniform random distribution function in their
respective validity intervals.The proposed work uses a simple
scheduling algorithmwhich can place task from awaiting list.
The experiment was repeated for 32× 32 and 64× 64 size and
the result seems to be similar and run-length size does not
increase as FPGA is scaled.

The following assumptions are used in this work. The
tasks are independent and preemptive. Preemptive tasks once
started cannot be stopped before its expiry. Due to this,
relocation of tasks is also not permitted. Since the tasks are
independent, they can be scheduled in any order. Rotation of
task is not used.

The following parameters are measured to test the effec-
tiveness of the proposed algorithm. Suppose during the
simulation interval [0, 𝑇], 𝑁 tasks arrived and 𝑛 tasks were
rejected. For a reconfigurable area of size 𝑊 ∗ 𝐻, consider
the following:

(1) average task rejection ratio: a task may be rejected
placement, if sufficient contiguous area is not avail-
able currently and it cannot meet its deadline, if
scheduled at a later time:

Average task rejection ratio = 𝑛
𝑁
∗ 100%; (3)

International Journal of Reconfigurable Computing 5

2

56

3947
45
53 33

3

411
58

44

35

42

48

10

51 5

15
17

18

19 23

20

11

54

25
7

8
14

13

21

24

6050403020100

60

50

40

30

20

10

0

rejected ⇒ 13Number of tasks which got

Figure 3: FPGA snapshot while placing tasks.

0
2
4
6
8

10
12
14
16
18

5 10 20 30 40

Re
je

ct
io

n
ra

tio
 (%

)

Large sized task in the dataset (%)

Rejection ratio versus size of tasks

GFF
GBF
Deng

BL
Clook
LIF

Figure 4: Variations of rejection rate with respect to percentage of
large sized task in the dataset.

(2) total waiting time for tasks: if the online placement
cannot find a feasible space the task will be added to
a waiting list; when some task that is currently
running is completed, the new space will be created
and the waiting list will be examined to place tasks
that can meet the deadline:

Average area utilization =
∑
𝑁−𝑛

𝑖
𝐸
𝑖
∗𝑊
𝑖
∗ 𝐻
𝑖

𝑇 ∗𝑊 ∗𝐻
. (4)

Penalty ratio is the ratio of volume of rejected task to the
total volume of all tasks. When a task gets rejected, the total
free area in reconfigurable device is called wasted area. Good
placement algorithm will have more utilization, less penalty
ratio, less waste area, and less rejection ratio.

6. Results and Discussion

In this section, snapshot of simulation results of output at
particular instance is shown in Figure 3. The coloured boxes
correspond to tasks that are currently running.

GFF
GBF
Deng

BL
Clook
LIF

0.00
10.00
20.00
30.00
40.00
50.00
60.00
70.00

20 15 10 5

N
um

be
r o

f t
as

ks
 re

je
ct

ed

Intertask arrival time range as a percentage of execution
time range (%)

Rejection rate versus load

Figure 5: Rejection ratio for different values of load.

0
2
4
6
8

10
12
14

0.1 0.2 0.3 0.4

Re
je

ct
io

n
ra

tio
 (%

)

Slack as a percentage of execution time range (%)

Rejection ratio versus slack

GFF
GBF
Deng

BL
Clook
LIF

Figure 6: Rejection ratio decreases with increase in slack.

A task that has been completed is not shown. The
white region indicates empty region which is already getting
fragmented due to placement and removal of tasks. The
experiment is also repeated with skewed probability distribu-
tion of task’s width and height to study the impact of task size
on placement quality. Our placement method matches result
with conventional methods. The rejection rate was more for
the larger sized task as shown in Figure 4.

In the next experiment the intertask arrival time varied
from 5% to 20% of execution time range. The rejection rate
also increases with decrease in intertask arrival time range.
When tasks arrive in quick succession, then more numbers
of tasks will be running on the FPGA leaving less room for
the newly arriving tasks. This is illustrated in Figure 5.

In order to examine the impact of deadline on the
performance, we repeated the experiments with different
values of slack.The deadline is calculated as the sumof arrival
time, execution time, and slack.

When the deadline is tight, then more tasks get rejected.
If the deadline is loose, then tasks can wait till their ALAP
time and get placed whenever a free slot is available. When
slack becomes very large, then none of the tasks gets rejected.

6 International Journal of Reconfigurable Computing

Table 1: Utilization factor average waiting time and execution time.

16 × 16 32 × 32 64 × 64
Time (sec) Rej Wait Util (%) Time Rej Util (%) Time Rej Util (%)

GFF 1.54 1.8 934 36.4 1.48 0 9 1.487 0 2.28
GBF 1.54 1.8 934 36.4 1.48 0 9.15 1.493 0 2.28
BL 0.173 5.6 1597 36 0.156 0 9.15 0.150 0 2.28
Deng 0.547 5.4 963 36 0.59 0 9.15 0.83 0 2.28
Clook 2.2 4 819 36.24 14.63 0 9.15 108.7 0 2.28
LIF 0.40 5.6 1530 35.9 0.54 0 9.15 0.829 0 2.28

Table 2: Performance metric for RBG code in first fit mode.

GFF algorithm AT seconds ARej Await Autil (%) APen (%) Awaste FRL size TRL size
Load40 0.62 0 0 27.27 0 0 46.81 3.95
Load30 0.67 0.2 2.4 33.94 0.17 0 58.87 3.84
Load20 2.47 11 228 46.40 3.8 1614 78.86 3.93
Load15 8.33 46.6 887 53.7 16.33 1576 89.44 3.75
Load10 17.57 91.4 1457 57.7 32.7 1447 96.67 3.65
Load05 32.09 169 1452 59.35 59.37 1196 96.19 3.15

Again the proposed method matches with existing methods
as shown in Figure 6. Other results show that the average
utilization for the reflected binary grey method is marginally
better with lesser execution time than others.

Table 1 gives the performance of various algorithms. The
waiting time is zero for 32 × 32 and 64 × 64 FPGA hence is
not shown in the table. Even though BL, Deng, and LIF seem
to be faster, their speed reduces when the size of the FPGA
is increased. CLook has more execution time but its rejection
rate performance is better than others.Theproposedmethods
have rejection rate performance equal to CLook algorithm
with faster execution time. Another feature of the proposed
technique is that the execution time increases less rapidly
when the FPGA size is scaled up. For CLook, the time taken
will be very slow for bigger FPGAs.

Table 2 lists average algorithm execution time, average
number of tasks rejected, average waiting time for the tasks,
average utilization ratio, average penalty ratio, average waste
area, average size of FRL, and average size of TRL obtained
by simulating a 64 × 64 FPGA. The test dataset load05
means that the intertask time interval is [1 to 5] time units.
Results show that the utilization ratio increases with load but
flattens beyond some particular value. Waste area decreases
with increase in utilization ratio. Waiting time, algorithm
execution time, and average wait time increases with increase
in load. Another important finding is that the average size of
FRL and task run-length (TRL) are very small even though
their theoretical values are high.

7. Conclusions

In this paper, a new approach for scheduling and placement
of task on a dynamic reconfigurable device based on reflected
binary gray space filling curvemethod is being presentedwith
the goal of minimizing task rejection ratio and increasing

FPGA utilization. The free space is managed as one-
dimensional run-length based representation. Also, a new
method to find the fragmentation is used.The algorithm does
not consider routability, I/O communication, and heteroge-
neous FPGA. The algorithm can be improved to reduce the
total reconfiguration overhead by reusing some of the task
locations. Hence tremendous opportunities exist for research
in this area.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

The authors thank the SKCT management and acknowledge
the immense help received from the scholars whose articles
are cited and included in references of this paper.The authors
are also grateful to authors/editors/publishers of all those
articles, journals, and books fromwhere the literature for this
paper has been reviewed and discussed.

References

[1] K. Bazargan, R. Kastner, and M. Sarrafzadeh, “Fast template
placement for reconfigurable computing systems,” IEEE Design
and Test of Computers, vol. 17, no. 1, pp. 68–83, 2000.

[2] H. Walder, C. Steiger, and M. Platzner, “Fast online task
placement on FPGAs: free space partitioning and 2D-hashing,”
in Proceedings of the International Parallel and Distributed
Processing Symposium (IPDPS ’03), p. 178, IEEE-CS Press, 2003.

[3] A. Ahmadinia and J. Teich, “Speeding up on-line placement
for Xilinx FPGA by reducing configuration overhead,” in
Proceedings of the International Conference on Very Large Scale

International Journal of Reconfigurable Computing 7

Integration of System on Chip (VLSI-SoC ’03), pp. 118–122,
Bavaria, Germany, December 2003.

[4] A. Ahmadinia, C. Bobda, M. Bednara, and J. Teich, “A new
approach for on-line placement on reconfigurable devices,” in
Proceedings of the 18th International, Parallel and Distributed
Processing Symposium (IPDPS ’04), pp. 134–140, 2004.

[5] A. Ahmadinia, C. Bobda, and J. Teich, “A dynamic scheduling
and placement algorithm for reconfigurable hardware,” in
Proceedings of the International Conference on Architecture of
Computing Systems (ARCS ’04), pp. 125–139, 2004.

[6] A. Ahmadinia, C. Bobda, S. P. Fekete, J. Teich, and J. C.
van der Veen, “Optimal free-space management and routing-
conscious dynamic placement for reconfigurable devices,” IEEE
Transactions on Computers, vol. 56, no. 5, pp. 673–680, 2007.

[7] M. Handa and R. Vemuri, “An integrated online scheduling
and placementmethodology,” inProceedings of the International
Conference on Field Programmable Logic and Application, pp.
444–453, Leuven, Belgium, August 2004.

[8] M. Handa and R. Vemuri, “Area fragmentation in reconfig-
urable operating systems,” in Proceedings of the International
Conference on Engineering of Reconfigurable Systems and Algo-
rithms, pp. 77–83, CSREA, June 2004.

[9] M. Handa and R. Vemuri, “An efficient algorithm for finding
empty space for online FPGA placement,” in Proceedings of the
41st Design Automation Conference (DAC ’04), pp. 960–965,
June 2004.

[10] J. Tabero, J. Septién, H. Mecha, and D. Mozos, “Task placement
heuristic based on 3D-adjacency and look-ahead in reconfig-
urable systems,” in Proceedings of the Asia and South Pacific
Design Automation Conference, pp. 396–401, January 2006.

[11] J. Tabero, J. Septién, H. Mecha, and D. Mozos, “A low fragmen-
tation heuristics for task placement in 2D RTR hardware man-
agement,” in Proceedings of the 14th International Conference on
Field Programmable Logic and Application (FPL ’04), Lecture
Notes in Computer Science, pp. 241–250, Leuven, Belgium,
September 2004.

[12] J. Tabero, J. Septien, H. Mecha, and D. Mozos, “Vertex list
approach to 2DHWmultitaskingmanagement in RTRFPGAs,”
in Proceedings of the Conference on Design of Circuits and
Integrated Systems (DCIS ’03), pp. 545–550, Ciudad Real, Spain,
November 2003.

[13] M. Tomono, M. Nakanishi, S. Yamashita, K. Nakajima, and
K. Watanabe, “A new approach to online FPGA placement,”
in Proceedings of the 40th Annual Conference on Information
Sciences and Systems (CISS ’06), pp. 145–150, Princeton, NJ,
USA, March 2006.

[14] C. Jin, D. Qingxu, H. Xiuqiang, and G. Zonghua, “An efficient
algorithm for online management of 2D area of partially recon-
figurable FPGAs,” in Proceedings of the Design, Automation and
Test in Europe Conference and Exhibition (DATE ’07), pp. 1–6,
April 2007.

[15] T.Marconi and T.Mitra, “A novel online hardware task schedul-
ing and placement algorithm for 3D partially reconfigurable
FPGAs,” in Proceedings of the International Conference on Field-
Programmable Technology (FPT ’11), pp. 1–6, New Delhi, India,
December 2011.

[16] T. Marconi, Y. Lu, K. Bertels, and G. Gaydadjiev, “Intelligent
merging online task placement algorithm for partial recon-
flgurable systems,” in Proceedings of the Conference on Design,
Automation and Test in Europe (DATE ’08), pp. 1346–1351,
March 2008.

[17] Q. Deng, F. Kong, N. Guan, L. Mingsong, and W. Yi, “Online
placement of real time tasks on 2D partially run time recon-
figurable FPGAs,” in Proceedings of the 5th IEEE International
SymposiumonEmbeddedComputing (SEC ’08), pp. 20–25, 2008.

[18] T.-Y. Lee, C.-C. Hu, and C.-C. Tsai, “Adaptive free space
management of online placement for reconfigurable systems,”
in Proceedings of the International MultiConference of Engineers
and Computer Scientists (IMECS ’10), vol. 1, pp. 322–326, Hong
Kong, March 2010.

[19] T. Y. Lee, C. C. Hu, and C. C. Tsai, “Multi-strategy online
placement for dynamically partial reconfigurable device,” in
Proceedings of the International Conference on High-Speed Cir-
cuits Design, pp. H-20–H-26, October 2009.

[20] M. M. Bassiri and H. S. Shahhoseini, “A new approach in on-
line task scheduling for reconfigurable computing systems,”
in Proceedings of the 21st IEEE International Conference on
Application-Specific Systems, Architectures and Processors, pp.
321–324, July 2010.

[21] C. Steiger, H. Walder, and M. Platzner, “Operating systems for
reconfigurable embedded platforms: online scheduling of real-
time tasks,” IEEE Transactions on Computers, vol. 53, no. 11, pp.
1393–1407, 2004.

[22] C. Steiger, H. Walder, M. Platzner, and L. Thiele, “Online
scheduling and placement of real-time tasks to partially recon-
figurable devices,” in Proceedings of the 24th IEEE International
Real-Time Systems Symposium (RTSS ’03), pp. 224–235, Cancun,
Mexico, December 2003.

[23] C. Steiger, H. Walder, and M. Platzner, “Heuristics for online
scheduling real-time tasks to partially reconfigurable devices,”
in Proceedings of the 13th International Conference on Field
Programmable Logic and Application (FPL ’03), pp. 575–584,
Lisbon, Portugal, September 2003.

[24] I. Belaid, F. Muller, and M. Benjemaa, “Off-line placement of
hardware tasks on FPGA,” in Proceedings of the 19th Interna-
tional Conference on Field Programmable Logic and Applications
(FPL ’09), pp. 591–595, Prague, Czech Republic, September
2009.

[25] A. A. Elfarag, H. M. El-Boghdadi, and S. I. Shaheen, “Fragmen-
tation aware placement in reconfigurable devices,” in Proceed-
ings of the 6th IEEE International Workshop on System on Chip
for Real Time Applications (IWSOC ’06), pp. 37–44, December
2006.

[26] M. Esmaeildoust, M. Fazlali, A. Zakerolhosseini, and M.
Karimi, “Fragmentation aware placement algorithm for a
reconfigurable system,” in Proceedings of the 2nd International
Conference on Electrical Engineering, pp. 1–5, March 2008.

[27] Y. Lu, T. Marconi, G. Gaydadjiev, and K. Bertels, “An on-line
task placement algorithm for partially reconfigurable systems,”
in Proceedings of the Architecture and Compiler for Embedded
Systems (ACES ’07), Edegem, Belgium, September 2007.

[28] Y. Lu, T. Marconi, G. Gaydadjiev, and K. Bertels, “An efficient
algorithm for free resources management on the FPGA,” in
Proceedings of the Conference on Design, Automation and Test
in Europe (DATE ’08), pp. 1095–1098,Munich, Germany,March
2008.

[29] J. Gehr and J. Schneider, “Measuring fragmentation of two-
dimensional resources applied to advance reservation grid
scheduling,” in Proceedings of the 9th IEEE/ACM International
Symposium on Cluster Computing and the Grid (CCGRID ’09),
pp. 276–283, May 2009.

International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at
http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of

