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ABSTRACT
This paper deals with the problem of automatic fairing of

two-parameter B-Spline spherical and spatial motions. The con-
cept of two-parameter freeform motions brings together the no-
tion of the analytically determined two-parameter motions in
Theoretical Kinematics and the concept of freeform surfaces in
the field of Computer Aided Geometric Design (CAGD). A dual
quaternion representation of spatial displacements is used and
the problem of fairing two-parameter motions is studied as a
surface fairing problem in the space of dual quaternions. By
combining the latest results in surface fairing from the field
of CAGD and computer aided synthesis of freeform rational
motions, smoother (C3 continuous) two-parameter rational B-
Spline motions are generated. The results presented in this
paper are extensions of previous results on fine-tuning of one-
parameter B-spline motions. The problem of motion smooth-
ing has important applications in the Cartesian motion planning,
camera motion synthesis, spatial navigation in visualization, and
virtual reality systems. Several examples are presented to illus-
trate the effectiveness of the proposed method.

1 INTRODUCTION
Devising a smooth motion is an important problem in carte-

sian motion planning, camera motion synthesis, spatial naviga-
tion in visualization, animation, and virtual reality systems. Gen-
erally in these applications, it is harder to construct an ab initio
1
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motion free of undesired discontinuities. To overcome this prob-
lem, six DOF rigid body samples of orientation and translation
are taken from a real world motion and then these samples are
interpolated or approximated to synthesize a motion. However,
due to sensing errors incurred during the sampling process, an
acceptable reconstruction of the motion is hard to achieve. There
are also situations when even if originally motion can be syn-
thesized using keyframe editors, the constructed motion possess
jerkiness and the speed variations are unacceptable. This necessi-
tates that the constructed motion be smoothed (or, faired), either
globally or locally, within specified constraints.

Smoothing of a rigid body motion consists of smoothing
two components of spatial displacement – rotation and trans-
lation. However, smoothing of the two components is depen-
dent on their mathematical representation. Translation, as an el-
ement of vector space, can be faired using well-known curve-
fairing techniques from CAGD (Farin [1], Farin et al. [2], Sa-
pidis and Farin [3], Kjellander [4]). Rotation as an element of
SO(3) have had representation issues – using Euler angles gives
rise to the Gimbal lock problem (Kane [5]) while in the matrix
form orthogonality is hard to preserve during the interpolation
process (Fillmore [6], Roschel [7]). Quaternion representation
of rotation (Bottema and Roth [8]) is widely recognized to be
an effective way of dealing with the aforementioned problems
(Shoemake [9], Nielson and Heiland [10], Nielson [11], Kim and
Nam [12], Kim et al. [13]).

A much more elegant representation of spatial displace-
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ments is obtained by combining translation and rotation using
Dual Quaternion (McCarthy [14], Ge and Ravani [15]), which
is a slightly modified version of Study’s Soma parameters (Bot-
tema and Roth [8], Study [16]). It is this representation that we
use in this paper. Juttler [17], Juttler and Wagner [18], and Wag-
ner [19, 20] also used a quaternion based representation by es-
sentially treating translation and rotation separately.

There has been a great deal of research on the problem
of motion synthesis, which is defined as the problem of de-
signing an approximation or interpolation to a given set of 6
DOF displacements (translation and orientation). Ge and Ra-
vani [15, 21, 22] developed a new framework for geometric con-
structions of spatial motions by combining the concepts from
Kinematics and CAGD. Purwar and Ge [24] used dual numbers
as the ambient scalars of such spatial motions to wrest finer con-
trol over the synthesis of such motions. Juttler [17], Juttler and
Wagner [18], and Wagner [19,20] provided a rich set of tools and
algorithms for motion design.

Despite these advances in the motion synthesis field, there
has been much less research on the motion fairing problem.
Srinivas and Ge [25] fine tuned rational B-spline motions by fine-
tuning rational curves in its ambient projective dual three-space.
They provided algorithms for both path and speed smoothing,
which automatically removed the third order discontinuities in
the path of a cubic B-spline curve in the Image Space and also
obtained a near constant kinetic energy paramterization for the
speed smoothing algorithm. In the intervening years, a few re-
searchers have used various techniques to smooth out the motion
– Fang et al [26] used a lowpass filter coupled with an adaptive,
meadiative filter for angular velocities to achieve smooth rota-
tion; Lee and Shin [27] used an algorithm that iteratively mini-
mizes the energy function reflecting the forces and torques, ex-
erted on a moving object; Kim et al. [28] improved upon the
previous algorithm by minimizing the weighted sum of strain-
energy and the sum of square errors (SSE). There is a wealth
of signal processing methods available for noise-removal but
due to the non-linear nature of orientation space, they are not
directly applicable. Lee and Shin [29] took this approach by
first transforming the orientation data into their counterparts in
a vector space, and then applied a Convolution Filter to it be-
fore transforming it back to the orientation space. More re-
cently, Hsieh [30, 31] used wavelets based approach and Hsieh
and Chang [32] used genetic algorithms to do motion fairing.

The idea of motion synthesis and fairing discussed so far
concerns itself with the usual sense of Kinematics’ definition of
one-parameter motion, in which the position of a moving ob-
ject depends on a single parameter, most often identified with the
time t. The trajectory generated by a moving point, line, or plane
is a curve, ruled surface, or a developable surface respectively.
Bottema and Roth [8] studied the kinematics of analytically de-
fined n-parameter motions. Kinematics of multi-degree of free-
dom motions constrained by mechanical joints have been investi-
2
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gated in the field of Robotics (see Angeles [33] and Gupta [34]).
For a two-parameter motion, the locus of a point is, in general, a
surface, called its trajectory surface; that of a line is its trajectory
congruence; and that of a plane is the set of tangent planes of a
surface, enveloped by the plane. Ge and Sirchia [35] studied the
problem of computer aided geometric design of two-parameter
freeform motions by combining CAGD methods with the kine-
matics of two-parameter motion. One of the motivations for
studying two-parameter freeform motions is to develop a kine-
matics based approach to geometric shape design and 5-axis NC
tool path planning (Ge [36], Zhang et al. [37]).

If the problem of one-parameter motion fairing maps nat-
urally to the fine tuning of rational curve in projective dual
three-space, the problem of two-parameter motion fairing would
map to fine tuning of rational surface in projective space (Im-
age Space). In this paper, for the first time, we bring together
kinematic geometry of two-parameter B-Spline motions, com-
puter aided geometric design, and the fairing of surfaces (Kjel-
lander [38], Nowacki [39], Farin [1], Lott and Pullin [40]) to
develop an innovative method for fine tuning of two-parameter
B-Spline motions. We use an improved surface fairing technique
proposed by Hahmann [41] to do the fine tuning of the Dual
Quaternion Surface. In doing so, the algorithm automatically de-
tects and removes third order discontinuities in the Image Space
and elevate the continuity of the B-Spline motion from C2 to C3.

The rest of the paper is organized as follows. Section 2 dis-
cusses a few representation of spatial displacements with an em-
phasis on dual quaternion based representation that we use in this
paper. Section 3 presents the notion of two-parameter rational B-
Spline motion and discusses some of its properties. Section 4
presents a general overview of fine tuning two parameter rational
motion, while also giving a local fairness criterion and a surface
irregularity visualization technique called isophote. Section 5
and Section 6 present the algorithm for fine tuning of two para-
meter rational B-Spine spherical and spatial motion respectively
along with a few visualizations before concluding the paper.

2 REPRESENTATION OF SPATIAL DISPLACEMENTS
A spatial displacement of a rigid body is commonly repre-

sented by the following transformation of a moving frame M at-
tached to the moving body with respect to a fixed frame F at-
tached to the fixed space:

[
X
1

]
=

[
[R] |d
000| 1

][
x
1

]
. (1)

where [R] is an orthogonal matrix representing a rotation and
d is a vector representing a translation; X and x are vectors whose
scalar components are the Cartesian coordinates of the point as
Copyright c© 2005 by ASME

e: http://www.asme.org/about-asme/terms-of-use



Do
measured in F and M, respectively. The use of such matrix repre-
sentation, however, is not convenient when dealing with the prob-
lem of synthesizing a rational motion that interpolates or approx-
imates a set of displacements. One of the main obstacles is to the
issue of preserving the orthogonality of the rotation matrix in the
interpolation/approximation process (Fillmore [6], Roschel [7]).
In this paper, we use well established dual quaternion represen-
tation(Ge and Ravani [15]) for spatial displacements. In what
follows, we review the concepts of quaternions and dual quater-
nions in so far as necessary for the development of the current
paper.

2.1 Unit Quaternion as Rotation
For any rotation in Cartesian space, there exists an equiv-

alent rotation axis and the rotation angle about this axis. Let
s = (sx,sy,sz) denote a unit vector along the axis of the rotation
and θ denote the angle of rotation. The axis s and angle θ of
the rotation can be used to define the so-called Euler-Rodrigues
parameters.

q1 = sx sin(θ/2), q2 = sy sin(θ/2), q3 = sz sin(θ/2), q4 = cos(θ/2)

The Euler parameters and the quaternion units, 1, i, j,k can
be combined to define a quaternion of rotation:

Q = q1i+q2 j +q3k +q4. (2)

For more details on quaternion algebra, see Bottema and
Roth [8] or McCarthy [14]. Let x = (x1,x2,x3), and X =
(X1,X2,X3) denote Cartesian coordinates of a point before and
after a rotation respectively. They can be represented as vector
quaternions:

x = x1i+ x2 j + x3k, X = X1i+X2 j +X3k.

The coordinate transformation from x to X is represented by
the quaternion product:

X = QxQ−1, (3)

where Q−1 denotes the inverse of Q.

Q−1 = (q4/S2)− (q1/S2)i− (q2/S2) j− (q3/S2)k,

S2 = q2
1 +q2

2 +q2
3 +q2

4.
3
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When S2 = 1, a quaternion Q is called a unit quaternion and its
inverse Q−1 equals to its conjugate Q∗ = q4−q1i−q2 j−q3k.

We can relate the quaternion representation given by Eq.(3)
to the more familiar matrix form as

X = [R]x,

where the rotation matrix [R] is given by

[R] =
1
S2




q2
4 +q2

1−q2
2−q2

3 2(q1q2−q4q3) 2(q1q3 +q4q2)
2(q2q1 +q4q3) q2

4−q2
1 +q2

2−q2
3 2(q2q3−q4q1)

2(q3q1−q4q2) 2(q3q2 +q4q1) q2
4−q2

1−q2
2 +q2

3


 ,

(4)
It should be noted here that Q can also be treated as homo-

geneous coordinates of a rotation since multiplying each one of
the Euler-Rodrigues parameters by a scalar leaves the rotation
matrix [R] invariant.

2.2 Dual Quaternion as Spatial Displacement
For a general displacement in the Cartesian space E3, the

Eq. (3) can be extended naturally to accommodate translation as
follows:

X = QxQ−1 +d,

where d = d1i + d2 j + d3k is a vector quaternion correspond-
ing to the translation component, which is defined by the non-
homogeneous parameters (d1,d2,d3). The translation compo-
nent can be alternatively represented using homogeneous coor-
dinates D = (D1,D2,D3,D4), where

D1 = kd1, D2 = kd2, D3 = kd3, D4 = k.

This homogeneous representation of spatial displacements
was discussed by Ravani and Roth [23] in the context of kine-
matics mappings. The set of eight homogeneous parameters Q,
D has been used by Jüttler [17], Wagner [19, 20], and Jüttler
and Wagner [18], for computer-aided design of rational motions.
While this formulation allows direct application of the existing
CAGD techniques to motion design, the resulting motions are not
completely reference-frame invariant and depend on the choice
of the origins of the reference frames. In this paper, we do not
use this formulation but follow McCarthy [14] and Ge and Ra-
vani [15] and use a slightly modified version of Study’s Soma
parameters to represent the spatial displacements.

Study’s parameters are given by another set of eight homo-
geneous parameters (Q, Q0) where Q =(Q1,Q2,Q3,Q4) repre-
sents the quaternion of homogeneous Euler parameters of rota-
tion and Q0 = (Q0

1,Q
0
2,Q

0
3,Q

0
4) is another quaternion whose com-

ponents are given by
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Q0
1

Q0
2

Q0
3

Q0
4


 =

1
2




0 −d3 d2 d1
d3 0 −d1 d2
−d2 d1 0 d3
−d1 −d2 −d3 0







Q1
Q2
Q3
Q4


 . (5)

The translation vector d (d1,d2,d3) can be recovered from
Eq.(5) in terms of (Q, Q0) by using following

d = − 2
S2




Q0
4Q1−Q0

1Q4 +Q0
2Q3−Q0

3Q2
Q0

4Q2−Q0
2Q4 +Q0

3Q1−Q0
1Q3

Q0
4Q3−Q0

3Q4 +Q0
1Q2−Q0

2Q1


 . (6)

where S2 = Q2
1 +Q2

2 +Q2
3 +Q2

4.
Study’s parameters can also be written in dual quaternion

form as

Q̂ = Q+ εQ0 (7)

where ε is the dual unit with the property ε2 = 0 (see Bottema
and Roth [8] for details on dual number). In quaternion form,
Eqs. (5) and (6) can be written more concisely as follows, re-
spectively:

Q0 = (1/2)dQ, (8)

d =
(Q0)Q∗ - Q(Q0)∗

QQ∗ , (9)

where d is a vector quaternion, which has no scalar part, and
Q∗ = (−Q1,−Q2,−Q3,Q4) is the conjugate of Q such that
QQ∗ = Q2

1 + Q2
2 + Q2

3 + Q2
4. Note that Eq. (6) or Eq. (9) can

be used to recover d from Q and Q0 even when they do not sat-
isfy the well-known Plücker condition:

Q1Q0
1 +Q2Q0

2 +Q3Q0
3 +Q4Q0

4 = 0. (10)

However, when the dual quaternion components satisfy the
above Plücker condition, Eq. (9) reduces to the following well-
known equation
4
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d =
2(Q0)Q∗

QQ∗

which follows directly from Eq. (8).
It is instructive to note here that (Q, Q0) serve as homo-

geneous coordinates of spatial displacements since multiplying
them by a non-zero scalar yields the same rotation matrix and
translation vector d. Ravani and Roth [23] considered Q̂ =
(Q̂1, Q̂2, Q̂3, Q̂4) as a set of four homogeneous dual coordinates
that define a point in a projective dual three-space, called the Im-
age Space of spatial displacements. A curve in this projective
space corresponds to a one-parameter motion in Cartesian space
while a surface corresponds to a two-parameter motion. We de-
velop this notion further in the next section.

3 TWO-PARAMETER RATIONAL B-SPLINE MOTION
Given an (n + 1)× (m + 1) array of dual quaternions Q̂i, j,

we may define the following tensor-product B-Spline surface in
the space of dual quaternions:

Qn,m(u,v) =
n

∑
i=0

m

∑
j=0

Qi, jNn
i (u)Nm

j (v) (11)

Rn,m(u,v) =
n

∑
p=0

m

∑
q=0

Rp,qNn
p(u)Nm

q (v) (12)

where Qi, j is the real part of the dual quaternion Q̂n,m(u,v),
Rp,q is the dual part of the dual quaternion Q̂n,m(u,v).
Nn

i (u),Nm
j (v),Nn

p(u) and Nm
q (v) are B-Spline basis functions. The

dual quaternion surface,

Q̂n,m(u,v) = Qn,m(u,v)+ εRn,m(u,v)

represents the set of positions and orientations of an object that
belong to a two parameter B-Spline motion.

Two parameter B-Spline motions enjoy some properties as
follows:

Coordinate-frame invariance The representations of two pa-
rameter rational B-Spline motions in terms of dual quaternions
are invariant with respect to change of both the fixed and the
moving reference frames.
Copyright c© 2005 by ASME
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Convex hull property Like the B-Spline surfaces, the two pa-
rameter motions have the local convex hull property.

Bounded When u,v = 0,1, we obtain four one parameter mo-
tions, which may be referred to as boundary motions. Their B-
Spline control positions are given by the boundary control posi-
tions of the array (or net) of B-Spline control positions. In partic-
ular, the four corner positions of the B-Spline control net belong
to the two parameter motion.

Local control Moving a B-Spline control position changes the
motion locally only. This enables fine tuning of such motions
locally to get smoother motions.

A bi-variate equation of motion of a point in Cartesian space
can be obtained by recasting Eq. (1) in terms of dual quaternions
and subsequently substituting for the expressions of Qn,m(u,v)
and Rn,m(u,v) from Eq. (11) and Eq. (12).

P̃(u,v)= Q(u,v)PQ(u,v)∗+ p4[R(u,v)Q(u,v)∗−Q(u,v)R(u,v)∗]
(13)

where Q(u,v)∗and R(u,v)∗ are conjugate of Q(u,v) and R(u,v)
respectively and P̃ denotes homogeneous coordinates of a point
P:(p1, p2, p3, p4) of the object after the displacement. Equa-
tion (13) defines trajectory surface of the point P. A derivation of
the Eq. (13) is available in the Appendix of Purwar and Ge [24].

4 FINE TUNING TWO-PARAMETER RATIONAL B-
SPLINE MOTION
In the earlier sections, using the methods of CAGD, we es-

tablished the synthesis of a two-parameter B-Spline motion as
the construction of a surface in the projective space. Thus, the
fine tuning of a two-parameter motion can be construed as a sur-
face fairing step in projective space. In CAGD, the surface is
modeled as patches connected along their boundaries. The conti-
nuity of the patches at the boundaries determines the smoothness
of the surface. Continuity, characterized as the rth order deriva-
tive continuity (Cr), in turn depends on the order of interpolation
and the type of control desired.

Surfaces can be faired using fairness constraints or by per-
forming post-processing fairing. The former method usually in-
corporates a linearized physical based fairness criterion in the
interpolation or approximation. These methods which are usu-
ally non-linear in nature try to create fair shapes by minimizing
the energy of a curve or surface under given constraints. They
have been introduced for surfaces by Welch and Witkin [42].
Wesselink and Veltcamp [43] present variational modeling tech-
niques and tools for curves and surfaces. Greiner and Seidel [44]
discuss approaches for energy functionals used in minimization
methods. These methods produce fair and pleasant shapes but
5
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due to a global smoothing process the local control can not be
achieved.

The second method tries to remove unwanted surface wig-
gles by smoothing the control net, which defines the sur-
face(Kjellander [38]). It is a variation of this method that we em-
ploy in this paper. Our method is based on Hahmann [41]’s au-
tomatic, local, and efficient fairing method for bicubic B-Spline
surfaces. This method increases locally the smoothness of the
surface from C2 to C3. Hahmann’s algorithm is also flexible
since it allows for different fairing steps, permits localised fairing
process, and can impose tolerance control.

Fine Tuning Criteria
Given an (n+1)× (m+1) array of control points, a bicubic

B-Spline surface can be defined as:

X(u,v) =
n

∑
i=0

m

∑
j=0

di, jNi,4(u)N j,4(v), (14)

The knot sequences are as follows:

u = (ui)n+4
i=0 ; v = (v j)m+4

j=0

and

ui < ui+4, (i = 0,1, · · · ,n); v j < v j+4, ( j = 0,1, · · · ,m)

Hahmann [41] defines a fairing criterion as follows: “A
B-Spline surface X(u,v) of class C2 is fairer at the knot
[uk,vl ] , (k, l) ∈ I, if X is C3 at [uk,vl ] .”

Bicubic B-Spline surfaces have all mixed third order partial
derivatives (i.e. Xuνvµ with ν,µ≥ 1 ) continuous on the paramet-
ric domain Ω := [ui,ui+4]× [v j,v j+4] since a B-Spline surface is
at least C2 in either direction.

The sum of the difference of Xuuu in u-direction and Xvvv in
v-direction at the knot [uk,vl ] is defined to be the local fairness
measure.

Discontinuity vectors (Hahmann [41]) are given by:

∆uuu(uk,vl) = Xuuu(u−k ,vl)−Xuuu(u+
k ,vl)

= ∑m
j=0 d(3,0)

k−1, jN j,4(vl)−∑m
j=0 d(3,0)

k, j N j,4(vl)
= ∑k

i=k−4 ∑l−1
j=l−3 αi jdi j

∆vvv(uk,vl) = Xvvv(uk,v−l )−Xvvv(uk,v+
l )

= ∑n
i=0 d(0,3)

i,l−1Ni,4(uk)−∑n
i=0 d(0,3)

i,l Ni,4(uk)
= ∑k−1

i=k−3 ∑l
j=l−4 βi jdi j

(15)
Copyright c© 2005 by ASME

se: http://www.asme.org/about-asme/terms-of-use



D

with

αi j = αi j(uk,vl) and βi j = βi j(uk,vl).

The local fairness measure Lkl at the point (uk,vl) is defined
as

Lkl = ‖∆uuu(uk,vl)‖2 +‖∆vvv(uk,vl)‖2 (16)

The whole surface X can now be associated with a global
fairness measure

GX = ∑
(k,l)∈I

Lkl (17)

Hahmann [41] uses a classic least-squares approximation
with constraints to solve this problem

Minimize F(d̂i j) =
k−1

∑
i=k−3

l−1

∑
j=l−3

∥∥di j− d̂i j
∥∥2

(18)

subject to ∆vvv = 0, ∆uuu = 0

where di j and d̂i j denote control points before and after an up-
date. Even though discontinuity vector involves more than nine
control points, Eq. (18) indicates that only nine innermost points
are chosen for an update at every step of fairing.

The Lagrange multipliers method is used to solve this prob-
lem:

Φ(d̂i j,λ,µ) = F(d̂i j)+λ(∆uuu(uk,vl))+µ(∆vvv(uk,vl))→ min
(19)

Use of Isophote
In this paper, the Isophote technique (Poeshcl [45]) is used

for obtaining a visual feedback on the fairness of the surface im-
perfections. Connecting all points of a surface along which the
angle α between the light direction L and the surface normal N is
constant and in the range between−90 and 90 degrees we obtain
a line of constant illumination intensity called isophote. Only
curves with angles between 0 and 90 degrees are in the illumina-
tion part.

Let x(u,v) be the parametric representation of a surface of
C2 continuity and

N(u,v) =
xu×xv

|xu×xv|
6
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the unit surface normal. Then for each point x(u,v(u)) of an
isophote of illumination with light direction L, the relation

N(u,v) ·L = cos(α) = C (20)

holds with a constant C ∈ [−1,+1] and α ∈ [−90◦,+90◦] . By
differentiation it follows that

(Nu ·L)du+(Nv ·L)dv = 0

or for (Nv ·L) 6= 0:

dv
du

=−Nu ·L
Nv ·L (21)

The surface continuity and the isophote continuity have the
following relationship: For a surface with Cr continuity, the cor-
responding isophote is Cr−1 continuous.

5 FINE TUNING OF TWO-PARAMETER RATIONAL B-
SPLINE SPHERICAL MOTIONS
A bicubic rational B-Spline image surface is given by:

X̂(u,v) =
n

∑
i=0

m

∑
j=0

d̂i, jNi,4(u)N j,4(v), (22)

where the Ni,4(u),N j,4(v) are the B-Spline basis functions defined
on the knot vectors:

u = (ui)n+4
i=0 ; v = (v j)m+4

j=0

and

ui < ui+4, (i = 0,1, · · · ,n); v j < v j+4, ( j = 0,1, · · · ,m)

and d̂i, j are the B-Spline image points that represent the B-Spline
control displacements. Note in the case of spherical motions, we
only consider the real part for the dual quaternions. Let X̂ =
X+ εX0, d̂i, j = di, j + εd0

i, j. For spherical motions, the dual parts
are set to be zero, X0 = 0,d0

i, j = 0.
Based on the surface fine tuning algorithm (Hahmann [41])

discussed earlier, we give the algorithm for fine tuning two para-
meter rational B-Spline spherical and spatial motion in table 1.

Now, we present a few visualizations using the aforemen-
tioned fine tuning algorithm. Figure 1 shows the control net
Copyright c© 2005 by ASME
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Table 1. Algorithm for fine tuning two parameter rational B-Spline spher-
ical and spatial motion

(1) Input n×m control data which includes rotation axis, rotation
angle, translation and knot vector.
(2) Convert the control rotation axis, rotation angles, translations
to dual quaternions which represent the control displacements.
For spherical motion, set the dual part of the quaternions to zero.
(3) Calculate initial global measure G0: Perform steps (a), (b),
and (c) for both the dual and real part in case of spatial motion
and only for the real part in case of spherical motion.

(a) In the image space, calculate ∆uuu,∆vvv at the junction point
(uk,vl) by Eq.(15), for all k = 4 . . .n, l = 4 . . .m

(b) Calculate Lkl at the junction point (uk,vl) by Eq.(16), for
all k = 4 . . .n, l = 4 . . .m

(c) Obtain the global measure G0 by Eq.(17).
(4) Set: End condition = false
while (End condition = false) do

(a) Choose the maximum local fairness measure Lkl .
(b) Apply local fairing step at the junction point (uk,vl). (At

the end of this step, one has C3 continuity at this junction point).
(c) Calculate new global measure G j by Eq.(17).

End condition: Global measure:

∣∣G j+1−G j∣∣ < ε (23)

where ε is a very small number defined by the user.
(5) Generate faired B-Spline image surface, isophote, control po-
sitions and motion trajectories.

Unfaired Faired

Figure 1. 15x15 Control Net Projected in E3 for Two-Parameter Bicubic
B-Spline Spherical Motion

structure obtained by projecting Quaternion based control struc-
ture in E3, while Figure 2 shows the Quaternion Surface with the
isophote before and after tuning. After fine tuning, both the con-
trol net and the Quaternion surface appear regular (the wiggles
and the dimples in the surface disappear). The isophote lines are
continuous indicating satisfactory smoothness(Fig. 3). Since the
isophote lines are a function of the direction of light impacting
Downloaded From: https://proceedings.asmedigitalcollection.asme.org on 06/28/2019 Terms of 
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Figure 2. Quaternion Surface with Isophote for Two-Parameter Bicubic
B-Spline Spherical Motion

Unfaired Faired

Figure 3. Isophote details on the Quaternion Surface for Two-Parameter
Bicubic B-Spline Spherical Motion

on the surface, it is important to check the quality of the sur-
face from different angles before concluding that surface is suf-
ficiently smooth. It should be noted here that in ensuing discus-
sion, we describe the surface and the motion in qualitative terms
merely to corroborate the mathematical C3 continuity achieved
after the fairing process

Next shown in Fig. 4 and Fig. 5 are the control positions and
the trajectory of “teapots”, respectively under a uniform bicubic
B-Spline Spherical Motion, both before and after fine tuning. As
is clear, the control positions after fairing are regularly distrib-
uted and the trajectory is better organized. Another indicator of
better continuity in Fig. 5 is the orientation of the teapots around
a single teapot. The variation of orientation in any small neigh-
borhood of a single teapot is less extreme than in unfaired mo-
tion. The algorithm is fairly efficient since every local fairing
step requires just a matrix to vector multiplication. The multi-
plied matrix (set up by the solution of the Eq.(19)) is obtained by
inversion only once in the beginning of the iterations. The order
of complexity of the algorithm is dependent on the number of
inner knots ((n−1)∗ (m−1)). In this example, we have chosen
uniform parameterization for simplicity and faster execution but
it is possible to choose centripetal, chord-length, or other para-
meterizations that map the range behavior more appropriately to
the domain (see Farin [1]). The execution time of the algorithm
using uniform parameterization for this example was 5 s and it
7 Copyright c© 2005 by ASME
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Unfaired Faired

Figure 4. 15x15 Control Positions for Two-Parameter Bicubic B-Spline
Spherical Motion

took 1930 iterations for the global fairness measure to reduce
from Ginitial = 7.84 to G f air = 0.002 on a 2.6 GHz Pentium 4
system with 1 GB RAM. Even though the algorithm was applied
globally and it runs unattended, it allows restricting the motion
fairing process to a small area of the initial B-Spline motion by
operating over a small subset of inner knots. It also allows to
discard those steps of local fairing process, which change the
motion beyond a tolerance level.

6 FINE TUNING OF TWO-PARAMETER RATIONAL B-
SPLINE SPATIAL MOTIONS
A bicubic rational B-Spline image surface is given by Eq.

(22). In the spatial case, the dual parts of the quaternions are
not zero. The dual parts, X0,d0

i, j, involve the translation of the
motions.

In the previous section, we discussed the fine tuning algo-
rithm for two parameter B-Spline spatial and spherical motions.
The only difference from the spherical case is that for spatial
motion fairing, we must consider the real and dual parts of the
quaternions simultaneously.

Now, we illustrate the implementation of spatial fine tuning
algorithm by a few examples. Since spatial motion involves both
the real part and the dual part as given by Eq. (11) and Eq. (12),
fine tuning step requires that both the component be fine tuned.
Fine tuning of the real part is already illustrated in Sec. (5) via
some examples and we use the same value of real part in the
succeeding examples. In fine tuning the dual part, there are two
choices – one is to fine tune the dual part image surface and the
other is to fair the translation part directly, which means fairing
the translation image surface. The algorithm is applied identi-
cally in both the cases and both yield a fairer, though not identical
surface. Here, we only illustrate fine tuning the dual part. Fig-
ure (6) shows quaternion surface and isophote for the dual part
only. Even though unfaired surface, which is a bicubic B-spline
formulation is equipped with C2 continuity, it is locally irregu-
lar. During fine tuning process, the algorithm iteratively removes
ownloaded From: https://proceedings.asmedigitalcollection.asme.org on 06/28/2019 Terms of 
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Faired after 1930 iterations

Figure 5. Trajectory under Two-Parameter Bicubic Rational B-Spline
Spherical Motion

Unfaired Faired

Figure 6. Quaternion Surface and Isophote for Dual Part under Two-
Parameter Bicubic Rational B-Spline Spatial Motion
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Figure 7. 15x15 Control Positions for Two-Parameter Bicubic B-Spline
Spatial Motion

such imperfections.
Figure 7 and Fig. 8 show the control positions and the tra-

jectory of teapots before and after fine tuning respectively. The
effect of fine tuning is much more pronounced in this case. Be-
fore fairing the dual quaternion image surface, motion seems ran-
dom even though it is a C2 continuous motion. After fairing, the
order in the motion and the control position improves. On the
same hardware system, the run time of the algorithm was 8 s
(3052 iterations) and it reduced the global fairness measure from
Ginitial = 10.195 to G f air = 0.003.

7 CONCLUSION
A method is presented for automatic fairing of two-

parameter rational B-Spline motion by extending the method for
surface fairing to the space of dual quaternions. The resulting al-
gorithm is efficient, automatic, local in approach, and increases
the continuity of the motion to C3. By restricting the number of
control points involved at every step of fairing or reducing the
number of inner knot points, one can further localize the effect
of fairing. The automatic fairing algorithm may be used to fine-
tune two-parameter B-spline tool motion for 5-axis NC machin-
ing process as well as for motion specifications for robotic and
virtual reality systems. By making both parameters a function
of time, one can obtain a one-parameter motion that inherits the
smoothness of the faired two-parameter motion.
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