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ABSTRACT 

In this paper, experiments on the application of the 
independent component analysis (ICA) technique to separate 
unknown source signals are reported.  ICA is one of the fastest 
growing fields in signal processing with applications to speech 
recognition systems, telecommunications, and biomedical 
signal processing.  It is a data-transformation technique that 
finds independent sources of activity from linear mixtures of 
unknown independent sources.  The statistical method to 
measure independence is to find a linear representation of the 
non-Gaussian data so that the components are as independent 
as possible and the mutual information between them is 
minimum.  Although extensive simulations have been 
performed to demonstrate the power of the learning algorithm 
for the problems of instantaneous mixing and un-mixing of 
sources, its application to the noise diagnosis and separation in 
an industrial setting has not been considered.  Noise separation 
in machinery has a strong basis in the “cocktail problem” in 
which it is difficult to separate/isolate the voice of a person in 
a room filled with competing voices and noises.  The 
experiments conducted consist of separating several 
artificially generated sources of noise.  Our results 
demonstrate that ICA can be effectively employed for such 
kinds of applications.  The underdetermined problem in which 
there are fewer sensors than sources in the ICA formulation is 
also examined by applying a time-invariant linear 
transformation of the acquired signals to identify a single 
source. 

1 INTRODUCTION 
Independent Component Analysis (ICA) separates a set of 
signal mixtures into a corresponding set of statistically 
independent component signals or source signals. It is based 
on simple, generic and physically realistic assumptions that if 
different signals are from different physical processes (e.g. 
different people speaking) then those signals are statistically 
independent. ICA takes advantage of the fact that the 
implication of this assumption can be reversed, leading to a 
new assumption which is logically unwarranted but which 
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works in practice, namely: if statistically independent signals 
can be extracted from signal mixtures then these extracted 
signals must be from different physical processes. 
Accordingly, ICA separates signal mixtures into statistically 
independent signals. If the assumption of statistical 
independence is valid then each of the signals extracted by 
independent component analysis will have been generated by 
a different physical process, and will therefore be a desired 
signal. The independence assumption is correct in most cases 
so the blind ICA separation of a mixed signal gives very good 
results. 
 
To identify the independent components successfully, we need 
a rule for evaluating the independency of the identified 
components. According to the Central Limit Theorem, the 
distribution of the sum of a large number of independent 
random variables tends to be a Gaussian distribution. Since the 
collected signals are weighted sums of the independent 
sources, the sources to be isolated must have less Gaussianity 
than the collected signals. Thus, non-Gaussianity can be used 
for separating independent components. This non Gaussianity 
can be evaluated using negentropy of the separated 
components so as to evaluate separation performance. With 
this concept, we can seek the separation that provides the least 
Gaussian ness of the separated components [3]. 

2 HISTORICAL BACKGROUND AND OVERVIEW:  
The sound recognition and separation effect was first 
described (and named) by Colin Cherry in 1953 as part of 
psychoacoustics [17]. Much of the early work in this area can 
be traced to problems faced by air traffic controllers in the 
early 1950's. At that time, controllers received messages from 
pilots over loudspeakers in the control tower. Hearing the 
intermixed voices of many pilots over a single loudspeaker 
made the controller's task very difficult. 

Cherry (1953) conducted perception experiments in which 
subjects were asked to listen to two different messages from a 
single loudspeaker at the same time and try to separate them. 
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His work reveals that our ability to separate sounds from 
background noise is based on the characteristics of the sounds, 
such as the gender of the speaker, the direction from which the 
sound is coming, the pitch, or the speaking speed. 

In the 1950's, Broadbent conducted dichotic listening 
experiments where subjects were asked to hear and separate 
different speech signals presented to each ear simultaneously 
(using headphones). He concluded that human hearing is 
basically like a spectrum analyzer, that is, the ear resolves the 
spectral content of the pressure wave without respect to the 
phase of the signal. In practice, though, some phase 
information can be perceived. Inter-aural phase difference, 
that is the difference in sound between the ears, is a notable 
exception by providing a significant part of the directional 
sensation of sound. 
The ability to focus one’s listening attention on a single talker 
among a cacophony of conversations and background noise—
has been recognized for some time as the cocktail party effect. 
This specialized listening ability may be because of 
characteristics of the human speech production system, the 
auditory system, or high-level perceptual and language 
processing. 
 
In many engineering problems, empirical measurements are 
obtained without much knowledge of the sources or even the 
physical model of the system. This may be the case for 
complex systems comprising of many subsystems which are 
often found in aerospace, civil, and mechanical engineering, 
and in emerging problems in biomedical engineering, controls, 
economics, and others, which are inherently difficult to model. 
An example is the automotive engine system, which consists 
of ducts, compressor, intercooler, intake manifold, engine 
cylinders, exhaust manifold, catalytic converter, muffler, and 
other related components. Unwanted engine noise can thus be 
caused by several or all of these subsystems simultaneously, 
and the contribution to the noise problem from each subsystem 
will likely vary with time. An ability to identify these noise 
sources would help engineers to design effective noise 
suppression strategies. This ability to learn from the empirical 
data, which in most cases are assumed to be obtainable, will 
enhance our understanding of the underlying physical 
principles and will help us to arrive at models for sound source 
separation, identification and system characterization? 
 
The ability to model and synthesize a physical system and its 
sources, and to predict its response based on measurement 
data is extremely useful for engineers in optimal designs and 
control considerations. However, when a priori insight of the 
system is not available (or given) and the goal is to learn about 
the nature of the system, the problem becomes more complex 
and challenging. 

3 APPLICATIONS OF SOUND SOURCE 
SEPARATION 
The study of engine noise has been carried out since the early 
stages of engine development [20]. Although there are a 
number of engine noise sources, one of the most fundamentals 
is the combustion-induced noise The rapid pressure change 
due to the combustion transmits through engine structures and 
forms a part of the airborne noise. This pressure change also 
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causes the vibration of the engine components such as the 
cylinder head, pistons, connecting rods and engine body. The 
vibration of these components then provides another part of 
the overall engine noise. Other noise sources are due to engine 
functions such as the injection of fuel and the operation of 
inlet and exhaust valves. All of these sources usually produce 
low level noise and make up a good fraction of the overall 
noise. 
 
Although the above engine noise sources have distinctive time 
instances, it is still difficult to resolve them accurately based 
on only noise measurement.. A variety of signal processing 
methods including statistical analysis, spectral analysis, time 
frequency analysis and wavelet transform have been used to 
analyze this engine noise. These methods are applied to 
investigate the noise-generation mechanisms and to reveal the 
individual features of the noise sources. Each method is based 
upon component energy contributions to retrieve information 
about engine noise. The general steps followed are firstly, the 
noise signals are represented by using either the time domain, 
frequency domain or the joint time frequency domain. The 
noise sources are then identified by the energy variations of 
the represented signals. As these methods are based on energy 
conservation; they are useful for finding predominant 
information such as combustion peaks etc. but, the other low-
level noise sources cannot be identified successfully,. This is 
because these methods retain the signal energy information 
from one domain to another. The low-energy noise sources are 
either buried by the combustion events or too small to be 
recognized. Hence, these signal energy conservation based 
methods are unable to recognize such noises induced by fuel 
injections or valve movements, which contain relatively small 
energy. Thus, it becomes a challenge to separate these noises 
from the overall engine noise. 
 
The frequency analysis has been widely used on the vibration 
data to detect gear faults [15]. The traditional methods such as 
spectrum analysis, cepstrum analysis, and matching filtering, 
were developed for the application on the stationary data. 
However, many physical phenomena from acoustics and 
structural dynamics are time-varying events with transients, 
complex harmonic interaction and frequency changing with 
time. The vibrational frequencies measured by the 
accelerometers can change rapidly in time, especially when 
the fault occurs. Many types of gear faults produce localized 
changes in the vibration signal so that the signal is no longer 
stationary on the time-scale of the gear tooth meshing. These 
vibration signals are often heavily contaminated by large 
background noise. Great challenge is encountered when the 
conventional signal processing is applied to extract subtle 
fault-related changes from the measured vibration signals. 
Since most gear faults will produce localized changes in the 
signal, there is no way for standard Fourier analysis to 
determine at what point in time the changes have occurred. 
There are signal processing methods such as time-frequency 
methods, which give local information in both time and 
frequency. But, the time-frequency methods expand the 
dimensionality of the representation of the data. The other 
undesirable effect of the time-frequency architecture is that the 
feature fusion may not be as accurate as the one with raw data 
because a significant portion of the raw information would be 
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lost in feature extraction [18]. The fundamental objective in 
vibration analysis of gear systems is to obtain accurate 
representation of the data dynamics. Optimal and relevant 
representations are desired for efficiency and consistency 
between the data decomposition and the gear system.  
 
Diagnosing the vibrational characteristics of the heavy sizing-
press drops [25]is a big challenge because the mechanism is 
very complex, as it includes motions of closed rotating parts 
(motor, gearbox) and open reciprocating frame, and has low 
work frequency that hampers the classical vibration analysis. 
So the sound diagnosis becomes an effective way in practice. 
However the heavy strike and industrial environment always 
disrupts the acoustic signals recorded. So, it is necessary to 
develop new methods to deal with the problem. 
 
Biomedical signals from many sources including hearts [14], 
brains and endocrine systems pose a challenge to researchers 
who may have to separate weak signals arriving from multiple 
sources contaminated with artifacts and noise [26]. The 
analysis of these signals is important both for research and for 
medical diagnosis and treatment. The separation of these 
biomedical signals is a rapidly expanding area of research and 
many groups are now actively engaged in exploring the 
potential of statistical methods for revealing new information 
about the brain and body. 

Recently a statistical method for signal processing, called 
Independent component analysis (ICA), is becoming a 
promising tool for machine diagnosis, detecting gear faults 
[16], processing of biomedical signals etc. Its goal is to find 
different physical sources independently from observations 
recorded by sensors without any a priori knowledge of the 
sources. Of course, the lack of knowledge must he 
compensated by certain assumptions on source signal like 
statistical independence and linear mixture of sources. Until 
now ICA has been successfully used in some fields include 
medicine, telecommunication and audio processing. The 
applications of the ICA to the analysis of mechanical signals 
such as vibration and sound have been little investigated. So 
the goal of this paper is mainly on the study of the acoustic 
signals generated from mechanical sources like a diesel 
engine, gear noise data etc and using the ICA in an effort to 
identify the various noise sources. 
 
Not only the noise measurement but some dominant and 
important features embedded in the data are also extracted to 
provide automated information like for gear system diagnosis; 
data could be retrieved with features. Methods for such feature 
extraction process are often based on entropy or other 
statistical measures. For computational and conceptual 
simplicity, such a feature extraction is often sought as a linear 
transformation of the original data. Well-known linear 
transformation methods include principal component analysis, 
projection pursuit etc. An accurate data fusion scheme can be 
designed where independent component analysis method can 
be used for the feature extraction. The accelerometer 
measurements are assumed to consist of gear meshing 
components and non-harmonic additive noise. The dominant 
gear meshing components are considered as features and can 
only be estimated by independent component analysis. Then, 
the estimated dominant gear meshing components can be 
 

loaded From: https://proceedings.asmedigitalcollection.asme.org on 06/28/2019 Terms of Use
filtered through time-frequency methods for gear fault 
detection and identification. 
 
4 INDEPENDENT COMPONENT ANALYSIS 
 
The independent component analysis (ICA) brings a different 
strategy in dealing with the problems of blind source 
separation (BSS). In the ICA it is assumed that the measured 
data is a linear combination of the indirectly observed latent 
sources. As long as the latent signals are statistically 
independent, the ICA should be able to decompose them into 
independent components (ICs) successfully. It has been 
reported recently that the ICA is an elective approach for 
analyzing brain electroencephalogram (EEG) data, image 
processing, feature extraction, telecommunications and 
financial applications.  
 
Imagine that you are in a room where two people are speaking 
simultaneously. You have two microphones, which you hold 
in different locations. The microphones give you two recorded 
time signals, which we could denote by x1(t) and x2(t), with x1 
and x2 the amplitudes, and t the time index. Each of these 
recorded signals is a weighted sum of the speech signals 
emitted by the two speakers, which we denote by s1(t) and 
s2(t). We could express this as a linear equation: 
 

x1(t) = a11s1 +a12s2 
x2(t) = a21s1 +a22s2 

 
where a11,a12,a21, and a22 are some parameters that depend on 
the distances of the microphones from the speakers. It would 
be very useful if we could now estimate the two original 
speech signals s1(t) and s2(t), using only the recorded signals 
x1(t) and x2(t) without any information about their source. This 
is called the cocktail-party problem. 
 
In matrix form, the above equations can be written as  

x = A s 
where A is called the mixing matrix. 
We need to find the demixing matrix such that 

w.x = y 
 
where y is as close as possible to the source signals. 
 
We find the demixing matrix iteratively using the criteria of 
maximizing the independency of the mixed signals x called the 
concept of independent component analysis. [1]-[12] Almost 
all the real world problems are analogous to the cocktail party 
effect which needs to be solved and shall be demonstrated 
experimentally in this paper 
 
5 OTHER METHODS 
 
ICA is not the only method that can be used for sound 
separation. Other statistical method for sound separation 
includes Principal Component Analysis. In statistics, principal 
components analysis (PCA) is a technique for simplifying a 
dataset, by reducing multidimensional datasets to lower 
dimensions for analysis. Technically speaking, PCA is a linear 
transformation that transforms the data to a new coordinate 
system such that the greatest variance by any projection of the 
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do whitening is by doing the eigen value decomposition of the 
data comes to lie on the first coordinate (called the first 
principal component), the second greatest variance on the 
second coordinate, and so on. PCA can be used for 
dimensionality reduction in a dataset while retaining those 
characteristics of the dataset that contribute most to its 
variance, by keeping lower-order principal components and 
ignoring higher-order ones. Such low-order components often 
contain the "most important" aspects of the data. But this is 
not necessarily the case, depending on the application. 
 
Historically, Principal Component Analysis (PCA) and Factor 
Analysis (FA) have been widely used for the same types of 
problems currently being investigated using ICA. The main 
difference between ICA and PCA/FA is that ICA finds non 
Gaussian and independent source signals whereas PCA/FA 
finds source signals which are merely Gaussian and 
uncorrelated i.e. PCA decomposes a set of signal mixtures into 
a set of uncorrelated signals and ICA decomposes a set of 
signal mixtures into a set of independent signals. PCA is like a 
version of ICA in which the source signals are assumed to be 
Gaussian. Factor Analysis (FA) is also a form of PCA with the 
addition of extra terms for modeling the sensor noise 
associated with each signal mixture. Normally, both ICA and 
PCA are based on the assumption that such noise is zero. 
 
6 METHODOLOGY AND EXPERIMENT 
 
Our experiment to demonstrate the ICA is similar to solving 
the cocktail party problem where we have two independent 
sound sources with two receivers. Figure shows the schematic 
diagram of our experiment 
 

 
(Figure showing the General ICA method) 
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(Figure showing the experimental setup and hardware for 

ICA) 
 

Before we start with the measurement, there are several 
conditions that need to be considered. 
 

1. Two microphone probes are needed to record the 
sound from two different sound sources. 

2. The position of the probes is such that the mixing 
matrix obtained is not a singular matrix. 

3. Extra care should be taken so that the background 
noise is minimum or the effect of the background 
noises is not taken under consideration. 

 
In order to meet the above considerations, we used two 
sensitive microphones made by PCB with an inbuilt pre 
amplifier having a sensitivity of 48.5mV/Pa. The frequency 
response of the microphone is from 10 to 20,000 Hz. The first 
microphone was placed at an area close to the speaker being 
driven by the power amplifier run through a function generator 
and the second was placed close to the computer where the 
song was being played. A pure sine wave was passed to the 
speaker through the function generator. The microphones have 
BNC output, which were connected to the PCB signal 
conditioner 483A having a 12 channel input output AC or DC 
function and then to the data acquisition card manufactured by 
Data Translation Inc., Model DT 2801A, into the computer. 
This data acquisition card converts the analog output of both 
terminals and stores it in a digital format. Located inside the 
computer, it has 16 channels and uses 12-bit precision for 
conversions. The software provided with the converter 
determines all the parameters needed for the converter to 
function. A Gateway computer was used to record the data 
using the Hypersignal digital signal processing software. 
 
7 RESULTS AND DISCUSSION 
 
The FastICA algorithm proposed by Hyvarinen and Oja [12] 
that is used in our study basically consists of two steps, the 
preprocessing step and the FastICA algorithm itself. The 
preprocessing process consists further of centering and 
whitening steps. The centering step is done by subtracting the 
mean of the observed data x. Therefore, the result of this step 
is a zero mean data. A whitening step is used to remove the 
correlation between the observed data. A common method to 
4 Copyright © 2007 by ASME 
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covariance matrix of the mixed signal. The final step is the 
FastICA algorithm which is briefly summarized as follow: 
 
General flowchart of Fast ICA algorithm 

Choose initial 
random weight 

vector w

Calculate
w+ = E{x.g(wT.x)} – E{g’(wT.x)}.w

Let w = w+/|w+|

If 
converged

Stop and End

Choose initial 
random weight 

vector w

Calculate
w+ = E{x.g(wT.x)} – E{g’(wT.x)}.w

Let w = w+/|w+|

If 
converged

Stop and End
 

 
Here E denotes the expectation and g is any non linearity 
function. We used the power function of order 3 non linearity 
for the calculation of our results. 
 
The following figure shows the original signal, the mixed 
signal and the separated signal in both the time domain and the 
frequency domain. 
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The underdetermined problem in which there are fewer 
sensors than sources in the ICA formulation is also examined 
by applying a time-invariant linear transformation of the 
acquired signals to identify a single source like a single sensor 
was being taken and was made to collect the mixed signal at 
different locations to transform the underdetermined data to 
over determined data and the problem was then solved using 
the standard ICA formulation. 

8 CONCLUDING REMARKS 
The independent component analysis is presented in this paper 
as a novel method for real world signals like the engine 
acoustic source identification. The ICA is different from the 
conventionally used acoustic signal processing methods in that 
it separates individual sources based on their statistical 
independence. Like engine noise signals are a combination of 
a number of possible sources and background noise, the ICA 
can be a useful tool to identify these sources individually and 
to study them in detail. 
 
The ICA is a unique and efficient blind signal separation 
strategy by emphasizing the statistical independence among 
the sources. This is very helpful in identifying embedded low-
level events such as transients which are very common in 
sources like diesel engines. The numerical example by the 
ICA demonstrated that the unknown mixed sources could be 
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successfully recovered. The example also provided some 
guidance in justifying its separation efficiency. 
 
Before applying the proposed ICA method, the acoustic signal 
needs to be tested with the normalized kurtosis. It is known 
that a majority of the acoustic signals had sub-Gaussian 
distributions to which the ICA could be applied. The results 
obtained by applying the ICA demonstrate that the ICA can 
become powerful in the retrieval of engine noise sources such 
as combustion and valve operations 
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