
Object Schizophrenia Problem in Modeling Is-role-of
Inheritance

K. Chandra Sekharaiah
Distributed Object Systems Lab

Department of Computer Science & Engineering
Indian Institute of Technology

Madras India 600 036

chand@cs.iitm.ernet.in

D. Janaki Ram
Distributed Object Systems Lab

Department of Computer Science & Engineering
Indian Institute of Technology

Madras India 600 036

djram@lotus.iitm.ernet.in

ABSTRACT
Object orientation has evolved on the basis of inheri-
tance mechanism. But, interestingly, the mechanism
has assumed varied semantics over the years as many
inheritance mechanisms came up in the literature. In
this paper, we present the special semantics of is-role-
of inheritance which is used for modeling objects that
play multiple roles. Further, di�erent symptoms of
object schizophrenia problem (OSP) in modeling is-
role-of inheritance are explained. We conclude that a
solution to OSP in modeling the is-role-of inheritance
can not avoid all the symptoms of OSP.

Keywords
Object Schizophrenia (OS), Object Schizophrenia Prob-
lem (OSP), Role Paradigm, Object Role Database
System, Role Paradigm Conformance Model(RPCM)

1. INTRODUCTION
Inheritance is the distinguishing feature of object ori-
entation. In [1, 2], a classic work on various facets of
inheritance was presented by Antero Taivalsaari. In
one of the earliest works on inheritance, in [3], Sakki-
nen dealt with resolving the problems and ambiguities
of inheritance. Interestingly, he contradicted the point
that inheritance is the central principle of OOP and
listed several other properties of objects as more fun-
damental giving the highest priority to object iden-
tity. Later, subject oriented community emphasized
the importance of object identity property in a sim-
ilar vein for integrated, inter-operating suites of ap-
plications in [4]. Object oriented languages adopted
mainly two kinds of reusing functionality- white-box
reuse which is also called as class inheritance and black-
box reuse which is also called as object composition.
The characteristic properties of these techniques are
di�erent from each other. Because details of super
class's implementation are exposed to derived classes,
it is often said that "inheritance breaks encapsula-
tion" [5]. Class inheritance is meant for capturing
generalization-specialization relationship; that is, class
inheritance should be used only if instances of the new
class can be used in all situations where the existing
class can be used. Class inheritance is supposed to
capture subtyping. Subtyping is based on the substi-
tution principle [6]. Object composition de�nes a new

class as containing an instance of one or more existing
classes. This type of class inherits nothing from the
objects it contains.

Class-based and prototype-based approaches formed
two contending object modeling paradigms for imple-
menting shared behavior in object oriented systems.
Object community often viewed delegation critically.
Lieberman [7], who conceived delegation in explor-
ing classless models of inheritance, viewed inheritance
and delegation as two distinct mechanisms. Wegner
viewed inheritance as a special case of delegation [8].
Wegner called languages that support objects as a lan-
guage feature as object-based languages, those that
support classless objects and delegation as delegation-
based languages and such delegation-based languages
that are based on prototypes as "prototypical" [8].
In [9], a hybrid model that captures both delegation
and inheritance mechanisms was proposed. She re-
futed the claim that delegation is more powerful than
inheritance. In [10], Ostermann observes that delega-
tion is often used as a synonym for forwarding seman-
tics and uses it di�erently for dynamic, object-based
inheritance.

In [11], new characterization and disciplined use of
delegation was proposed for split objects. Split ob-
jects are like roles. Three kinds of sharing were speci-
�ed. The work in [12] took an integrative approach to
class-based inheritance and inheritance by delegation.
It provides object specialization wherein an object hi-
erarchy can also be seen as a singular semantic unit.
In this work, an object-role hierarchy must follow par-
tial order. There is no �xed delegation structure as
in most prototype systems. In [13], object inheri-
tance was integrated in a class-based object oriented
language, Smalltalk, for a role model. Correspond-
ing to an abstraction hierarchy for objects with roles,
object-role instance hierarchies are generated. Role-
of relationship is de�ned in the abstraction hierarchy.
However, implementation reuse is at object level in the
form of object inheritance. This paper presents is-role-
of inheritance as the reuse mechanism for modeling
objects that play dynamically changing multiple roles.
We explain various symptoms of object schizophrenia
problem in modeling is-role-of inheritance.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357565388?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The rest of the paper is organized as follows: The next
section presents modeling the requirements for objects
that play dynamically changing multiple roles. Dele-
gation and consultation are compared and contrasted
as two message forwarding mechanisms with diverse
message processing semantics. The special semantics
of is-role-of inheritance are presented. In section 3, the
de�nitional details of object schizophrenia and object
schizophrenia problem are presented. Section 4 ex-
plains how various symptoms of OSP are manifested
in role modeling. Section 5 concludes the paper.

2. MODELING OBJECTS WITH ROLES
Roles provide dynamic composition and decomposi-
tion for object evolution. The variable part of the
state and behavior of the role-playing entity is cap-
tured in terms of roles. A role is a context-dependent
slice of behavior of an object. It serves as a unit of
reuse and collaboration for accessing a role-playing ob-
ject. Roles provide restricted and, often, complemen-
tary perspectives of a complex object. A role-playing
entity can provide a role-based approach for access
control. A role-based approach to object evolution can
manage the object life cycle in terms of roles. Roles
have been extensively used in object models [13, 12,
14]. In [15], oÆce objects were modeled with di�er-
ent roles for di�erent contexts in the lifetime of the
object playing roles. In this paper, by role modeling,
we mean modeling objects with roles that conform to
role paradigm.

2.1 Role Paradigm: Modeling Complex-
ity for Objects with Roles

Objects with roles have to satisfy such properties as
visibility, dependency, identity, multiplicity, dynam-
icity, and abstractivity [16, 17, 18]. The properties
were also explained in [13]. These properties have
been stated time and again in literature though de-
scriptions are di�erent. Hence, and to avoid the pa-
per getting too long, we do not explain the properties.
This set of properties constitute what is called as role
paradigm [18]. The works in [16, 13] explain how tra-
ditional object oriented techniques such as specializa-
tion, aggregation and association are not adequate to
capture all the properties in the role paradigm. Role
paradigm conformance is a requirement for advanced
role models. A role model which conforms to the role
paradigm is called role paradigm conformance model
(RPCM). The role models in [17, 13] are RPCMs.

The role models in [14, 19] are early role models.
They do not use role object identi�ers and, hence,
do not satisfy the multiplicity characteristic. Even
some later role models [20, 11] do not satisfy the
multiplicity characteristic. Consequently, they are not
RPCMs. A comparison of the inadequacy of many
role models regarding role paradigm conformance may
be found in [21]. The works on modeling objects
with roles show an evolutionary path of advancement
towards RPCMs. A role-playing object that conforms
to the role paradigm is called an RPCM object. To
be clear, in this paper, by role modeling, we mean
modeling RPCM objects.

In Figure 1, the RPCM object, John, plays Faculty
role, Student role, Conference Associate subrole, Lab-
in-charge subrole and Reviewer subrole. S, F, ECOOP,
OOPSLA, L1, OSP paper are role instances and sub-
role instances. An RPCM object has intrinsic and
extrinsic properties and state. The core object, John,
captures the intrinsic properties. These properties are
time-invariant during the object lifetime. The role
and subrole objects capture the extrinsic properties
and state. They are time-variant during the lifetime
of the core object. The lifeline of the core object is
the lifeline of the role/subrole objects.

m2()

Person John

Faculty FStudent S

get_payment()
m1() calls m2()

 m2()

Conf. Assoc. ECOOP

m2()
m4()
m3() calls m4()

Lab_Incharge L1Conf. Assoc. OOPSLA

Reviewer OSP_paper

get_PhoneNumber()

Figure 1: An Example Role Modeling Sce-

nario: John Playing Roles

2.2 Method-lookup Mechanisms in RPCMs:
Delegation Vs. Consultation

The rudimentary role models in [14, 19] do not use
any message forwarding mechanism such as delega-
tion. The later role models in [20, 11, 13, 22] use
delegation as the message forwarding mechanism. In
the RPCM in [17], delegation was dispensed with and
messages are sent directly to the destination roles and
no message forwarding mechanism is used.

A comparison of method lookup semantics in some
role models is given in [21]. In the role model in
[22], seven method lookup schemes (delegation paths)
are used so that users can easily change to di�erent
method lookup schemes for di�erent applications. In
the role model in [20] message forwarding is based on
a role and type hierarchy down and up the hierarchy
by late binding. Here, the resolution mechanism for
methods �rst goes down the hierarchy and the most
specialized behaviors prevail. An object's dispatch ta-
ble is updated each time a new role is acquired. In the
role model in [13], when a message can not be handled
by a role object, it is delegated only upward towards
the more general instance in the object-role hierarchy.

2.2.1 Delegation Vs. Consultation
The message forwarding mechanisms used for sharing
behavior in an object-role hierarchy are interpreted in
terms of delegation or consultation. In delegation, an
object, called the master, may have modi�able refer-
ences to other objects, called its slaves. Messages for
which the message receiver has no matching method

O1()

O2()

O3() O3()

O2()

O1()self

self

(a) Delegation
sent to object O1()

message m1() message m1()
sent to object O1()

(b) Consultation

m1() {...;m2()...;}
m2()

n1()
n2()

m2()

Figure 2: Delegation and Consultation: The

Comparison

are automatically forwarded to its slaves. When a
suitable method is found in a slave object, the method
holder, it is executed after binding its implicit self
(pseudo-variable) parameter. This parameter refers
to the object on whose behalf the method is executed.
Automatic forwarding with binding of self to the mas-
ter, the message receiver, is called delegation whereas
automatic forwarding with binding of self to the slave,
the method holder, is called consultation [23].

In Figure 2, object O1 has the method m2() only, ob-
ject O2 has the methods n1() and n2(), and object
O3 has the methods m1() and m2() such that m1()
invokes m2(). Message, m1(), sent to object, O1, is
forwarded to object, O2, and then to O3. Object O1
is the message receiver and Object O3 is the method
holder. We consider the self semantics when m1() in
O3 invokes m2() during the course of its execution. In
delegation-kind of message forwarding mechanism, the
invocation of the method m2() in m1() of O3 will exe-
cute m2() of O1 and not m2() of O3. In consultation-
kind of message forwarding mechanism, m2() of O3
becomes relevant. Figure 2 depicts the diverse self
semantics in the two mechanisms.

2.3 Is-role-of Inheritance: Modeling Reuse
for RPCMs

Is-role-of inheritance is the reuse mechanism used for
RPCM objects which change their type dynamically.
Smalltalk is the well-known language that o�ers the
feature of class inheritance by delegation [1]. In
[13], Smalltalk was used to implement role hierarchies
for is-role-of inheritance. Is-role-of inheritance model
supports type hierarchies that abstract the RPCM ob-
jects. Type hierarchies are complemented by object
hierarchies. Object hierarchies are generated from the
type hierarchies. In this inheritance model, specializa-
tion and inheritance are applied at the instance level.
Role-of relationship exists between an object class and
a role class and between a role class and other subrole
classes. However, reuse is provided as object inher-
itance. The role hierarchies in [13] model is-role-of

inheritance. A role hierarchy is di�erent from a class
hierarchy in that a subtype in a role hierarchy does
not inherit the de�nitions of instance variables and
instance methods from the supertype. Inheritance is
de�ned at object level rather than at class level. For
example, the type hierarchy in Figure 1 corresponds
to Person, Student, Faculty, Conference Associate,
Lab Incharge and Reviewer. The reuse is amongst
the objects shown. Is-role-of inheritance model uses
a message forwarding mechanism. Either delegation
or consultation can be used. In the Smalltalk imple-
mentation of Gottlob's role model, delegation-kind of
message forwarding mechanism was used.

In [3], Sakkinen pointed out object identity as the
most important property of an object while discussing
the uniqueness principle. Is-role-of inheritance model
has additional semantics as regards the identity prop-
erty. In is-role-of inheritance, an object-role hierarchy
represents the state and behavior of one and the same
object, the RPCM object. The hierarchy satis�es the
Oid integrity principle which is third dimension to Oid
principle in the context of modeling is-role-of inheri-
tance. Oid uniqueness principle and Oid persistence
principle are given as two parts of the Oid principle
in [24]. In object-oriented role modeling [18, 17],
Oid integrity principle states that when an operation
�nd root() is applied to any two non-core objects in an
object-role hierarchy, they should generate the same
result, the core object (for instance, John) which plays
roles. In Figure 1, the multiple objects, John, S, F,
ECOOP, OOPSLA, LI, OSP Paper actually form an
object hierarchy that represents one and the same en-
tity, the RPCM object, John playing roles. Oid in-
tegrity principle emphasizes the revision of the notion
of object identity for RPCM objects as given in [13].
The revision brings in a dichotomy between the iden-
tity of the role-playing object and the identity of the
role object. Since roles do not export behavior inde-
pendent of the core object, role identity is provided
by the object identity of the role-playing object.

tusks
trunk
color

object1 Clyde

object2 Fred parent
color ’white’

2
1

’grey’

Figure 3: Prototypical Inheritance: Clyde and

Fred do not Represent the Same Entity

Delegation and is-role-of inheritance are di�erent. In
delegation (prototypical inheritance), the object hi-
erarchy need not follow Oid integrity principle. For
example, the elephants Clyde and Fred of Lieberman
[7] depicted in Figure 3 are two di�erent, independent
elephants though Clyde is a prototype for Fred. They
have globally unique object identi�ers. Fred is not

existence-dependent on Clyde. Together, they do not
represent one and the same entity. Clyde is accessed
for the non-specialized implementation of Fred. Fred
is not an extension to Clyde. The ownership of the
Fred's specialization does not belong to Clyde. Conse-
quently, the delegation hierarchy illustrated in Figure
3 does not satisfy the Oid integrity principle. On the
other hand, in the is-role-of-inheritance hierarchy il-
lustrated in Figure 1, the role and subrole objects are
owned by the core object, John. Here, an object hier-
archy is seen and manipulated as representing one and
the same entity, John playing roles. The lower objects
in the object-role inheritance hierarchy are agents for
the core object. The core object and the objects in
the lower levels of the hierarchy have logical, semantic
identity. This is the identity characteristic speci�ed
in [16] for RPCM objects. The objects in the lower
level of the hierarchy are existence-dependent on those
in the higher level. This is unlike Fred's relationship
with Clyde. Thus, is-role-of inheritance model satis-
�es the Oid integrity principle. Hence, it is di�erent
from plain delegation. Delegation and consultation
are two kinds of reuse mechanisms that can be used
to implement is-role-of inheritance.

The work in [19, 14] did not deal with inheritance
and role identi�ers in modeling objects with roles. In
[24], the terms played-by inheritance and role-oriented
inheritance were used for the kind of reuse mechanism
required for role modeling. However, nothing similar
to Oid integrity principle was speci�ed. Further, the
work is not related to modeling RPCM objects. We
see is-role-of inheritance as a combination of white-box
reuse and black-box reuse since a direct way of access-
ing the roles/subroles which are at higher level in the
is-role-of inheritance hierarchy is possible as well as
they can be accessed indirectly by a delegation path.
Is-role-of inheritance is a tightly coupled association
with extra semantics. It has two properties for reuse:
transitive, asymmetric. In Figure 1, F makes black-
box reuse of John, L1 makes reuse of F, and hence
L1 makes black-box reuse of John. So, it is transi-
tive. F is role of John and John is not role of F. So, it
is asymmetric too. The properties hold good in gen-
eral. However, is-role-of inheritance is di�erent from
is-part-of relationship for object composition. The lat-
ter is black-box reuse only.

3. OBJECT SCHIZOPHRENIA PROB-
LEM

Object schizophrenia problem is a problem in role
model design. It is the inability of an object to com-
municate and interpret the messages from the client's
perspective.

3.1 Object Schizophrenia
Object schizophrenia (OS) [25] is de�ned as the con-
dition of an object characterized by any one or more
of the features: broken interface, broken state, broken
identity. By broken interface, we mean that the in-
terface of an object under OS is an aggregate of the
interfaces of multiple objects. Similar semantics ap-
ply for the terms broken state and broken identity.

The prevalence of multiple states and multiple inter-
faces that together represent simultaneously one and
the same entity indicates OS. In other words, in such
a condition, the state and/or behavior of what is in-
tended to appear as a single object are actually broken
into several objects wherein each object may have its
own object identity. An object in the condition of
OS is called an OS object. RPCM objects described
in section 2 are OS objects. For instance, in Figure
1, the role-playing object, John, is an OS object. It
exports its functionality through many role, subrole
objects in the form of an object-role hierarchy. OS
is an inherent, common phenomenon in role modeling
and some design patterns [25] such as the Adapter
pattern.

3.2 OSP: What it Means
Object schizophrenia problem (OSP) is a design prob-
lem in RPCMs. An object which is under object
schizophrenia and is also characterized by one or more
symptoms such as broken contracts [26] (e.g. broken
delegation, broken consultation), broken assumptions,
dopplegangers, wrong method interpretation due to
message forwarding mechanism, security problem due
to message forwarding mechanism etc is said to be
under OSP. RPCM design may or may not specify a
message forwarding mechanism. The RPCM in [17]
has not speci�ed a message forwarding mechanism.
In the presence of a message forwarding mechanism,
RPCM objects are prone to OSP symptoms which are
explained below.

Object schizophrenia can lead to major problems in
role-oriented evolutionary software development. OS
is a necessary but not suÆcient condition for OSP. We
relate broken semantics of abstraction, encapsulation,
identity of an RPCM object with OS. Broken seman-
tics of message passing are peculiar to OSP. OS is not
a problem by itself. The usage of message forwarding
mechanisms such as delegation and consultation and
the associated loss of semantics of method execution
in the presence of OS de�ne OSP. Delegation and con-
sultation entail mutually exclusive OSP symptoms in
role model design. Violation of Oid integrity principle
in an RPCM design leads to OSP.

The di�erence between intended method semantics
and the processed method semantics due to OS is
OSP. Wrong method semantics are not a result of
delegation alone. Where the contracts in an object
hierarchy are not well-de�ned and well-implemented,
the result is OSP. OSP is the inability of an object
to respond to the messages with proper information
in spite of its availability. Such an inability is due to
design errors in subscribing to the viewpoints in the
client space.

In [25], three symptoms of OS are provided as broken
delegation, broken assumptions and dopplegangers.
In this paper, they are appropriately categorized as
symptoms of OSP to avoid the confusion between OS
and OSP. A role model has to provide non-intrusive
evolution (problems can be addressed without mod-

ifying the existing code) of objects playing roles. If
OSP symptoms prevail, this requirement can not be
met. Hence, a role model has to be free from OSP.

4. OSP IN MODELING IS-ROLE-OF IN-
HERITANCE

An RPCM should provide OSP-free method semantics
while supporting is-role-of inheritance. In most of the
role models [20, 12, 22, 13, 11], delegation is used as
a common method lookup mechanism with varied se-
mantics [21]. They are prone to object schizophrenia
problem because of the usage of the message forward-
ing mechanism. However, they did not address OSP.
Role modeling problem (RMP) is de�ned as the re-
quirement to model objects with roles to conform to
the role paradigm without object schizophrenia prob-
lem (OSP).

We explain �ve OSP symptoms below considering the
role modeling scenario depicted in Figure 1. We as-
sume delegation as the message forwarding mechanism
used. However, most of the symptoms are relevant in
the context of consultation too.

4.1 Wrong Message Interpretation Seman-
tics due to Delegation

Consider that get-payment() method is there in John
object as well as in Faculty role object. In role model-
ing based on delegation, message get-payment() sent
to the Reviewer object is forwarded to the Faculty
role and is executed as relevant to that role. This is
wrong message interpretation semantics because the
payment details for playing the Faculty role are given
as the payment details for playing the Reviewer role.
This kind of OSP symptom occurs in [20]. In the role
model in [20], messages are sent to the most special-
ized behavior in the role hierarchy.

4.2 Broken Delegation
Broken delegation is a kind of misinterpretation of
messages that leads to OSP. For instance, consider
that an object A implements an operation by forward-
ing it to another object B. In case the object B makes
an operation call on itself, it may �nd the de�nition
of the adaptee in the class associated with B, and not
in the class associated with A. In other words, there is
wrong semantics if the method implementation spec-
i�ed in A has been overridden.

OSP symptoms could be avoided if a master identity
could be established and no object identity other than
the master is ever used (except within the master ob-
ject). For example, to avoid the symptom of broken
delegation, "self" or "this" must actually refer to the
master, even in the slave objects, but most program-
ming language implementations do not support the
enforcement of such a protocol. Non-broken delega-
tion requires a request broker as the key support by
retaining and using the information needed to distin-
guish two Oids in the slave object usefully- master to
refer to the identity of the master object besides the
usual this that refers to the Oid of the slave.

In the aforesaid role modeling scenario, assume the
following: Object John plays Faculty role object F,
having methods m1() and m2(), Conference Associate
subrole objects ECOOP, OOPSLA having a method
m2(), and Reviewer subrole object, OSP paper. A
message m1() sent to OSP paper will be delegated
to OOPSLA and further to F. During the course of
execution of m1() of F, a method m2() is invoked.
Now, m1() of F will use m2() of F and not m2() of
OSP paper (which is the appropriate method for in-
vocation). This kind of wrong method interpretation
semantics is broken delegation. In this case, broken
delegation degenerates to consultation. But, they are
di�erent. To illustrate, if the method holder F uses
m2() of OOPSLA (its nearest object in the delegation
path) in the course of execution of m1(), it is also bro-
ken delegation. Thus, broken delegation has broader
semantics than consultation.

4.3 Security Problem due to Delegation
Without addressing the security concerns, delegation
is used in role modeling. Where multiple delegation
paths are there to the core object, di�erent security
concerns have to be �gured out. Di�erent message
passing paths may require di�erent security concerns.
Where it may be secure for an object to respond to
message forwarded in one delegation path, it may be
insecure to respond to message forwarded in a di�erent
delegation path. In other words, security concerns of
a role player object are not the same in all delegation
paths. For instance, the security concerns in the mes-
sage passing path L1-F-John may be di�erent from
those in the message passing path OOPSLA-F-John.
A message to John via OOPSLA may not have to be
allowed whereas one via L1 may be allowed.

Besides normal security provision in the object-role
hierarchy, extra security concerns often arise for ob-
jects on account of delegation. For example, in Figure
1, person object, John has personal phone number. A
message may be sent to OSP paper to �nd out the
phone number. It may be secure if clients are allowed
to access the object hierarchy by delegation traversing
the delegation path consisting of OSP paper-OOPSLA-
F. However, it may be insecure to allow the delegation
further to John. Additional security concerns may
have to be satis�ed to forward the message further
from F to John. However, such extra security concerns
in the object hierarchy that arise due to delegation are
unaddressed and unprovided by the researchers who
worked on the notion of delegation. In the role model-
ing scenario considered, the message may be delegated
unrestrictedly to the object John and the personal
phone number of John is obtained. Insecure message
interpretation due to the usage of message forwarding
mechanism in role modeling is an OSP symptom.

4.4 Broken Assumptions
In modeling objects with roles, the symptom of bro-
ken assumptions may arise as a result of the usage of
delegation as a message forwarding mechanism. The
details of the symptom [25] are given below and illus-
trated in the context of role modeling.

When conicting assumptions are built on both ends
of a whole-part relationship, they entail OSP. Con-
sider that an object A implements an operation by
forwarding it to another object B which is nominally
part of A. A may make coding assumptions that B is
its part, and may hold that state in B does not un-
dergo spontaneous changes. Further, A might even
override some of the methods of B to ensure that it
can �lter or update its own state appropriately. How-
ever, direct calls to object B can be made if it has
a di�erent identity from A, which may invalidate the
assumptions built into A. This results in bugs that are
hard to �nd. In [25], Adapter pattern is cited to have
this symptom.

In Figure 1, let us consider only the Conference As-
sociate subrole and Reviewer subrole parts of the �g-
ure for ease of understanding about this symptom. If
we make assumption that overriding is safely allowed,
there is no problem since m3() calls m4() and not
m2(). Indirect call m3() on OOPSLA will work well, if
m3() is sent to OSP paper. However, if message m3()
is sent to OSP paper and ConferenceAssociate role is
modi�ed such that m3() calls m2() and not m4(), bro-
ken delegation problem arises. In this case, this is an
o�shoot of the assumption. Initially, the assumption
of safe overriding was made positively. As OOPSLA
underwent spontaneous change, the assumption of safe
overriding became invalid. Here, broken assumptions
is a symptom that is an o�shoot of broken delegation.
This kind of situation in role modeling is OSP.

4.5 Broken Consultation
Broken consultation is another kind of misinterpre-
tation of messages that leads to OSP. For instance,
consider that an object A implements an operation
by forwarding it to another object B. In case the ob-
ject B makes an operation call on itself, it �nds the
de�nition of the adapter in the class associated with
A, and not in the class associated with B. Such wrong
semantics of message processing when method imple-
mentation speci�ed in A has been overridden is broken
consultation.

In Figure 1, if message m1() sent to OSP paper object
is forwarded to the object F of class Faculty wherein
m1() calls m2() and if m2() of OSP paper is made use
of during the execution of m1() and not m2() of F, it
is broken consultation. In this case, broken consulta-
tion appears as delegation. However, they are di�er-
ent. To illustrate, if the method holder F uses m2() of
OOPSLA (its nearest object in the delegation path)
in the course of execution of m1(), it is also broken
consultation. Thus, broken consultation has broader
semantics than delegation.

5. CONCLUSIONS
Is-role-of inheritance is presented as the kind of reuse
mechanism suitable for an RPCM design. Is-role-of
inheritance model necessarily involves OS. OS is not
a problem. Di�erent OSP symptoms that may arise in
modeling the is-role-of inheritance have been investi-
gated. Modeling is-role-of inheritance is bound to lead

to some OSP symptom or the other. For instance,
there are many ways in which the well known "self
problem" can de�nitely manifest as broken delega-
tion symptom or broken consultation symptom when
a message forwarding mechanism such as delegation or
consultation is used in modeling is-role-of inheritance.
Henceforth, OSP can not be altogether eliminated in
the new inheritance model. The existing role models
mainly provided inheritance by delegation for method
lookup but do not have strong claims as being OSP-
free.

6. REFERENCES
[1] Antero Taivalsaari. Delegation versus

Concatenation or Cloning is Inheritance too.
ACM Press OOPS Messenger, 6(3):2{49, July
1995.

[2] Antero Taivalsaari. On the Notion of
Inheritance. ACM Computing Surveys,
28(3):438{479, September 1996.

[3] M.Sakkinen. Disciplined Inheritance. In
Proceedings of ECOOP'89, pages 39{56, 1989.

[4] William Harrison and Harold Ossher.
Subject-Oriented Programming (A Critique of
Pure Objects). In Proceedings of OOPSLA,
pages 411{428, 1993.

[5] Alan Snyder. Encapsulation and Inheritance in
Object-Oriented Programming Languages. In
Proceedings of OOPSLA, September 1989.

[6] Peter Wegner and Stanley B. Zdonik.
Inheritance as an Incremental Modi�cation
Mechanism, or What Is and Isn't Like. In
ECOOP '88, pages 55{77, Oslo (Norway), 1988.
Springer-Verlag.

[7] Lieberman H. Using Prototypical Objects to
Implement Shared Behaviour in Object
Oriented Systems. In Proceedings of OOPSLA,
October 1996.

[8] Peter Wegner. Dimensions of Object-Based
Language Design. OOPSLA Proceedings in ACM
Sigplan Notices, pages 168{182, October 1987.

[9] Lynn Andrea Stein. Delegation is Inheritance.
OOPSLA Proceedings in ACM Sigplan Notices,
22:138{146, October 1987.

[10] Klaus Ostermann and Mira Mezini.
Object-Oriented Composition Untangled.
OOPSLA Proceedings in ACM Sigplan Notices,
pages 283{299, 2001.

[11] Daniel Bardou and Christophe Dony. Split
Objects: A Disciplined Use of Delegation within
Objects. In Proceedings of OOPSLA, pages
122{137, 1996.

[12] Edward Sciore. Object Specialization. ACM
Transactions On Information Systems,
7(2):103{122, 1989.

[13] George Gottlob, Michael Schre, and Brigitte
R�ock. Extending Object-Oriented Systems with
Roles. ACM Transactions on Information
Systems, 14(3):268{296, July 1996.

[14] Barbara Pernici. Objects with Roles. In
IEEE/ACM Conference on OÆce Information
Systems ACM SIGOIS, number 1, pages
205{215, Cambridge, Massachutes, April 1990.

[15] Janaki Ram D., Ramakrishnan R, Srinivas Rao
Ch., and Vivekananda N. CO-IP: An Object
Model for OÆce Information Systems. In
Proceedings of the Third International
Conference on Object Oriented Information
Systems (OOIS'96), pages 31{43, London,
December 1996.

[16] Bent Bruun Kristensen. Object Oriented
Modeling with Roles. In Proceedings of the
Second International Conf. on Object Oriented
Information Systems(OOIS), pages 57{71,
Dublin, Ireland, 1995. Springer Verlag.

[17] Chandra Sekharaiah K., Janaki Ram D., and
Kumar A.V.S.K. Typehole Model for Objects
with Roles in Object Oriented Systems. In
Fourteenth Europeon Conference on Object
Oriented Programming, Workshop Reader,
LNCS 1964, pages 301{302, Sophia Antipolis,
France, June 2000. Springer Verlag.

[18] Chandra Sekharaiah K., Arun Kumar, and
Janaki Ram D. A Security Model for Object
Role Database Systems. In International
Conference on Information and Knowledge
Engineering (Accepted, to appear), Las Vegas,
Nevada, USA, June 2002.

[19] Joel Richardson and Peter Schwarz. Aspects:
Extending Objects to Support Multiple,
Independent Roles. In Proceedings of the ACM
SIGMOD Int. Con. on Management of Data,
volume 20, pages 298{307, May 1991.

[20] Albano A., Ghelli G., and Orsini R. Fibonacci :
A Programming Language for Object Databases.
The VLDB Journal, 4(3):403{414, 1995.

[21] G.Kappel, W.Retschitzegger, and W.Schwinger.
A Comparison of Role Mechanisms in
Object-Oriented Modeling. In Proceedings of
Modellierung'98, K. Pohl, A. Schurr, G. Vossen
(eds), Bericht Nr. 6/98-I, Angewandte
Mathematik und Informatik, Universitat
Munster, pages 105{109, 2001.

[22] Raymond K. Wong. Heterogeneous and
Multifaceted Multimedia Objects in
DOOR/MM: A Role-Based Approach with
Views. Journal of Parallel and Distributed
Computing, pages 251{277, March 1999.

[23] G�unter Kniesel. Type-Safe Delegation for
Run-Time Component Adaptation. In ECOOP,
Lisbon, Portugal, 1999.

[24] Roel Wieringa and Wiebren DeJonge. The
Identi�cation of Objects and Roles - Object
Identi�ers Revisited. In Technical Report
IR-267, Vrije Universiteit, Amsterdam.

[25] IBM Research: Subject-oriented Programming
Group. Subject-Oriented Programming and
Design Patterns. http://
www.research.ibm.com/sop/.

[26] Richard Helm, I. M. Holland, and
D.Gangopadhyay. Contracts: Specifying
behavioral compositions in object oriented
systems. In Proceedings of
ECOOP/OOPSLA'90, volume 1, pages 169{180,
Ottawa, June 1990.

