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Abstract. We consider the problem of designing hierarchical two layer ring networks. The top layer consists
of a federal-ring which establishes connection between a number of node disjoint metro-rings in a bottom
layer. The objective is to minimize the costs of links in the network, taking both the fixed link establishment
costs and the link capacity costs into account.

Hierarchical ring network design problems combines the following optimization problems: Clustering,
hub selection, metro ring design, federal ring design and routing problems. In this paper a branch-and-price
algorithm is presented for jointly solving the clustering problem, the metro ring design problem and the
routing problem. Computational results are given for networks with up to 36 nodes.
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1. Introduction

Design of survivable communication networks is important for at least two reasons.
First of all there is a growing reliance on electronic communication in society. Secondly
failures (e.g. a link failure) may have a large impact, given the high capacity of links.

Self Healing Rings (or rings for short) have been widely used to ensure survivable
communication for several reasons. First of all, the rings are pre-configured such that
the only nodes that need to do re-routing in case of a link failure are the two endpoint
nodes of the failed link. Thus no communication with other nodes is necessary making
ring protection fast. Furthermore the node equipment is cheap to build and protection
does not require the involvement of an expensive network management system.

Larger networks consist of several interconnected rings, since it is neither possible
nor beneficial to restrict the entire network topology to a single ring. One possible way to
interconnect the rings is in a hierarchy. Hierarchical networks have existed for decades
and were introduced because of the limited switching capabilities in the telephone
systems. Hierarchies are still used since they divide the network in sub-networks which
can to some extend be treated independently, easing maintenance and upgrade.

In this paper we consider the design of hierarchical ring networks (HRNs), i.e.
hierarchical networks where each sub-network is a ring. We assume that communication
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Figure 1. A two layer hierarchical ring network.

demands are given and determine a HRN which satisfies the communication demands
as cheaply as possible. We present models and algorithms for two layers only, but both
models and algorithms can be generalized to more layers. We denote the ring in the top
layer the federal-ring, and the node disjoint rings in the bottom layer, the metro-rings.
See figure 1 for an example of a HRN. We consider single homing, i.e. exactly one node
from each metro-ring is in the federal-ring. This node is called the hub node.

The HRN design problem belongs to the more general class of hierarchical net-
work design problems which jointly considers hub location and network design. For
an excellent survey of this area we refer to [9]. In [9] the hierarchical network design
problem is decomposed into a number of smaller optimization problems:

Clustering: Decide which nodes should belong to the same metro-network.

Hub Selection: For each metro-network select hub nodes to connect the metro-networ-
ks to the federal-network.

Metro-Network Design: Determine the best network to connect the nodes in each
metro-network.

Federal-Network Design: Determine the best federal-network connecting the hub
nod-es.

Routing: Route the communication demands, minimizing the capacity usage in nodes
and links.

An approach to the hierarchical network design problem is to solve it step by step by
solving one or more of the above smaller optimization problems in each step. This is
what most papers suggest, including this paper. This means that the hierarchical network
design problem is solved by first solving e.g. the clustering problem and the metro-
network design problem, then the hub selection problem and the federal-network design
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problem and finally the routing problem. The optimization process is much simpler but
a suboptimal solution of the hierarchical network design problem may be obtained.

The main contribution of the paper is the implementation of a branch-and-price
algorithm which can be used to solve to optimality a modified model which includes the
clustering problem, the metro-ring design problem and the routing problem. We refer to
this problem as the modified HRN problem. The hub selection problem and the federal-
ring design problem can be solved jointly afterwards and is a Generalized Travelling
Salesman Problem considered in e.g. [3]. We discuss the modified HRN problem and
point out under what circumstances an optimal solution for the modified problem is
optimal for the original optimization problem. The problem modification has previously
been put forward and used for implementing heuristics but it has not been analysed
in detail. Optimal solutions have previously been obtained for networks with up to 12
nodes and used for comparison with heuristic values. Our branch-and-price algorithm
can in general solve instances with 20 nodes and for problems with special structure up
to 36 nodes.

The outline of the paper is as follows. In Section 2, we discuss related papers.
In Section 3 we consider the problem modification of the clustering problem and the
metro-ring design problem. In Section 4, the integer linear formulation of the modified
HRN problem is given and in Section 5 we describe how the integer linear model can
be solved using a branch-and-price algorithm. In Section 6 we give some computational
results and suggest some directions for future research. Finally we give some concluding
remarks in Section 7.

2. Previous work

Because of the importance of ring protection, a significant amount of work has been
carried out regarding the design of ring networks. In this section some related papers
are briefly discussed.

In [1] a two layer HRN design problem is studied. The hubs are assumed given, thus
eliminating the hub selection problem and reducing the federal-network design problem
to a Travelling Salesman Problem. The focus is on the clustering problem and the metro-
network design problem. For the optimization of the metro-network design problem, a
heuristic with guaranteed worst case performance is suggested. By constructing the rings,
the clustering problem is implicitly solved. Finally, the routing problem is ignored, i.e.
the capacity costs of the network is not considered.

In [6] a more real-world version of the HRN design problem is studied. Besides
requiring some metro-networks to be rings, some metro-networks are allowed to be tree-
like. This is achieved by dividing nodes into two groups, some which
require ring protection and some which do not. The communication demand pattern
assumes that each demand node only requires to communicate with one or a few ser-
vice nodes. This assumption simplifies the routing problem. The problem is solved in
steps using heuristics to first determine the clusters, select hubs, design the metro-
networks and design the federal-network. For each problem tailored heuristics are



64 THOMADSEN AND STIDSEN

used, which makes the combined optimization algorithm fast and applicable to what-if
analyses.

In [8] another type of hierarchical network design problem is considered. Each
sub-network is allowed to consist of several rings, which are connected to the same
hub nodes. Again the problem is solved in steps. First the clusters are determined and
the hubs selected, using the column generation method from [11]. The objective is to
maximize the traffic within the metro-networks. Secondly the metro-network design
problem is solved for each of the clusters separately by a column generation algorithm.
The algorithm is used to minimize the cost of the rings which connects all the nodes
in each of the metro-networks to the hubs. The costs includes both link costs and node
costs. The federal-network design problem and the routing problem is not considered.
Finally the developed algorithm is tested on a real world telecommunication network
from Korea Telecom.

Another type of the hierarchical network design problem is suggested in [7]. The
focus in this article is the clustering problem. The nodes are clustered in order to minimize
the number of necessary clusters, i.e. metro-networks, constrained by the capacity of the
metro-rings and the federal-ring. The cost of the metro-ring structures and the federal-
ring structures are thus not considered.

The hardness of the routing problem in combination with one or more other prob-
lems is illustrated in the paper [5]. Here the routing costs are considered in combination
with the logical design of the rings, i.e. which nodes in the rings should contain add-drop
equipment. An integer linear program is presented, but as it is pointed out, it is clearly
not suitable to exact solution approaches. Instead a tabu search heuristic for the com-
bined problem is presented. The main problem is that given a complete ring-network
design, the routing problem is itself a multicommodity optimization problem. Hence,
for each iteration in the tabu-search heuristic, many such multicommodity optimization
problems needs to be solved. The algorithm is tested on real world examples with up to
48 nodes.

In [14] the modified HRN problem was introduced and this was further developed
in [15, 16, 17, 18]. We use the same idea of a modified HRN problem in this paper,
and the problem modification is described in greater detail in Section 3. In the papers
[14, 15, 16, 17, 18] both a heuristic and an enumerative scheme is described, but the
number of possible networks grows exponentially, making the enumerative scheme
useless except for small and trivial instances (less than 10 nodes). The heuristic on the
other hand is able to handle large networks, but gives no guarantee regarding the quality
of the solutions obtained.

In [12] an integer linear program of the modified HRN problem is presented.
Optimal solutions can in some cases be obtained using the model, for networks with up
to 12 nodes and a maximum of 4 nodes in the metro-rings. The focus of the paper is
a “partition, construct and perturb” heuristic. This heuristic is compared with optimal
solutions when these can be obtained and with the heuristics from [14]. It is concluded
that better results than Shi and Fonseka are in general obtained.
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3. The modified HRN problem

Let the network G(V, E) where V is the set of nodes and E is the set of possible
bidirectional links. Let D be the set of demands, let Rmet be the set of possible metro-
rings and Rfed the set of possible federal-rings. For r ∈ Rfed or r ∈ Rmet, r ⊆ E , i.e. r
is a subset of links, and the links induce a ring. Let d ′

i j , i j ∈ D denote the demand for
communication flow between node i ∈ V and j ∈ V . Also let ce be the fixed cost for
establishing link e and correspondingly let the cost per capacity unit on link e be be.

The purpose of modifying the problem is to obtain a formulation which includes the
cluster problem, the metro-network design problem and implicitly includes the routing
problem. Thus no routing variables are necessary. This is possible, since we consider
unidirectional self-healing rings. The modification also allows a decomposition of the
total cost into costs for each ring which can be measured independently.

The cost of a HRN is assumed to depend solely on the links used by the rings
in the network and the capacity of these links, i.e. the fixed cost and the capacity cost
respectively. Thus the cost of a HRN is as given in equation (1), where r fed ∈ Rfed is
the federal-ring, R̄met ⊂ Rmet is the set of node disjoint metro-rings covering all nodes
and finally C APr is the minimal capacity required on each link of ring r to service the
traffic flow.

∑
e∈r fed

ce + CAPr fed ·
∑

e∈r fed

be +
∑

r∈R̄met

( ∑
e∈r

ce + CAPr ·
∑
e∈r

be

)
(1)

The fixed cost of the federal-ring is left as a separate optimization problem, i.e. the HRN
cost is initially approximated by the fixed cost of the metro-rings and the capacity cost:

∑
r∈R̄met

∑
e∈r

ce + CAPr fed ·
∑

e∈r fed

be +
∑

r∈R̄met

CAPr ·
∑
e∈r

be (2)

We consider unidirectional self-healing rings, for which it holds that communication
flow in the ring takes up capacity in all links in the ring. Thus if a demand i j ∈ D
traverse a ring, it takes up capacity d ′

i j in all links on the ring. Assume that B is the
average capacity cost per ring per unit of demand. An estimate of the capacity cost
for satisfying the demand d ′

i j is Bd ′
i j if i and j are in the same metro-ring and 3Bd ′

i j
if i and j are in different metro-rings, since three rings are in that case traversed (two
metro-rings and the federal-ring). Also the capacity cost can be expressed as a worst case
cost, K = 3B

∑
i j∈D d ′

i j corresponding to that all demands traverse three rings minus a
savings obtained by handling communication demands within metro-rings. Denote by
Dmet

r ⊂ D the set of demands handled within metro-ring r . In that case the capacity cost
can be estimated as follows.

CAPr fed ·
∑

e∈r fed

be +
∑

r∈R̄met

CAPr ·
∑
e∈r

be ≈ K − 2B
∑

r∈R̄met

∑
i j∈Dmet

r

d ′
i j (3)
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The total HRN cost is then estimated by the following.

K +
∑

r∈R̄met

∑
e∈r

ce − 2B
∑

r∈R̄met

∑
i j∈Dmet

r

d ′
i j (4)

The intuition behind this rewrite is, that minimizing the capacity cost corresponds to
maximizing the communication demand handled within metro-rings. This is in good
agreement with previous recommendations [4] and what has been done in e.g. [11].
Note that 2B will have to be experimentally determined. Different values of 2B will
result in different cost structures, e.g. a low 2B will correspond to the case where the
capacity cost is higher in the federal-ring than in the metro-rings.

The cost per ring per unit of demand may be far from constant (i.e. deviate consid-
erably from B). However if the capacity cost reflects a cost of node-equipment rather
than a cost proportional to the distance between nodes, B is thus proportional to the
number of nodes in the rings. In that case it makes much more sense to have a known,
fixed B corresponding to a known fixed number of nodes in the rings, and in particular
[14, 15, 16] study such networks. For HRNs where the capacity cost per ring per unit
of demand is not B in all cases, optimal solutions for the modified problem may not be
optimal in the original problem.

Note that the cost can now be decomposed into costs minus a reward for each
metro-ring plus a constant K , which can be measured independently. Thus the cost for
metro-ring r ∈ Rmet is:

cr =
∑
e∈r

ce − 2B
∑

i j∈Dmet
r

d ′
i j (5)

Consider the demand d ′
i j where i and j are in different metro-rings, i is in the federal-ring

and r is the metro-ring including i . In that case equation (4) includes a cost for routing
d ′

i j in r , but d ′
i j need not be routed “from i via r to i”—there is no need to route it in r

at all. Thus additional savings should be included if i is in the federal-ring. This saving
is included as a reward on nodes when the federal-ring is designed. The node reward is
the sum of all demands starting or ending in the node.

4. The problems

Given the modification of the problem, the idea is now to select the lowest cost set of
metro-rings, which includes nodes exactly once, i.e. a set-partitioning problem. However,
since there are too many metro-rings to pregenerate all, we generate metro-rings when
needed. Thus what we describe is actually a column generation algorithm or, since
branching is needed to get integer solutions, an integer programming column generation
algorithm, also known as branch-and-price [2, 20].

In this section we will describe the two problems we need to solve; the ring-
partitioning problem (which is a set-partitioning problem) and the ring-generation
problem. We will describe the branch-and-price algorithm in detail in Section 5.
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When the metro-rings have been designed, the federal-ring is designed as the short-
est ring, which includes exactly one node from each metro-ring and takes into account
node rewards as described in the previous section. This is a Generalized Travelling
Salesman Problem which can be solved using a branch-and-cut algorithm as done in
[3]. This problem seems to be easier than the ring-generation problem which is solved
many times, and thus the design of the federal-ring is not the bottleneck of the algorithm.
We will not consider the design of the federal-ring any further in this paper.

4.1. The ring-partitioning problem

Given a set of metro-rings R ⊂ Rmet, the ring-partitioning problem is the problem of
choosing the lowest cost subset of metro-rings in R, such that all nodes are covered
exactly once. Define pir = 1 if node i is part of ring r , 0 otherwise. The variables ur is
1 if ring r is selected, 0 otherwise. The ring-partitioning problem is then:

min
∑
r∈R

cr · ur (6)

s.t.
∑
r∈R

pir · ur = 1 ∀i ∈ V (πi ) (7)

ur ∈ {0, 1} (8)

The objective 6 is the total cost of selecting metro-rings, where cr is defined in
equation (5). Constraints (7) ensure that each node is in exactly one metro-ring and
constraints (8) are the integer domain constraints. Finally πi are the dual variables for
constraints (7). The problem obtained by relaxing constraint (8) is denoted the relaxed
ring-partitioning problem. If branching is necessary, additional constraints are added,
see Section 5.1. Rings are iteratively generated and added to R. The ring-generation
problem is described in the following section.

4.2. The ring-generation problem

The objective of the ring-generation problem is based on the cost in equation (5). How-
ever this cost does not include any information on which other rings are in R, and thus
it is possible that a node will never be included in any ring. The idea is to add a reward
to the objective, which reflects how difficult a node is to cover in the ring-partitioning
problem given the current set of rings R. A node is difficult to cover if e.g. a single ring
r ∈ R contains the node and thus r need to be selected regardless of the cost. If a node i
is difficult to cover a high reward is put on including i in a ring. The reward used is the
value of the dual variables in the optimal solution to the ring-partitioning problem, πi .

Let di j = B · d ′
i j , let n(r ) ⊆ V be the nodes in r and let Dr ⊂ D be the set of

demands which start and end in r . Formally, we generate the ring with most negative
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reduced cost, where the reduced cost is given by the following equation.

cr −
∑

i∈n(r )

πi =
∑
e∈r

ce −
∑

i j∈Dr

di j −
∑

i∈n(r )

πi (9)

We assume an upper limit, m is given on the number of nodes in the ring. Define the
following variables, yi = 1 if node i is in the ring, 0 otherwise, xe = 1 if link e is in
the ring, 0 otherwise and zi j = 1 if demand i j can be handled by the ring, otherwise 0.
(Equivalently, zi j = 1 if yi = 1 and y j = 1, otherwise 0.)

For S ⊂ V , let δ(S) ⊂ E denote the set of edges with an endpoint in S and an
endpoint not in S. Then the ring-generation problem can be stated as follows.

min
∑
e∈E

ce · xe −
∑
i j∈D

di j · zi j −
∑
i∈V

πi · yi (10)

s.t.
∑

e∈δ({i})
xe = 2yi ∀i ∈ V (11)

zi j ≤ yi ∀i j ∈ D (12)

zi j ≤ y j ∀i j ∈ D (13)

zi j ≥ yi + y j − 1 ∀i j ∈ D (14)∑
i∈V

yi ≤ m (15)

∑
e∈δ(S)

xe ≥ 2(yk + yl − 1)

∀S ⊂ V, 3 ≤ |S| ≤ n − 3, k ∈ S, l 	∈ S (16)

xe ∈ {0, 1}, yi ∈ {0, 1}, zi j ∈ {0, 1} (17)

The objective (11) corresponds exactly to the reduced cost given in equation (9). If a
node is selected (yi = 1), two links should be incident to node i , which is ensured by
constraint (11). If both nodes i and j are selected the variable zi j = 1, which is ensured
by the constraints (12), (13) and (14). The number of nodes in the rings is bounded by
the hop constraint (15). Subtour elimination constraints (16) ensure that a single ring is
generated and finally integer solutions are ensured by the domain constraints (17).

We solve the ring-generation problem by branch-and-cut as described in [19],
where the subtour elimination constraints are generated as needed. Also [10] describes
cuts which may improve the performance of the branch-and-cut algorithm. The ring-
generation problem is a generalization of the (Selective) Travelling Salesman Problem
and of the Quadratic Knapsack problem and thus we denote it the Quadratic Selective
Travelling Salesman Problem.

If branching is necessary, additional terms are added to the objective function and
additional constraints are added. These additions are described in Section 5.1.
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5. The branch-and-price algorithm

The branch-and-price algorithm is described in pseudo code in figure 2. The main idea
in a branch-and-price algorithm is to perform the bounding in a branch-and-bound
algorithm using column generation. The algorithm maintains an incumbent, i.e. the
lowest cost feasible solution known, and a set of branch-nodes, i.e. a set of relaxed ring-
partitioning problems. Initially the set of branch-nodes contains the ring-partitioning
problem without any branching decisions. A branch-node corresponding to a relaxed
ring-partitioning problem is solved using column generation in the inner while loop.
It is resolved in each iteration of the inner while loop and a ring is generated by the
ring-generation problem. If no ring exists with negative reduced cost the value of the
ring-partitioning problem is a lower bound. This lower bound is used in the outer loop
which is the branch-and-bound part of the algorithm.

In the outer loop it is checked whether the optimal solution to the relaxed ring-
partitioning problem solution is feasible, i.e. integer, or if it is a lower bound only. If the
solution is integer and better than the current incumbent, the incumbent is updated and
that branch is fathomed. If the solution is fractional, the lower bound is compared with
the current incumbent and if it is worse, the branch is fathomed. If neither is the case,
branching is performed.

5.1. Ryan-foster branching

Branching in a branch-and-price algorithm is more complicated than in a standard
branch-and-bound algorithm. We use Ryan-Foster branching [13] to obtain integer

Figure 2. The Branch-and-Price algorithm.
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solutions. This is possible since all coefficients of all constraints in the ring-partitioning
problem are 0 or 1 and all right hand sides are 1, see constraint (7).

Consider constraint i . Since the right hand side is 1 and variables have to be integer,
exactly one ring with pir = 1 has to be selected (ur = 1). For all other selected rings,
pir = 0. We say that “node i is covered by ring r”. The idea is now to identify a set of
rings S ⊂ Rmet and create two branches, (1) node i has to be covered by a ring in S and
(2) node i has to be covered by a ring not in S. The question is now, how do we select i
and S.

Assume node i is partially covered by more than one ring, and assume ring r is one
of these rings (i.e. 0 < ur < 1). Usual variable branching corresponds to letting S = {r},
thus the branches will be ur = 1 and ur = 0. This sort of branching is not suitable in
a column generation algorithm for several reasons all related to the vast amount of
variables that exists (but are not explicitly known). First of all since we set ur = 0 in
the ring-partitioning problem, r usually has a negative reduced cost and hence when
solving the ring-generation problem, r will be generated again. This can be handled
by modifying the ring-generation problem to specifically exclude r . However, usually
rings similar to r exists and thus these rings will be generated instead. This means that
the bound of the ur = 0 branch will not improve much when branching and we have an
unbalanced branch-tree where the depth is considerable.

The idea is to let S contain several rings and in particular include rings which have
not yet been generated (i.e. not in R). Thus in general S \ R 	= ∅. Identify a fractional
ring (0 < ur < 1) and two nodes i and j with pir = 1 and p jr = 1. If the solution is
fractional, such two nodes always exists. Let S = {r ∈ Rmet|pir = 1 ∧ p jr = 1}, that is
the rings that cover both i and j . The two branches are thus, (1) i and j are covered by
the same ring and (2) i and j are covered by different rings.

A branch decision is identified by a node-pair {i, j} and whether i and j should be
covered by the same ring or not. For a ring-partitioning problem, we have several such
branch decisions of both types. Denote by BSAME ⊂ V 2 the set of branching decisions
where node-pairs should be covered by the same ring and correspondingly denote by
BDIFF ⊂ V 2 the set of branching decisions where node-pairs should be covered by
different rings. Then we add the following constraints to the ring-partitioning problem
which implement the actual branching.

∑
{r∈R|pir =1∧p jr =1}

ur = 1 ∀{i, j} ∈ BSAME (γi j ) (18)

∑
{r∈R|pir =1∧p jr =1}

ur = 0 ∀{i, j} ∈ BDIFF (δi j ) (19)

We denote the dual variables of the constraints by γ{i, j} and δ{i, j} as indicated. The
constraints added to the ring-partitioning problem affect the calculation of the reduced
costs of rings, thus the objective of the ring-generation problem is changed. Note that
pir = 1 ∧ p jr = 1 exactly if zi j = 1 in the ring-generation problem. Let γ{i, j} = 0 if
{i, j} 	∈ BSAME and δ{i, j} = 0 if {i, j} 	∈ BDIFF, then the objective of the ring-generation
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problem (see equation (10)) becomes:∑
e∈E

ce · xe −
∑
i j∈D

(
di j + γ{i, j} + δ{i, j}

) · zi j −
∑
i∈V

πi · yi (20)

When solving the ring-generation problem, it is furthermore necessary to ensure that
only rings which fulfill the branching decisions are generated. This is ensured by the
following constraints.

yi − y j = 0 ∀ {i j} ∈ BSAME (21)

yi + y j ≤ 1 ∀ {i j} ∈ BDIFF (22)

Both constraints allows rings where both yi = 0 and y j = 0, but constraints (21) ensure
that if node i is selected, then so is j and vice versa. On the other hand, constraints (22)
ensure that rings generated include at most one of i and j .

6. Computational results

To test the branch-and-price algorithm, problem instances with between 10 and 20 nodes
are generated. The problem instances are generated similarly to what is done in [19].
The nodes are placed in a plane with the coordinates uniformly distributed between
0 and 100. The fixed costs (ce) are determined as the Euclidean distance. Rather than
generating both capacity costs (be) and the demands (d ′

i j ) and compute an average cost
per ring per unit of demand to obtain di j (as discussed in Section 3), we generate di j only.
The di j values are generated as uniformly distributed between 0 and an upper bound u.

Selecting a proper value of u is critical. If u is selected too small, then the optimal
solution is a single federal-ring including all nodes and no metro-rings. Using the same
value of u as in [19] proved sufficient. The upper bound u used is given in the following
equation.

u ≈ 5√
|V |3

(23)

The value of u arise by considering the tradeoff between total average demand and the
shortest tour measured in fixed link costs for rings with |V |/2 nodes. We refer to [19]
for an in-depth explanation. The important observation is, that a tradeoff exists between
the fixed link cost and the savings obtained from demands. As we shall see, the hop
constraint (15) is in most, but not all cases binding; thus a tradeoff exists. The tests were
run on a 1200 Mhz SUN Fire 3800. We use CPLEX 9.0 to solve linear programming
models.

For each of 10, 12, 14, 16, 18 and 20 nodes, 10 different random instances are
generated. We report results as averages over 10 instances. We vary the maximal number
of nodes in the metro-rings, m between 4 and min{10, |V | − 3}. In addition to this, we
investigate networks with 25 and 36 nodes with m equal to 5 and 6 respectively. It turns
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out, that since |V |/m is integer for these networks, they are easier to solve than networks
for which this is not the case. The results are given in Table 1. The table shows the number
of nodes, the maximum number of nodes in metro-rings, the number of branch-nodes,
the total time spent in seconds and the percentage spent on the ring-partitioning problem
and the ring-generation problem respectively. Finally the number of times that metro-
rings are generated (this includes cases where no metro-rings are actually found) and
the number of metro-rings in the optimal solution are listed.

For all problem instances with up to 20 nodes, the branch-and-price algorithm
terminates in at most 3 hours (average worst case is 73 minutes). Since the design of
HRNs are considered strategic problems, the computational time is acceptable. As it can
be seen, the bottleneck in the algorithm is the generation of rings which consistently
takes more than 90% of the running time. The gradually increasing running time for
increasing |V | may both be attributed to increased running time for each ring-generation
problem solved and to the increasing number of metro-rings which are generated (second
last column). The number of branch-nodes is limited, making memory issues negligi-
ble. However, each branch requires generation of a substantial number of metro-rings,
causing substantially higher running time.

Instances where |V |/m is integer are easier than instances where this is not the case.
This is due to the increased number of branch-nodes which is caused by an increased
amount of fractional variables. Especially when |V |/m = 2, the possibility of obtaining
an integer solution without branching is high. The special case when all metro-rings and
the federal-ring have the same number of nodes, i.e. |V |/m = m and |V |/m integer, is
considered in [14, 15, 16]. Since |V |/m is integer, as discussed above, such instances
are easier to solve to optimality than instances where this is not the case. The last two
rows in Table 1 gives results for instances with |V | = 25, m = 5 and |V | = 36, m = 6.
The most difficult instances with 36 nodes are solved in less than 6 hours and on average
over 10 instances in just above 1 1

2 hour.
For networks with up to 20 nodes, in most cases, the optimal solution contains

exactly the minimum number of metro-rings needed, given m. Only in 22 cases out
of 380 test runs in total, one more than the minimum number of metro-rings needed
is in the optimal solution. In Table 1, this is the reason why the last column contains
fractions. This indicates that the demand values are sufficiently high to make the metro-
rings profitable and the hop constraint (15) thus binding. On the other hand, since
some instances exists for which this is not the case, the demand values are not too
high.

6.1. Future research

The approach described in this paper can handle instances of the modified HRN problem
with up to 20 nodes. While we would like to solve larger problems, the discussion
in Section 1 should make clear that the modified HRN problem constitutes a hard
optimization problem. Furthermore, previous HRN approaches have either considered
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Table 1
Computational results. Averages over 10 instances.

#Branch Total Time Time Time #Rings #Metro
|V | m Nodes (sec.) Part. (%) Gene. (%) Gene. Rings

10 4 8.0 4.0 6.7 93.3 40.2 3.0
10 5 1.0 2.5 4.6 95.4 18.8 2.0
10 6 11.2 7.8 4.7 95.3 64.4 2.0
10 7 7.2 4.9 5.7 94.3 42.1 2.0

12 4 4.0 3.7 4.9 95.1 23.0 3.0
12 5 13.0 16.4 3.9 96.1 83.2 3.0
12 6 1.0 7.3 3.1 96.9 30.1 2.0
12 7 15.0 24.5 3.5 96.5 105.5 2.0
12 8 19.2 27.6 3.7 96.3 123.4 2.0
12 9 9.8 14.1 3.6 96.4 65.4 2.0

14 4 3.2 5.7 4.7 95.3 27.2 4.0
14 5 6.4 18.5 2.6 97.4 51.1 3.0
14 6 44.4 105.1 2.7 97.3 277.3 3.0
14 7 1.0 29.8 1.4 98.6 46.8 2.0
14 8 32.6 110.2 2.9 97.1 275.8 2.0
14 9 50.6 118.5 3.2 96.8 327.5 2.0
14 10 36.4 85.6 3.4 96.6 251.5 2.0

16 4 5.8 11.9 4.2 95.8 39.6 4.4
16 5 29.4 87.9 2.6 97.4 176.3 4.0
16 6 34.4 158.4 2.1 97.9 251.1 3.0
16 7 68.8 359.3 2.3 97.7 539.8 3.0
16 8 1.8 84.2 0.9 99.1 68.7 2.0
16 9 44.2 324.9 1.9 98.1 405.2 2.0
16 10 60.6 383.0 2.5 97.5 570.7 2.0

18 4 16.4 32.3 3.6 96.4 74.2 5.0
18 5 2.6 32.4 1.8 98.2 40.3 4.0
18 6 6.0 89.5 1.2 98.8 75.5 3.2
18 7 33.4 446.5 1.3 98.7 325.6 3.0
18 8 124.0 1183.7 2.1 97.9 1116.0 3.0
18 9 1.0 217.3 0.6 99.4 89.9 2.0
18 10 30.2 737.2 1.3 98.7 440.2 2.0

20 4 6.8 27.0 3.9 96.1 50.6 5.7
20 5 8.6 91.8 1.5 98.5 71.7 4.7
20 6 24.2 356.4 1.1 98.9 190.3 4.0
20 7 12.8 407.0 0.7 99.3 143.4 3.2
20 8 53.4 1854.6 0.9 99.1 659.6 3.0
20 9 179.8 4344.2 1.4 98.6 2026.2 3.0
20 10 1.0 688.0 0.3 99.7 117.8 2.0

25 5 11.2 302.0 1.0 99.0 110.8 5.9
36 6 21.0 5457.8 0.4 99.6 245.9 7.0
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heuristics, with no performance guarantees, or enumerative schemes which can handle
less than 12 nodes. In order to be able to handle larger instances in reasonable time, it
is paramount to reduce the time spent on ring-generation. Note that for each branch-
node in the branch-and-bound algorithm, at least one ring-generation problem has to be
solved to optimality (the one giving no rings) to ensure that the value obtained when
solving the ring-partitioning problem is indeed a bound. Thus it is inevitable that the
ring-generation problem has to be solved to optimality at least as many times as there
are branch-nodes. The remaining number of times that rings are generated heuristics
could be used, rings could be pre-generated and several rings could be generated each
time. These techniques could probably increase the size of the modified HRN problems
which can be handled. In this paper we have further considered the most abstract and
general formulation of the problem. An obvious practical improvement could be to limit
the links allowed in the network to the e.g. k nearest neighbours for each node. Another
approach to reduce the problem hardness is the use of a so-called compatibility graph
which disallow certain pairs of nodes to be in the same metro-network is suggested in
[11].

As mentioned in Section 3, the optimal solution of the modified HRN problem
may not be optimal in the original HRN problem. This is mainly for two reasons: The
metro-rings and the federal-ring is designed in separate (thus non-optimal) stages and
secondly, the modification assumes the average cost per ring per unit of demand of rings
are the same. It seems possible but nontrivial to include the federal-ring design in the
branch-and-price algorithm, but it seems more difficult to solve the problem with the
cost per ring per unit of demand. However, one initial approach to take is to investigate
how much the optimal solution for the modified HRN problem deviates from the optimal
solution to the original HRN problem. This could be done either by investigating very
small instances for which optimal solutions can be found or by finding a lower bound
on the original problem cost.

Also it would be interesting to allow bidirectional instead of unidirectional self-
healing rings. One possibility is to use the same problem modification, and thus approx-
imate the bidirectional rings with unidirectional rings. However, in that case the traffic
approximation becomes even more unreliable.

Note that a capacity constraint can be added to the ring-generation problem, thus
dealing with ring capacity for the metro-rings. If capacities are available in modular
sizes for varying capacity costs, an idea is to generate rings for each of the avail-
able capacities and corresponding capacity cost. This will probably not work very
well, essentially because the capacity cost per ring per unit of demand is different
for rings and thus B is not a good estimate for at least some rings. It may be possi-
ble to get reasonable results, however, by using different estimates of B for the vari-
ous capacities. Assume a low capacity ring has a high per unit capacity cost. In that
case, intuitively a high B should be used for low capacity rings, since this will corre-
spond to a low overall saving accounting for the more expensive per unit capacity, see
equation (4).
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7. Conclusion

In this paper we have considered the problem of designing HRNs. A problem modifica-
tion has been presented which has previously been used to build heuristics for designing
HRNs. A branch-and-price algorithm is described, implemented and tested. For the
modified problem this algorithm finds provably optimal solutions to networks with up
to 20 nodes in less than 3 hours. For problems with special structure, the algorithm finds
provably optimal solutions with up to 36 nodes in less than 6 hours. The computational
time depends heavily on the instances considered, and in particular it is possible to
design considerably larger networks if the maximum number of nodes in metro-rings
are small and/or if the number of nodes in the network is divisible with the maximum
number of nodes in metro-rings. Algorithmic improvements which could speed up the
algorithm have been suggested and we also suggest an investigation of how much the
optimal solution to the modified problem deviates from the solution to the original prob-
lem. In particular this investigation is important if bidirectional self healing rings are
considered.
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