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Abstract. We consider one dimensional random walks in random environment
where every time the process stays at a location, it dies with a fixed probability.
Under some mild assumptions it is easy to show that the survival probability goes
to zero as time tends to infinity. In this paper we derive formulas for the rate with
which this probability decays. It turns out that there are three distinct regimes,
depending on the law of the environment.

1. Introduction

We use the following notations to describe random walks in random environments
(RWREs) on Z in i.i.d. environments: Let P be a probability measure on

Ω := {(ωx)x∈Z = (ω+
x , ω

0
x, ω

−
x )x∈Z |∀x : ω+

x , ω
0
x, ω

−
x ≥ 0, ω+

x + ω0
x + ω−

x = 1}

We interpret an element ω ∈ Ω as the transition probabilities for a random walk in
Z: Let (Xn)n∈N be Markov chain on Z with transition kernel

Pω(Xn+1 = z + 1|Xn = z) := ω+
z

Pω(Xn+1 = z − 1|Xn = z) := ω−
z

Pω(Xn+1 = z|Xn = z) := ω0
z

We write P z
ω := Pω(.|X0 = z), and will omit the z if the random walk starts in

zero. We are interested in the joint probability measure

Pz := P × P z
ω
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of environment and random walk. An important assumption will be that P is a
product measure, meaning that

{ωx : x ∈ Z} is i.i.d. under P

It is reasonable to demand that, P -almost surely, ω+
0 > 0 and ω−

0 > 0, so that (with
probability one) the process can move infinitely far in both directions. We make
the even stronger assumption, that (P -almost surely) there is a uniform bound for
the minimal probability of going to the left or right. This condition is usually called
”uniform ellipticity” (UE):

∃ε0 > 0 s.t. P (ω+
0 ≥ ε0) = P (ω−

0 ≥ ε0) = 1 (UE)

An important quantity is denoted

ρi :=
ω−
i

ω+
i

for i ∈ Z (1.1)

An overview over results for this kind of random walk in random environment can
be found for example in Zeitouni (2004).

We now introduce the model we are interested in. It is originally motivated by
two papers on statistical mechanics1 where a higher-dimensional version was used
to describe polymers folding in a solution having random variations in the local
density. From this physical motivation it is desirable that the RWRE stays in parts
of the environment where the probability on staying at the same location (which
can be interpreted as a local density of a solution) is small. We model this by
choosing some r ∈ (0, 1), and whenever the process stays in place, it dies with
probability r.

Remark 1.1. The results in this paper are for measures P on the environment where
the survival probability is dominated by events depending only on P , such that the
parameter r does not appear in the result. See also the remark in section 3.5.

Formally, consider a probability space as above where we additionally have a
sequence (ξn)n of i.i.d. Bernoulli random variables, independent of environment
and random walk, with success probability r. Then we can define the extinction
time τ by

τ := inf{n ≥ 1 : Xn = Xn−1, ξn = 1} (1.2)

If we assume that there is a positive probability for extinction, that is

P (ω0
0 > 0) > 0

then it is easy to show limn→∞ P(τ > n) = 0. We are interested in the asymptotic
behavior of P(τ > n).

2. Preliminaries

One can easily give a lower bound for the survival probability by considering a
set of environments in which the survival probability is large, and such that the
probability for such a favorable environment is not too small. In this section we
introduce the notion of a valley, which will play the role of such an environment.

1Giacometti et al. (1994) and Giacometti and Murthy (1996)
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For some fixed ω ∈ Ω we define the potential function as follows:

V : R → R, x 7→


∑bxc

i=0 ln ρi if bxc > 0
0 if bxc = 0

−
∑−1

i=bxc ln ρi if bxc < 0

(2.1)

For some interval [a, c] and an environment ω we define the following quantities:

H+(a, c) := max
b∈[a,c]

(
max
x∈[b,c]

V (x)− min
x∈[a,b]

V (x)

)
H−(a, c) := max

b∈[a,c]

(
max
x∈[a,b]

V (x)− min
x∈[b,c]

V (x)

)
H(a, c) := min {H+(a, c),H−(a, c)}

See also figure 2.1 for an illustration. When no confusion occurs we simply write
H+,H− and H.

..........

H−

.

H+

.

x

.

V (x)

.

b

.

c

.

a

Figure 2.1. We denote by H− the maximal difference V (x) − V (y) in the
potential between any two points x < y in [a, b]. The same holds for H+ with
x < y replaced by x > y. Starting from the point of minimal potential, the

random walk has to overcome a potential difference of at least H− ∧H+ = H
to leave the valley.

We denote the first hitting time of the boundary by

U = Ua,c := inf{n ≥ 0 : Xn = a ∨Xn = c}
Then we have the following two lemmas, which give upper and lower bounds on
the probability of leaving a valley.

Lemma 2.1. Let ω ∈ Ω be an environment such that

∀x ∈ Z : ω0
x = 0, ω+

x ≥ ε0, ω
−
x ≥ ε0

where ε0 is the constant from (UE). Then there exist constants γ1 > 0 and γ2 =
γ2(ε0) > 0 such that for c− a ≥ γ2(ε0) and for all n ≥ 1 we have:

max
x∈(a,c)

P x
ω

(
Ua,c

γ1(c− a)4eH(a,c)
> n

)
≤ e−n (2.2)
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Lemma 2.2. Let ω be as in lemma 2.1, and assume we find some b ∈ (a, c) such
that

V (c) = max
x∈[b,c]

V (x), V (a) = max
x∈[a,b]

V (x) (2.3)

Then there are γ3, γ4 > 0 such that for c− a ≥ γ4 and for all n ≥ 1 we have

min
x∈(a,c)

P x
ω

(
γ3 ln(2(c− a))

Ua,c

eH(a,c)
> n

)
≥ 1

2(c− a)
e−n (2.4)

This version of lemmas 2.1 and 2.2 is taken from Gantert et al. (2009)2, whereas
the proofs can be found in Fribergh et al. (2010)3. Note that the point b of minimal
potential appears only in the assumption, but not in the result of lemma 2.2. But if
we restrict ourselves to a random walk starting from b, we can get rid the assumption
that the environment attains maximal potential at the edges:

Corollary 2.3. Under the assumptions of lemma 2.1, let b be the point with min-
imal potential in (a, c). Then for all c− a ≥ γ4 and all n ≥ 1 we have

P b
ω

(
γ3 ln(2(c− a))

Ua,c

eH(a,c)
> n

)
≥ 1

2(c− a)
e−n (2.5)

Here we can use the same constants γ3, γ4 as in lemma 2.2.

Proof of the corollary: Choose ā ∈ [a, b] and c̄ ∈ [b, c] such that V (ā) =
maxx∈[a,b] V (x) and V (c̄) = maxx∈[b,c] V (x). Then [ā, c̄] satisfies (2.3), and we
have H(a, c) = H(ā, c̄). Using lemma 2.2 we get

P b
ω

(
γ3 ln(2(c− a))

Ua,c

eH(a,c)
> n

)
≥ P b

ω

(
γ3 ln(2(c̄− ā))

Uā,c̄

eH(ā,c̄)
> n

)
≥

≥ 1

2(c̄− ā)
e−n ≥ 1

2(c− a)
e−n

�

Let b1, b2, h > 0, x ∈ Z and k ∈ N. We define the event that there is a valley of
depth h lnn at the interval In := [x− b1 lnn, x+ b2 lnn] around the location x by

Sk
n(x, b1, b2, h) :=

{
∀i ∈ In : ω0

i ≤ 1

k

}
∩


V (x) = miny∈In V (y)

V (x)− V (x− b1 lnn) ≥ h lnn

V (x− b2 lnn)− V (x) ≥ h lnn

 (2.6)

Note that since we extended the definition of V to R, this depends only on locations
in [

x+ b−b1 lnnc, x+ bb2 lnnc
]
∩ Z

In the definition of Sk
n, the left event ensures that while the random walk stays

inside In, the probability of dying is not too large. The right event implies for
ω ∈ Sk

n(x, b1, b2, h) that

H(x− b1 ln, x+ b2 ln) ≥ h lnx

so that we can use corollary 2.3 to bound the probability of leaving In.

2 cf. Gantert et al. (2009), p 23
3 cf. Fribergh et al. (2010), pp 15
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For k = ∞, we denote

S∞
n (x, b1, b2, h) :=

∩
k∈N

Sk
n(x, b1, b2, h)

Equivalently, S∞(x, b1, b2, h) can be defined as in (2.6), with the left event replaced
by
{
∀i ∈ In : ω0

i = 0
}
.

3. Results

3.1. The polynomial case. We first cover the case where we can create a valley such
that ω0

· is zero on the inside of the valley. Consequently, the random walk survives
as soon as we can ensure that it does not leave the valley.

Lemma 3.1. Assume

p := min
{
P (ln ρ0 > 0, ω0

0 = 0), P (ln ρ0 < 0, ω0
0 = 0)

}
> 0 (3.1)

Then for all b1, b2, h > 0 and k ∈ N ∪ {∞}, we have

lim
n→∞

lnP (Sk
n(x, b1, b2, h))

− lnn
= Ck(b1, b2, h)

where

Ck(b1, b2, h) = −(b1 + b2) lnP

(
ω0
0 ≤ 1

k

)
+ sup

t>0

{
ht− b1 lnE

(
ρt0

∣∣∣∣ω0
0 ≤ 1

k

)}
+

+ sup
t>0

{
ht− b2 lnE

(
ρ−t
0

∣∣∣∣ω0
0 ≤ 1

k

)}
(3.2)

Furthermore we set

Dk(h) := inf
{
Ck(b1, b2, h) : b1, b2 > 0

}
Then

lim
k→∞

Dk(h) = D∞(h)

The main result of this paper is that in this case, P(τ > n) decays at a polynomial
rate.

Theorem 3.2. Assumption (3.1) implies

lim
n→∞

lnP(τ > n)

− lnn
= D∞(1) ∈ (0,∞)

3.2. Survival inside of a valley. In this section we cover the case where (3.1) is
violated, meaning there are no valleys with ω0

· = 0 on the inside. It may however
happen that there are valleys consisting of locations that are not too dangerous in
the sense that ω0

· decays with n. We denote such an event by

Tn(x, b1, b2, h) := Sn
n(x, b1, b2, h) (3.3)

=

{
∀i ∈ In : ω0

i ≤ 1

n

}
∩


V (x) = miny∈In V (y)

V (x)− V (x− b1 lnn) ≥ h lnn

V (x− b2 lnn)− V (x) ≥ h lnn


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To decide when Tn has positive probability we look at

p+n := P

(
ln ρ0 > 0, ω0

0 ≤ 1

n

)
p−n := P

(
ln ρ0 < 0, ω0

0 ≤ 1

n

)
p0n := P

(
ln ρ0 = 0, ω0

0 ≤ 1

n

)
By monotone convergence we see that (3.1) being violated implies

lim
n→∞

min
{
p+n , p

−
n

}
= 0 (3.4)

For this section assume

∀n : min
{
p+n , p

−
n

}
> 0 (3.5)

Then Tn has positive probability for all n. In order to compute P (Tn) we need some
regularity in the way ln ρ· behaves when conditioning on

{
ω0
· ≤ 1

n

}
. We assume

the following limits exist as weak limits of probability distributions:

P+
n (·) := P

(
ln ρ0 ∈ ·

∣∣∣∣ω0
0 ≤ 1

n
, ln ρ0 > 0

)
w−−−−→

n→∞
P+(·) (3.6a)

P−
n (·) := P

(
− ln ρ0 ∈ ·

∣∣∣∣ω0
0 ≤ 1

n
, ln ρ0 < 0

)
w−−−−→

n→∞
P−(·) (3.6b)

Q+
n (·) := P

(
ln ρ0 ∈ ·

∣∣∣∣ω0
0 ≤ 1

n
, ln ρ0 ≥ 0

)
w−−−−→

n→∞
Q+(·) (3.6c)

Q−
n (·) := P

(
− ln ρ0 ∈ ·

∣∣∣∣ω0
0 ≤ 1

n
, ln ρ0 ≤ 0

)
w−−−−→

n→∞
Q−(·) (3.6d)

Here
w−→ denotes weak convergence, and P+, P−, Q+ and Q− are the limiting mea-

sures having support in [0,∞). We make the following assumption to ensure that
the first two limits are non-degenerate, meaning (0,∞) has positive probability.

∃t > 0 such that P+([t,∞)) > 0 and P−([t,∞)) > 0 (3.7)

Note that Q+ or Q− are allowed to be degenerate, by which we mean equal to the
Dirac measure in zero. Also note that in the previous case we had

P+(·) = P (ln ρ0 ∈ ·|ω0 = 0, ln ρ0 > 0)

and (3.1) implied (3.7). We need to look at the limiting distribution of ln ρ· still a
little closer: Define

ε+n := sup

{
ε : P

(
ω0
0 ≤ 1

n
, ln ρ0 > ε

)
> 0

}
= sup

{
ε : P

(
ln ρ0 > ε

∣∣∣∣ω0
0 ≤ 1

n
, ln ρ0 > 0

)
> 0

}
≤ ln

1− ε0
ε0

Here the last inequality is due to (UE). The sequence (ε+n )n is decreasing and
bounded by zero, therefore some limit exists:

ε+ := lim
n→∞

ε+n

We have P+
n ([ε+m,∞)) = 0 all n ≥ m. Therefore P+([ε+m,∞)) = 0 for any m, and

(3.7) implies ε+ > 0. Alternatively, ε+ is the essential supremum of a random
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variable having distribution P+. We define ε− ∈ (0,∞) similarly as the essential
supremum of a random variable with distribution P−. In the same way the essential
infima can be controlled:

δ+n := sup
{
t ≥ 0 : Q+

n ([0, t]) = 0
}
≥ 0 (3.8)

This is an increasing sequence bounded by ε+, and we set

δ+ := lim
n→∞

δ+n ∈ [0, ε+]

Note that δ+ and δ− correspond to the essential infima of random variables having
distribution Q+ and Q−. Both δ+ or δ− may be zero, for example if (3.4) holds
together with P (ω0

0 = 0, ω+
0 = ω−

0 = 1
2 ) > 0. Those quantities will now play a role

in the value of the exponent.

3.3. The intermediate case.

Lemma 3.3. In addition to assumptions (3.4) - (3.7), assume the following limits
exist in [0,∞]:

a+ := lim
n→∞

ln p−n
ln p+n

and a+0 := lim
n→∞

ln p0n
ln p+n

and set

a− := lim
n→∞

ln p+n
ln p−n

=
(
a+
)−1

as well as a−0 := lim
n→∞

ln p0n
ln p−n

= a−a+0

We then get

lim
n→∞

lnP (Tn(x, b1, b2, h))

lnn ln(min{p+n , p−n })
= C(b1, b2, h) (3.9)

where

C(b1, b2, h) = min{1, a−}C+(b2, h) + min{1, a+}C−(b1, h) (3.10)

and

C−(b1, h) =
h+ δ+b1 +min{1, a−, a−0 }(−h+ b1ε

−)

ε− + δ+

C+(b2, h) =
h+ δ−b2 +min{1, a+, a+0 }(−h+ b2ε

+)

ε+ + δ−

This result applies uniformly for all b1 ∈ [ h
ε− , k], b2 ∈ [ h

ε+ , k] and furthermore we
have

inf

{
C−(b1, h) : b1 ∈

[
h

ε−
, k

]}
=

h

ε−

inf

{
C+(b2, h) : b2 ∈

[
h

ε+
, k

]}
=

h

ε+

In the lemma, we set 1
0 := ∞, 1

∞ := 0 and ln 0 := −∞. Because of this last part,

p0n = 0 for some n implies a+0 = a−0 = ∞.
The intuition behind a+0 is that this quantity measures how much P+ and Q+

differ: If a+0 > 1, then P+ = Q+ holds, while a+0 < 1 implies Q+({0}) = 1.
Similarly to the quantity Dk(h) in lemma 3.1, we write

D :=
min{1, a−}

ε+
+

min{1, a+}
ε−
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so that

inf

{
C(b1, b2, h) : b1 ≥ h

ε−
, b2 ≥ h

ε+

}
= hD

Then we have the following result

Theorem 3.4. We work under the assumptions of lemma 3.3. Assume that for
some κ > 0

lim
n→∞

lnmin{p+n , p−n }
− lnκ n

= c ∈ (0,∞) (3.11)

then

1

1 + κ

(
κ

1 + κ

)κ

D ≤ lim inf
n→∞

lnP(τ > n)

−c lnκ+1 n
≤ lim sup

n→∞

lnP(τ > n)

−c lnκ+1 n
≤ D (3.12)

3.4. The stretched-exponential case. We have obtained some results for the case
where min{p+n , p−n } is of constant order or of the order e−c lnκ n for some κ, c > 0.
Now we give a weaker result for the remaining case.

Theorem 3.5. Assume that the assumptions of lemma 3.3 hold, but instead of
(3.11) we have some κ > 0 such that

lim
n→∞

ln(min{p+n , p−n })
−nκ

= c ∈ (0,∞) (3.13)

Then we have

κ

1 + 5κ
≤ lim inf

n→∞

ln(− lnP(τ > n))

lnn
≤ lim sup

n→∞

ln(− lnP(τ > n))

lnn
≤ κ (3.14)

Let us briefly consider why the concept of valleys is not well suited for handling
the case of Theorem 3.5. Consider two measures P and P̃ on the environment such
that both satisfy

min{p+n , p−n } ∼ ce−nκ

but

P

(
ω0
0 = 0, ω+

0 = ω−
0 =

1

2

)
=: γ > 0 (3.15)

and

P̃

(
ω0
0 = 0, ω+

0 = ω−
0 =

1

2

)
= 0 (3.15’)

Denote the RWREs having measure P and P̃ for the environment by P respectively
P̃. We define for the interval In := [ −n

1
3 , n

1
3 ] the event

S :=

{
∀x ∈ In : ω0

x = 0, ω+
x = ω−

x =
1

2

}
that the RWRE inside the interval In is a simple random walk. We have P (S) ∼
exp(2n

1
3 ln γ). We can use the following result for simple random walks starting in

zero:

Theorem 3.6. Let Un be the first time that the random walk hits the boundary an
interval of length l(n) around zero. Moreover assume

lim
n→∞

l(n) = ∞ and lim
n→∞

l2(n)

n
= 0
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Then for c > 0

lim
n→∞

l2(n)

n
lnP (Un ≥ cn) = −cπ2

8

The proof can be found in Spitzer (1976), pp 237. Using this Theorem with

l(n) = n
1
3 , we have

P(τ > n) ≥ P (S) inf
ω∈S

Pω(Un ≥ n) ≥ exp
{(

−π

8
+ 2 ln γ − ε

)
n

1
3

}
On the other hand there is no corresponding lower bound for P̃. Now for κ > 1

3 this
bound is better than the one obtained by surviving on the inside of a valley, since
the cost of creating a valley is of the order e−cnκ ln(n). However the probability that
a valley occurs does not depend on whether (3.15) or (3.15’) hold.

3.5. Remarks.

Remark 3.7. In the definition of the model, we introduced the quantity r as the
probability that the random walk dies once it stays at the same location. One notes
that r does not appear in the constants in (3.2) and (3.10). That is because we
have obtained the results under conditions (3.1) and (3.5), which imply that there
are valleys, where on the inside the probability for survival is 1 in the first case, and
some positive constant depending on r in the second case. In the proofs we show
that the survival probability is dominated by the probability that such a valley is
formed, which depends only on the environment and not on r.

Remark 3.8. An interesting question is whether for any sequence (qn)n∈N, we can
find a probability measure for which min{p+n , p−n } decays exactly as (qn)n. Indeed
we can easily construct a suitable measure. It is enough to describe the distribution
of ω0 because P is a product measure. For this, let (qn)n be any real sequence in
[0, 1] decreasing to zero. Define

Π+
n :=

(
1 + ε

2 + ε

(
1− 1

n

)
,
1

n
,

1

2 + ε

(
1− 1

n

))
Π−

n :=

(
1

2 + ε

(
1− 1

n

)
,
1

n
,
1 + ε

2 + ε

(
1− 1

n

))
Then for any n

ω0 = Π+
n =⇒ ρ0 = 1 + ε

ω0 = Π−
n =⇒ ρ0 = (1 + ε)−1

Now we define P as the discrete probability measure taking values in the set
{Π±

n : n ∈ N}, with

P (ω0 = Π+
n ) = P (ω0 = Π−

n ) =
qn − qn+1

2c
∈ [0, 1], n ∈ N

Here c := q0 is the normalizing constant such that P is a probability measure. Now
independently of n

P

(
ln ρ0 ∈ ·

∣∣∣∣ω0
0 ≤ 1

n
, ρ0 6= 1

)
=

1

2
δ− ln(1+ε)(·) +

1

2
δln(1+ε)(·)

where δx is the Dirac distribution in x. Conditions (3.6a),(3.6b) are satisfied with

P+([t,∞)) = P−([t,∞)) = 1[ln(1+ε),∞)(t)
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Moreover we get ε+ = ε− = δ+ = δ− = ln(1+ ε) and a+ = a− = 1. We summarize
this in the following corollary:

Corollary 3.9. For every sequence (qn)n in [0, 1] decreasing to zero there is a prob-
ability measure P such that

min{p+n , p−n } = qn ∀n ∈ N

In particular, for every κ > 0 we find a probability measure P and constants c1, c2 >
0 such that for all n large enough

e−c1 ln1+κ n ≤ P(τ > n) ≤ e−c2 ln1+κ n

4. Proofs - the polynomial case

The proofs in this section modify the proof of Theorem 1.3 in Gantert et al.
(2009)4. We use Cramer’s Theorem from large deviations5:

Theorem 4.1. Let (Xn)n≥1 be i.i.d. random variables taking values in R with law
Q such that the moment generating function Λ(t) := EQ(e

tX1) is finite for some
t > 0. Then for all x > E(X1) we have

lim
k→∞

−
lnQ( 1k

∑k
i=1 Xi ≥ x)

k
= Λ∗(x) (4.1)

where Λ∗ is the Legendre transform of Q:

Λ∗(x) = sup
t≥0

{tx− lnΛ(t)}

Proof of lemma 3.1: For ease of notation we will omit the integer parts, that is we
treat b2 lnn, b1 lnn and h lnn as integers. We fix k and say that a location x is
safe if ω0

x ≤ 1
k . Consider the following events:

A+
n :={ωi is safe ∀i ∈ [x, x+ b2 lnn]} (4.2a)

A−
n :={ωi is safe ∀i ∈ [x− b1 lnn, x]} (4.2b)

B+
n :=

{
x+b2 lnn∑

i=x

ln ρi ≥ h lnn

}
(4.2c)

B−
n :=

{
x∑

i=x−b1 lnn

ln ρi ≥ h lnn

}
(4.2d)

C+
n :={V (x) = min{V (y) : y ∈ [x, x+ b2 lnn]}} (4.2e)

C−
n :={V (x) = min{V (y) : y ∈ [x− b1 lnn, x]}} (4.2f)

Now Sk
n decomposes as

Sk
n(x, b1, b2, h) = A+

n ∩B+
n ∩ C+

n ∩A−
n ∩B−

n ∩ C−
n

Conditioned on A+
n , the distribution of ln ρi for i = 0, ..., b2 lnn is

Q(·) := P

(
ln ρ0 ∈ ·

∣∣∣∣ω0
0 ≤ 1

k

)
4 cf. Gantert et al. (2009), pp 7
5 cf. for example section 2.2.1 in Dembo and Zeitouni (2010), in particular corollary 2.2.19
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For b2 < h(E(ln ρ0|ω0
0 ≤ 1

k ))
−1 we can applying Theorem 4.1 with k replaced by

b2 lnn and x by h
b2
, which yields

lim
n→∞

lnP (B+
n |A+

n )

− lnn
= b2Λ

∗
(

h

b2

)
(4.3)

where

Λ∗(x) = sup
t≥0

{
tx− lnE

(
ρt0

∣∣∣∣ω0
0 ≤ 1

k

)}
(4.4)

For larger values of b2 the limit in (4.3) is zero, while the supremum in (4.4) is
attained at t = 0 and also equals zero. The following relation is therefore valid for
all b1, b2 > 0

lim
n→∞

ln[P (B+
n |A+

n )P (A+
n )P (B−

n |A−
n )P (A−

n )]

− lnn
= −(b2 + b1) lnP

(
ω0
0 ≤ 1

k

)
+

+sup
t≥0

{
th− b2 lnE

(
ρt0
∣∣ω0

0 ≤ 1

k

)}
+ sup

t≥0

{
th− b1 lnE

(
ρ−t
0

∣∣ω0
0 ≤ 1

k

)}
Now we have (using h > 0)

b2 lnnP
(
A+

n , B
+
n , C+

n

)
=

=

b2 lnn∑
j=0

P

(
A+

n ,

b2 lnn∑
i=0

ln ρi ≥ h lnn, V (0) = min
{
V (x) : x = 0, ..., b2 lnn

})

≥
b2 lnn∑
j=0

P

(
A+

n ,

b2 lnn∑
i=0

ln ρi ≥ h lnn, V (j) = min
{
V (x) : x = 0, ..., b2 lnn

})

≥ P

(
A+

n ,

b2 lnn∑
i=0

ln ρi ≥ h lnn, ∃j : V (j) = min
{
V (x) : x = 0, ..., b2 lnn

})
= P

(
A+

n , B
+
n

)
Therefore

lim
n→∞

lnP (A+
n , B

+
n , C+

n )

lnn
≥ lim

n→∞

lnP (A+
n , B

+
n ) + ln(b2 lnn)

lnn
=

= lim
n→∞

lnP (A+
n , B

+
n )

lnn

Since the converse inequality is always true, this shows (3.2). By definition

Dk(h) = inf
b2>0

{
sup
t≥0

{
ht− b2 lnE

(
ρt0

∣∣∣∣ω0
0 ≤ 1

k

)}
− b2 lnP

(
ω0
0 ≤ 1

k

)}
+

+ inf
b1>0

{
sup
t≥0

{
ht− b1 lnE

(
ρ−t
0

∣∣∣∣ω0
0 ≤ 1

k

)}
− b1 lnP

(
ω0
0 ≤ 1

k

)}
(4.5)

For the second claim, consider the functions

f±
k : [0,∞) → R, t 7→ E

(
ρ±t
0

∣∣∣∣ω0
0 ≤ 1

k

)
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Because of uniform ellipticity both functions are finite everywhere, and additionally
they are strictly convex, infinitely differentiable and satisfy f±(0) = 1 and f±(t) →
∞ for t → ∞. Therefore there exist unique t±k > 0 such that

f+
k (t+k ) = E

(
ρ
t+k
0

∣∣∣∣ω0
0 ≤ 1

k

)
=

1

P (ω0
0 ≤ 1

k )
> 1 (4.6)

f−
k (t−k ) = E

(
ρ
−t−k
0

∣∣∣∣ω0
0 ≤ 1

k

)
=

1

P (ω0
0 ≤ 1

k )
> 1

Inserting t+k and t−k in (4.5) yields

Dk(h) ≥ h(t+k + t−k ) (4.7)

We claim that equality holds in (4.7). To see this, set

gb(t) := th− b ln

[
E

(
ρt0

∣∣∣∣ω0
0 ≤ 1

k

)
P

(
ω0
0 ≤ 1

k

)]
The function gb is concave for every b > 0, since by Cauchy-Schwarz:

E

(
ρ

t1+t2
2

0

∣∣∣∣ω0
0 ≤ 1

k

)2

≤ E

(
ρt10

∣∣∣∣ω0
0 ≤ 1

k

)
E

(
ρt20

∣∣∣∣ω0
0 ≤ 1

k

)
By dominated convergence (using again that P is uniformly elliptic) we get
d
dtE(ρtω0

0 ≤ 1
k ) = E( d

dtρ
t|ω0

0 ≤ 1
k ) and therefore

g′b(t) = h−
bE(ρt0 ln ρ0|ω0

0 ≤ 1
k )

E(ρt0|ω0
0 ≤ 1

k )

and setting

b̄ = b̄(t+k ) := h

(
E

(
ρ
t+k
0 ln ρ0

∣∣∣∣ω0
0 ≤ 1

k

)
P

(
ω0
0 ≤ 1

k

))−1

yields that g′
b̄
(t+k ) = 0 and thus by concavity

inf
b2>0

{sup
t≥0

{gb(t)}} ≤ gb̄(t
+
k ) = ht+k

Using the same reasoning for the second line in (4.5) we conclude

Dk(h) = h(t+k + t−k )

It remains to show limk→∞ t+k = t+∞. First note that {t+k : k ∈ N} is bounded:
Because of (3.1) we find α > 0 such that

P

(
ω0
0 = 0, ω−

0 ≥ 1

2
+ α

)
= β > 0

Therefore

1

P (ω0
0 = 0)

≥ 1

P (ω0
0 ≤ 1

k )
= E

(
ρ
t+k
0

∣∣∣∣ω0
0 ≤ 1

k

)
≥ E

(
ρ
t+k
0

∣∣ω0
0 = 0

)
P (ω0

0 = 0) ≥

≥
(
1 + 2α

1− 2α

)t+k

βP (ω0
0 = 0)

That is:

t+k ≤
(
−2 lnP (ω0

0 = 0)− lnβ
)(

ln
1 + 2α

1− 2α

)−1
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Now choose any subsequence such that t′ := limi→∞ tki exists. Then

1

P (ω0
0 = 0)

= lim
i→∞

1

P (ω0
0 ≤ 1

ki
)
= lim

i→∞
E
(
ρ
t+ki
0

∣∣∣ω0
0 ≤ 1

ki

)

= lim
i→∞

E
(
ρ
t+ki
0 1{

ω0
0≤

1
ki

})
P (ω0

0 ≤ 1
ki
)

=
E
(
ρt

′

0 1{ω0
0=0}

)
P (ω0

0 = 0)
= E(ρt

′

0 |ω0
0 = 0) (4.8)

Here the second to last equality is due to dominated convergence, the boundedness
of t+n and uniform ellipticity. We conclude that t′ satisfies (4.6). Since t+∞ is the
unique positive value satisfying this equation, we see t′ = t+∞. �

Proof of Theorem 3.2: We start with the lower bound. Let α > 0 and choose
b1, b2 > 0 arbitrary. We write

Un := inf
{
n ≥ 0

∣∣∣Xn ∈ {b−b1 lnnc, bb2 lnnc}
}

Then

P0(τ > n) ≥ P (S∞
n (0, b2, b1, 1)) inf

ω∈S∞
n

{
Pω(Un > n)Pω(τ > n|Un > n)

}
By lemma 3.1 there is an n0 so that for all n ≥ n0 we have:

P (S∞
n (0, b2, b1, 1)) ≥ n−C∞(b2,b1,1)−α

Remember that for ω ∈ S∞
n , zero has minimal potential in [−b1 lnn, b2 lnn] and

H = H(−b1 lnn, b2 lnn) ≥ lnn. By corollary 2.3 we get for some c2 > 0:

P 0
ω(Un ≥ n) = P 0

ω

(
γ3 ln(2 ln(n)(b2 + b1))

Un

eH
≥ γ3 ln(2 ln(n)(b2 + b1))

n

eH

)
≥

≥ 1

2 ln(n)(b2 + b1)
exp

(
−γ3 ln(2 ln(n)(b2 + b1))

n

eH

)
≥ exp(−c2 ln lnn) (4.9)

Moreover, conditional on the random walk never leaving the interval
[−b1 lnn, b2 lnn], the probability of surviving is 1, since here the probability for
staying at the same location equals zero. In total we get

lim inf
n→∞

lnP0(τ > n)

lnn
≥ −C∞(b1, b2, 1)− α

Letting α tend to zero and taking the infimum over all b1, b2 yields

lim sup
n→∞

− lnP0(τ > n)

lnn
≤ D∞(1) (4.10)

Now we address the upper bound: Let α, β, γ, δ > 0 and k ∈ N. We say x is
dangerous if ω0

x > 1
k and we write Θ for the set of dangerous locations. An

environment is called good if the following conditions apply:

∀x ∈ [− ln1+α n, ln1+α n], b2, b1 > 0 we do not have Sk
n(x, b2, b1, 1− δ) (4.11)

|Θ ∩ [0, ln1+α n]|, |Θ ∩ [− ln1+α n, 0]| ≥ 1

2
P (ω0

0 >
1

k
) ln1+α n (4.12)

We estimate the probability of not being in a good environment: In (4.12), we
have the event that a binomial random variable with bln1+α nc trials and success
probability P

(
ω0
0 ≤ 1

k

)
has at least 1

2P (ω0
0 ≤ 1

k ) ln
1+α n successes. The probability
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that this does not occur can be bounded by e−c3 ln1+α n for some c3 > 0. Now
concerning (4.11): Because of uniform ellipticity a valley of depth 1− δ requires

b2, b1 ≥ (1− δ)

(
ln

1− ε0
ε0

)−1

So the number of valleys in the interval [− ln1+α n, ln1+α n] is at most

2 ln 1−ε0
ε0

ln1+α n

2(1− δ) lnn
=: c4 ln

α n

Since those valleys must remain inside [− ln1+α n, ln1+α n] and may only have inte-
ger length we can estimate for large enough n

P (∃b2, b1 > 0 : Sk
n(0, b2, b1, 1− δ)) ≤

bln1+α nc∑
b1,b2=1

P

(
Sk
n

(
0,

b2
lnn

,
b1
lnn

, 1− δ

))
≤

≤
bln1+α nc∑
b1,b2=1

n−Ck( b2
lnn ,

b1
lnn ,1−δ)+β ≤ ln2(1+α)(n)n−Dk(1−δ)+β

So for large n we have

P (ω is not good ) ≤ 2e−c3 ln1+α n + c4e
(−Dk(1−δ)+β) lnn+ln(2α(1−α) ln2 n) (4.13)

From here on, let ω be a good environment. The idea is to consider time intervals

of length n1− δ
2 and show that in each such interval the probability of hitting a

dangerous locations is at least a constant. Since there are bn δ
2 c such time intervals

we can then conclude that the extinction probability decays fast.
Let a, b ∈ Θ be such that [a, b] ⊂ [− ln1+α n, ln1+α n] and (a, b) ∩ Θ = ∅. Then

by (4.12) the interval [a, b] satisfies H := H(a + 1, b − 1) ≤ (1 − δ) lnn. However
we can not directly use lemma 2.1 since it applies only to environments with no
holding times. Therefore consider a random walk Xn according to the measure Pω,
which is Pω conditioned on the random walk never staying in one place:

ωx :=

(
ω−
x

ω+
x + ω−

x
, 0,

ω+
x

ω+
x + ω−

x

)
for all x ∈ Z (4.14)

Obviously this does not change the potential. We write Ua,b (resp. Ua,b) for the first

time Xn (resp. Xn) hits {a, b} and we choose γ > 1 small enough that (1− γ
k ) > 0.

Using lemma 2.1 yields:

min
x∈(a,b)

P x
ω

(
(Xt) /∈ (a, b) for some t ≤

(
1− γ

k

)
n1− δ

2

)
=

= 1− max
x∈(a,b)

P x
ω

(
Ua,b

γ1(c− a)4eH
>

(1− γ
k )n

1− δ
2

γ1(c− a)4eH

)
≥

≥ 1− exp

(
−
(1− γ

k )n
1− δ

2

γ1(c− a)4eH

)
≥ 1− exp

(
−

(1− γ
k )n

δ
2

16γ1 ln
4+4α n

)
We choose n large, so that this probability is at least 1

2 . Let Y be the number of

time steps until Ua,b∧n1− δ
2 during which (Xn) remains at the same location. Since

ω0
· ≤ 1

k for all locations inside the valley, Y is dominated by a binomial random
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variable with bn1− δ
2 c trials and success probability 1

k . Let E1
n := {Y ≤ γ

kn
1− δ

2 }
and note that P (E1

n) → 1. Under both E1
n and

{
Ua,b ≤ (1− γ

k )n
1− δ

2

}
we see

Ua,b = Ua,b + Y ≤
(
1− γ

k

)
n1− δ

2 +
γ

k
n1− δ

2 = n1− δ
2

Choosing n large enough that P (E1
n) ≥ 1

2 , we conclude

min
x∈(a,b)

P x
ω

(
(Xt) /∈ (a, b) for some t ≤ n1− δ

2

)
≥ 1

4
(4.15)

Now we consider the event

E2
n := {(Xt) /∈ [− ln1+α n, ln1+α n] for some t ≤ n}

Since ω is good, the random walk has to pass at least

1

2
P

(
ω0
0 >

1

k

)
ln1+α(n) =: c5 ln

1+α(n) (4.16)

dangerous locations. However, on
(
E2

n

)c
, let Z be the number of time intervals of

the form [
kn1− δ

2 , (k + 1)n1− δ
2

)
, k = 0, ..., bn δ

2 c

where the random walk hits a dangerous location. By (4.15), Z is dominated by a

binomial random variable with bn δ
2 c trials and success probability 1

4 . We write E3
n

for the event
{
Z ≤ 1

8n
δ
2

}
, and note that for some c6 > 0,

Pω

(
E3

n

)
≤ exp(−c6n

δ
2 ) (4.17)

Finally we get

P0(τ > n) ≤ P (ω is not good) + sup
ω is good

{
Pω(τ > n)

}
≤

P (ω is not good)+ sup
ω is good

{
Pω

(
E3

n

)
+Pω(τ > n|E2

n)+Pω

(
τ > n

∣∣(E2
n)

c, (E3
n)

c
)}

≤ e−c5 ln1+α n + exp [(−Dk(1− δ) + β) lnn+ ln(2α(1− α) lnn)]+

+exp
(
−c6n

δ
2

)
+ exp

(
c5 ln

(
1− r

k

)
ln1+α n

)
+ exp

(
1

8
ln
(
1− r

k

)
n

δ
2

)
In the last line, the first three terms are due to (4.16), (4.13) and (4.17). The last
two terms come from the fact that at every visit to a dangerous location the process
dies with probability at least 1 − r

k , and on E2
n and (E3

n)
c we have a lower bound

on the number such visits. Letting β tend to zero this shows

lim sup
n→∞

lnP0(τ > n)

lnn
≤ −Dk(1− δ)

k→∞−−−−→ −D∞(1− δ)
δ→0−−−→ −D∞(1) (4.18)

The claim follows by (4.10) and (4.18). �
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5. Proofs - the intermediate case

Proof of lemma 3.3: For n fixed we will call a location x safe if ω0
x ≤ 1

n , and we
say that a safe location x is positive, neutral or negative if ln ρx is positive, zero
or negative, respectively. We start with the upper bound. Recalling definitions
(4.2a)-(4.2d) in the previous proof we have

P (Tn(x, b1, b2, h)) ≤ P (A+
n , B

+
n )P (A−

n , B
−
n )

We will do the calculations for the left probability. By the definitions of ε+n and
δ−n we know that, on A+

n , a positive location in [x, x + b2 lnn] satisfies ln ρx ≤ ε+n
whereas a negative/neutral location satisfies − ln ρx ≥ δ−n . Let k be the number of
positive locations in [x, x+ b2 lnn]. Then

x+bb2 lnnc∑
i=x

ln ρi ≤ kε+n − δ−n (bb2 lnnc − k)

The event B+
n therefore requires k ≥ ddn lnne, where dn :=

h+δ−n b2

ε+n+δ−n
. We write Bn,k

for the event that exactly k locations are positive and (bb2 lnnc − k) are negative

or neutral. Since A+
n ∩B+

n =
∪bb2 lnnc

k=ddn lnne Bn,k we get

P (A+
n ∩B+

n ) =

bb2 lnnc∑
k=ddn lnne

P (Bn,k) ≤ (b2 − dn) lnnmax
k

P (Bn,k)

= (b2 − dn) lnnmax
k

(
bb2 lnnc

k

)(
p+n
)k

(p−n + p0n)
bb2 lnnc−k

Here and from now on the maximum is taken over k = ddn lnne, ..., bb2 lnnc. Using(
n
k

)
≤
(
ne
k

)k
we see that for some c7 > 0:

P (A+
n ∩B+

n ) ≤ (c7)
lnn max

k
ek(ln p+

n−ln(p−
n +p0

n))+bb2 lnnc ln(p−
n +p0

n) (5.1)

We now use the fact that for decreasing sequences (xn)n∈N, (yn)n∈N, (zn)n∈N in
(0, 1) we have

lim
n→∞

ln yn
lnxn

= y, lim
n→∞

ln zn
lnxn

= z =⇒ lim
n→∞

ln(yn + zn)

lnxn
= min{y, z}

Assume first that min{a+, a+0 } < 1. Then for all η ∈ (0, 1 −min{a+, a+0 }) we can
choose n large enough that

(min{a+ + a+0 } − η) ln p+n ≥ ln(p−n + p0n) ≥ (min{a+ + a+0 }+ η) ln p+n

which implies

ln p+n − ln(p−n + p0n) ≤ ln p+n (1−min{a+, a+0 } − η︸ ︷︷ ︸
>0

)

Therefore the maximum from equation (5.1) is attained at k equal to ddn lnne, and
inserting this yields

P (A+
n ∩B+

n ) ≤ (c7)
lnnelnn ln p+

n (dn(1−min{a+,a+
0 }−η)+b2(min{a+,a+

0 }+η))

Since ln p+n tends to −∞ this implies

lim inf
n→∞

lnP (A+
n ∩B+

n )

lnn ln p+n
≥ lim

n→∞
dn(1−min{a+, a+0 } − η) + b2(min{a+, a+0 }+ η))
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=
h+ δ−b2
ε+ + δ−

(1−min{a+, a+0 } − η) + b2(min{a+, a+0 }+ η)

η→0−−−→ h+ b2δ
− +min{a+, a+0 }(−h+ b2ε

+)

ε+ + δ−
= C+(h, b2)

Now let min{a+, a+0 } ≥ 1, that is we get C+(h, b2) = b2. Then for η > 0 we have
1−min{a+, a−} − η < 0 and (for n large enough) the maximum in equation (5.1)
is attained at k equal to bb2 lnnc. That is,

lim inf
n→∞

lnP (A+
n ∩B+

n )

lnn ln p+n
≥ b2 = C+(b2, h)

Now we would like a corresponding lower bound on the same probability. The same
reasoning as in the proof of lemma 3.1 shows that

lim
n→∞

lnP (A+
n ∩B+

n ∩ C+
n )

lnn ln p+n
= lim

n→∞

lnP (A+
n ∩B+

n )

lnn ln p+n

Let η ∈ (0, ε+) and choose

d :=

{
h+b2(δ

−+η)
ε++δ− if min{a+, a+0 } < 1

b2 else

Let En be the event that there are exactly bd lnnc positive locations in [0, b2 lnn]
while the remaining bb2 lnnc − bd lnnc locations are negative or neutral. If
min{a+, a+0 } ≥ 1 we have

lim
n→∞

lnP (En)

lnn ln p+n
= d = C+(b2, h)

while otherwise

P (En) ≥ ebd lnnc(ln p+
n−ln(p−

n +p0
n))+bb2 lnc(p−

n +p0
n)

and

lim sup
n→∞

lnP (En)

lnn ln p+n
≤ d
(
1−min{a+, a+0 }) + b2 min{a+, a+0 }

)
η→0−−−→ C+(b2, h)

Remembering assumptions (3.6a) and (3.6d) on the convergence in distribution, we
see that

P

(
ln ρy ≥ ε+ − η

∣∣∣∣ω0
y ≤ 1

n
, ln ρy > 0

)
→ P+([ε+ − η,∞)) =: γ1 > 0

P

(
ln ρy ≥ −δ − η

∣∣∣∣ωy ≤ 1

n
, ln ρy ≤ 0

)
→ Q−([δ− + η,∞)) =: γ2 > 0

Therefore, conditional on En, the event
bb2 lnnc∑

i=0

ln ρi ≥ d(ε+ − η) lnn− (b2 − d)(δ + η) lnn ≥ h lnn


has probability at least γ

bd lnnc
1 γ

bb2 lnnc−bd lnnc
2 =: clnn

8 . Now in total we have

lim sup
n→∞

lnP (A+
n ∩B+

n )

lnn ln p+n
≤ lim sup

n→∞

lnP (En) + lnP (A+
n ∩B+

n |En)

lnn ln p+n
≤

≤ C+(b2, h) + lim sup
n→∞

c8

ln p+n
= C+(b2, h)
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The same reasoning can be applied to P (A−
n ∩B−

n ), and it remains to show equation
(3.9). We have

lim
n→∞

ln p+n
min{ln p+n , ln p−n }

=
1

max{1, a+}
= min{1, a−}

lim
n→∞

ln p−n
min{ln p+n , ln p−n }

=
1

max{1, a−}
= min{1, a+}

and therefore

lim
n→∞

ln[P (A+
n ∩B+

n )P (A−
n ∩B−

n )]

lnnmin{ln p+n , ln p−n }
=

= lim
n→∞

lnP (A+
n ∩B+

n )

lnn ln p+n

ln p+n
min{ln p+n , p−n }

+
lnP (A−

n ∩B−
n )

ln p−n

ln p−n
min{ln p+n , ln p−n }

=

= C+(b2, h)min{1, a−}+ C−(b1, h)min{1, a+} = C(b1, b2, h)

�

Proof of Theorem 3.4: We adapt the steps of the previous Theorem. First for the
lower bound we choose b1, b2 > 0 arbitrarily and estimate

P0(τ > n) ≥ P (Tn(0, b2, b1, 1)) inf
ω∈Tn(0,b1,b2,1)

{
Pω(Un ≥ n)Pω(τ > n|Un > n)

}
where Un is the first time the random walk Xn hits {b−b1 lnnc, bb2 lnnc}. We can
not directly apply lemma 2.1 because ω0

· may be non-zero in the interval. Therefore
consider the random walk Xn conditioned on never staying in one place. That is, we
replace ω by the environment ω from (4.14) and consider a random walk (Xn)n∈N
with law Pω. Obviously Un ≤ Un and so we get (repeating the computation from
(4.9)) for some c9 > 0

P 0
ω(Un ≥ n) ≥ P 0

ω(Un ≥ n) ≥ exp(−c9 ln lnn)

Moreover, on {Un ≥ n} the random walk visits only locations with ω0
· ≤ 1

n and
therefore for n large enough

Pω(τ > n|Un ≥ n) ≥
(
1− 1

n

)n

≥ 1

2e

Since P (Tn(0, b1, b2, 1)) decays faster than e−c9 ln lnn, this shows

lim sup
n→∞

lnP(τ ≥ n)

lnn lnmin{p+n , p−n }
≤ lim sup

n→∞

lnP(lnP (Tn(x, b1, b2, 1))

lnn lnmin{p+n , p−n }
=

= min{1, a−}C+(b2, 1) + min{1, a+}C−(b1, 1)

When taking the infimum over all b1, b2 > 0 we see that the exponent is increasing
in bi and that the infimum is attained at

b1 = (ε+)−1, b2 = (ε−)−1

Inserting those values in equation (3.9) yields

lim sup
n→∞

lnP(τ ≥ n)

lnn lnmin{p+n , p−n }
≤ inf{C(b1, b2, 1) : bi ≥ bi for i = 1, 2}

=
min{1, a+}

ε−
+

min{1, a−}
ε+

= D
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Now the upper bound: Let α, γ ∈ (0, 1) and set β := 1−α
α

1−γ
1+γ . We say x is

dangerous if ω0
x ≥ n−β . Moreover, we say ω is good if

∀x, y ∈ [−n, n] :

{
x, y are dangerous, no location in between is

=⇒ |x− y| ≤ lnκ+2 n

}
(5.2a)

Tnα(x, b2, b1, β) does not occur for any x ∈ [−n, n], b2, b1 > 0 (5.2b)

We need to bound the probability of not being in a good environment: Assume
(5.2a) is not satisfied. That is, there is an interval of length at least dln2+κ ne
which does not contain any dangerous location. There are at most 2n such intervals,
therefore

P ((5.2a) fails for ω) ≤ 2nP
(
ω0
0 ≤ n−α

)ln2+κ n ≤ 2elnn+ln p ln2+κ n (5.3)

Here p = P
(
ω0
0 ≤ n−α

)
, with p < 1 for n large enough. Moreover

lim
n→∞

lnP (Tnα(0, b1, b2, β))

− ln1+κ n
= lim

n→∞

lnP (Tn(0, b1, b2, β))

−
(
1
α

)1+κ
ln1+κ n

= ακ+1C(b1, b2, β)

and so for n large enough we get (using the definition of β)

P (ω not good) ≤ e−ακ(1−α) 1−2γ
1+γ D ln1+κ n

From now on we again consider a good environment ω. Let a and b be dangerous
locations in [−n, n] such that no location in (a, b) is dangerous. Then by (5.2b) and
(5.2a) we have

H := H(a+ 1, b− 1) ≤ β lnnα = αβ lnn

and b− a ≤ β2+κ ln2+κ n

Let U = Ua,b be the first time a random walk Xn in the environment ω from (4.14)
hits {a, b}. We can conclude as in (4.15) that for n large enough

P x
ω

(
Ua,b ≤

nαβ(1+γ)

2

)
= 1− P x

ω

(
Ua,b

γ1(b− a)4eH
≥ nαβ(1+γ)

2γ1(b− a)4eH

)
≥

1− exp

(
− nαβ(1+γ)

2γ1(b− a)4eH

)
≥ 1− exp

(
− 1

2γ1β2+κ

nαβγ

ln4(2+κ) n

)
≥ 1

2
(5.4)

In the same way as in the previous proof we obtain a bound on Ua,b from the one

on Ua,b, so that

P x
ω

(
Ua,b ≤ nαβ(1+γ)

)
≥ 1

4

Consider bn1−αβ(1+γ)c time intervals of length nαβ(1+γ), and let Z be the number
of time intervals during which the random walk hits a dangerous location. Then

P

(
Z ≤ 1

8
n1−αβ(1+γ)

)
≤ e−c10 n1−αβ(1+γ)

Let En :=
{
Z > 1

8n
1−αβ(1+γ)

}
be the complementary event. On En, the random

walk hits at least b 1
8n

1−αβ(1+γ)c dangerous locations and the process survives with
probability at most (

1− r

nα

) 1
8n

1−αβ(1+γ)

∼ e−
r
8n

1−αβ(1+γ)−α
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Note 1− αβ(1 + γ)− α = γ(1− α) > 0, and therefore we get

P(τ > n) ≤ P (ω not good) + sup
ω good

{
Pω(τ > n)

}
≤ P (ω not good) + sup

ω good

{
Pω(E

c
n) + Pω (τ > n |En )

}
≤ e−ακ(1−α) 1−2γ

1+γ D ln1+κ n + e−c10 n1−αβ(1+γ)

+ e−
r
8n

γ(1−α)

(5.5)

This proves

lim inf
n→∞

lnP(τ > n)

−c ln1+κ n
≥ ακ(1− α)

1− γ

1 + γ
D

γ→0−−−→ ακ(1− α)D

Now some easy calculations show that the maximum over all α is attained at α =
κ

1+κ , resulting in the lower bound in equation (3.12). �

6. Proofs - the stretched exponential case

Proof of Theorem 3.5: For the lower bound, let α, β ∈ (0, 1) and γ > 0. Then for
n large enough we have by lemma 3.3

P (Tnα(0, b1, b2, β)) ≥ e−(D+γ)αβnακ lnn

As in the previous proofs, we introduce a random walk Xn in an environment ω
without holding times, and denote by Un the first time this random walk leaves the
interval [−b2 lnn, b1 lnn]. Now we can use corollary 2.3, so that

Pω

(
Un > nαβ

)
≥ 1

2(b1 + b2) lnn
exp

(
−γ3 ln(2(b1 + b2) lnn))n

αβ

nαβ

)
=: e−c11 ln lnn

As before, we have Pω(Un > nαβ) ≥ Pω( Un > nαβ), and conditional on the event
Tα
n (0, b1, b2, β) ∩ {Un > nαβ}, the walk visits only locations x with ω0

x ≤ n−α until
time nαβ . In this case the probability for survival until nαβ is at least(

1− r

nα

)nαβ

≥ e−
r
2n

αβ−α

≥ 1

2

Now conditional on τ > nαβ , the random walk survives the remaining n1−αβ steps

with probability at least (c12)
n1−αβ

, where c12 := (1 − r)(1 − 2ε0) is due to (UE).
In total we have shown

P(τ > n) ≥ P (Tα
n (0, b1, b2, β))

× inf
ω∈Tα

n (0,b1,b2,β)

{
Pω(Un > nαβ)Pω(τ > nαβ |Un > nαβ)Pω(τ > n|τ > nαβ)

}
≥ 1

4
e−(D+γ)αβnακ lnn+ln c12n

1−αβ

ec11 ln lnn

We want to minimize max{ακ, 1− αβ} subject to α, β ∈ (0, 1). Setting β := 1−ακ
α

this maximum is equal to ακ, where α > 1
1+κ . This proves

lim sup
n→∞

ln(− lnP(τ > n))

lnn
≤ ακ

α↓ 1
1+κ−−−−→ κ

1 + κ
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Now concerning the upper bound: Let α, β ∈ (0, 1), γ ∈ (0, 1−β
4 ) and δ > 0. We

say x ∈ Z is safe if ω0
x ≤ n−α. We call ω good if

Tnα(x, b2, b1, β) does not occur for any x ∈ [−n, n], b2, b1 > 0 (6.1a)

∀x, y ∈ [−n, n] :

{
x, y are dangerous, no location in between is

=⇒ |x− y| ≤ nγ

}
(6.1b)

By the same reasoning as in the previous proofs,

P ((6.1a) does not occur) ≤ ec13β lnnαnακ

so that
P (ω is not good) ≤ e−c14 nγ

+ e−c13βα ln(n)nακ

Choosing as before an interval [a, b] ⊂ Z with

[a, b] ∩ {safe locations} = {a, b}
and modifying equation (5.4) yields

P x
ω

(
Ua,b ≤

nαβ+4γ+δ

2

)
≥ 1− exp

(
− nαβ+4γ+δ

2γ1n4γnαβ

)
≥ 1

2

Again we easily convert this into a bound for the random walk with holding times:

P x
ω

(
Ua,b ≤ nαβ+4γ+δ

)
≥ 1

4

Let Z be the number of time intervals of length nαβ+4γ+δ during which the random
walk hits a dangerous location, and En :=

{
Z > 1

8n
1−4γ−αβ−δ

}
. Then

P (Ec
n) ≤ e−c15n

1−4γ−αβ−δ

On the other hand, on En the probability of surviving until n is at most(
1− r

nα

) 1
8n

1−4γ−αβ−δ

≤ e−
r
16n

1−4γ−αβ−δ−α

For this to make sense we assume that β and δ are small enough such that the
exponent in the last equation is positive. In total we get

P(τ > n) ≤ e−c14n
γ

+ e−c13αβ ln(n)nακ

+ e−c15n
1−4γ−αβ−δ

+ e−
r
16n

1−4γ−αβ−δ−α

and now have to find α, β, γ, δ such that

min{γ, ακ, 1− 4γ − αβ − δ, 1− 4γ − αβ − δ − α}
becomes maximal. Disregarding the third term, setting ακ = γ and ακ = 1− 4γ −
αβ − δ − α we get

α =
1− δ

1 + 5κ+ β
and therefore

lim inf
n→∞

ln(− lnP(τ > n))

lnn
≥ κ(1− δ)

1 + 5κ+ β

β,δ↓0−−−→ κ

1 + 5κ

�
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