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Abstract. We consider one dimensional random walks in random environment
where every time the process stays at a location, it dies with a fixed probability.
Under some mild assumptions it is easy to show that the survival probability goes
to zero as time tends to infinity. In this paper we derive formulas for the rate with
which this probability decays. It turns out that there are three distinct regimes,
depending on the law of the environment.

1. Introduction

We use the following notations to describe random walks in random environments
(RWREs) on Z in i.i.d. environments: Let P be a probability measure on

Q= {(w)wez = (W wg,w;)mez |Va: w;',wo w, >0,wh + wg +w, =1}

x x

We interpret an element w € ) as the transition probabilities for a random walk in
Z: Let (X, )nen be Markov chain on Z with transition kernel

P,(Xpni1=2+1X,=2) =wS
P,(Xpt1=2-1X,=2) =w;
P,(Xpt1=2|Xpn =2) = w!

We write P := P,(.|Xo = z), and will omit the z if the random walk starts in
zero. We are interested in the joint probability measure

P* := P x P?
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of environment and random walk. An important assumption will be that P is a
product measure, meaning that

{wy : x € Z} is i.i.d. under P

It is reasonable to demand that, P-almost surely, wa' > 0 and wy > 0, so that (with
probability one) the process can move infinitely far in both directions. We make
the even stronger assumption, that (P-almost surely) there is a uniform bound for
the minimal probability of going to the left or right. This condition is usually called
7uniform ellipticity” (UE):

Jeo >0 st Plwg >e0) = Plwy >¢e0) =1 (UE)

An important quantity is denoted

pi = wi forieZ (1.1)

w;

An overview over results for this kind of random walk in random environment can
be found for example in Zeitouni (2004).

We now introduce the model we are interested in. It is originally motivated by
two papers on statistical mechanics' where a higher-dimensional version was used
to describe polymers folding in a solution having random variations in the local
density. From this physical motivation it is desirable that the RWRE stays in parts
of the environment where the probability on staying at the same location (which
can be interpreted as a local density of a solution) is small. We model this by
choosing some r € (0,1), and whenever the process stays in place, it dies with
probability r.

Remark 1.1. The results in this paper are for measures P on the environment where
the survival probability is dominated by events depending only on P, such that the
parameter r does not appear in the result. See also the remark in section 3.5.

Formally, consider a probability space as above where we additionally have a
sequence (&), of i.i.d. Bernoulli random variables, independent of environment
and random walk, with success probability . Then we can define the extinction
time 7 by

Ti=inf{n>1:X,=X,-1,& =1} (1.2)
If we assume that there is a positive probability for extinction, that is
P(wy >0)>0

then it is easy to show lim, o P(7 > n) = 0. We are interested in the asymptotic
behavior of P(7 > n).

2. Preliminaries

One can easily give a lower bound for the survival probability by considering a
set of environments in which the survival probability is large, and such that the
probability for such a favorable environment is not too small. In this section we
introduce the notion of a valley, which will play the role of such an environment.

lGiacometti et al. (1994) and Giacometti and Murthy (1996)
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For some fixed w € 2 we define the potential function as follows:
S mpif 2] >0
V:R—>R, z+ 0 if ] =0 (2.1)
Yl npi if 2] <0

For some interval [a, c] and an environment w we define the following quantities:

a0 = o e V0~ i, Vo)

H_(a,¢) = V(z)— min V
(0.0)i= o (s Vo)~ min V(o))
H((I,C) = min {H+(a,c),H_(a,c)}

See also figure 2.1 for an illustration. When no confusion occurs we simply write
H, H_ and H.

V(z)

[¢ b C
FIGURE 2.1. We denote by H_ the maximal difference V(z) — V(y) in the
potential between any two points < y in [a, b]. The same holds for H; with
x < y replaced by = > y. Starting from the point of minimal potential, the
random walk has to overcome a potential difference of at least H_ A Hy = H
to leave the valley.

We denote the first hitting time of the boundary by
U=Upc:=inf{n>0:X,=aVX,=c}

Then we have the following two lemmas, which give upper and lower bounds on
the probability of leaving a valley.

Lemma 2.1. Let w € € be an environment such that
VeeZ: w=0,w]>¢ep,w, >eo

where gq is the constant from (UE). Then there exist constants v1 > 0 and o =
v2(€0) > 0 such that for ¢ —a > v2(g9) and for all n > 1 we have:

T U%C —-n
xren(%}i) ks (71(0 — a)teH(ac) > n) se (2.2)
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Lemma 2.2. Let w be as in lemma 2.1, and assume we find some b € (a,c) such
that

V(e) = max V(z), V(a) = max V(x) (2.3)
z€(b,c] z€[a,b]
Then there are 3,74 > 0 such that for ¢ — a > 4 and for all n > 1 we have
. T Ua,c 1 —n
xg&r,lc) P <’)/3 In(2(c — a))eH(a’C) > n> > m@ (2.4)

This version of lemmas 2.1 and 2.2 is taken from Gantert et al. (2009)?, whereas
the proofs can be found in Fribergh et al. (2010)”. Note that the point b of minimal
potential appears only in the assumption, but not in the result of lemma 2.2. But if
we restrict ourselves to a random walk starting from b, we can get rid the assumption
that the environment attains maximal potential at the edges:

Corollary 2.3. Under the assumptions of lemma 2.1, let b be the point with min-
imal potential in (a,c). Then for all c —a > v4 and all n > 1 we have

U,. 1
pb In(2(c — > - e 2.
2 (ramnC2e - @) sy > n) > 5t (25

Here we can use the same constants v3,7v4 as in lemma 2.2.

Proof of the corollary: Choose @ € [a,b] and ¢ € [b,c] such that V(a) =
maxgepqp V(z) and V() = maxgzep g V(x). Then [a,c] satisfies (2.3), and we
have H(a,c) = H(a,c). Using lemma 2.2 we get

Ud.c _ _\, Uag
Pulj (73 111(2(6 - a))eH(a,c) > TL) > P£ <73 ID(Q(C - a))eH(Zl,E) > n) >

O

Let by,bo,h > 0, z € Z and k € N. We define the event that there is a valley of
depth hlnn at the interval I, := [x — by Inn,z + bz Inn] around the location z by
V(z) = minyer, V(y)
SF(2,by,ba, h) 1= {Vi €l,:wl< k} NS V(z)=V(x—blnn)>hlnnp (2.6)
V(x —belnn) —V(z) > hlnn

Note that since we extended the definition of V' to R, this depends only on locations
in

(24 [~biInn|,z + [byInn]| NZ

In the definition of S¥, the left event ensures that while the random walk stays
inside I,,, the probability of dying is not too large. The right event implies for
w € Sﬁ(m, bl, bg, h) that

H(x —byln,x + byln) > hlnx

so that we can use corollary 2.3 to bound the probability of leaving I,,.

2 ¢f. Gantert et al. (2009), p 23
3 cf. Fribergh et al. (2010), pp 15
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For k = oo, we denote

S (@,b1,ba, h) = () Sh(x, b, ba, h)
keN

Equivalently, S°°(z, by, ba, h) can be defined as in (2.6), with the left event replaced
by {Vi € I, : w) = 0}.

3. Results

3.1. The polynomial case. We first cover the case where we can create a valley such
that w? is zero on the inside of the valley. Consequently, the random walk survives
as soon as we can ensure that it does not leave the valley.

Lemma 3.1. Assume
p := min {P(lnpo > 0,w) =0), P(lnpy < 0,w) = 0)} >0 (3.1)

Then for all by, by, h >0 and k € NU {oo}, we have

In P(S%(z, by, ba, h))

li =
T T Culbr, b2, h)
where
1 1
Ck(bl,bg,h) = —(bl + bg) In P (w8 < k) +sup{ht —bInFE (pfo wg < k) } +
>0

+ sup {ht —bylnFE (pgt
>0

wSS;)} (3.2)

Dy(h) = inf{Ck(bl,bg,h) Ly, by > o}

Furthermore we set

Then
lim Dy (h) = Do (h)

k—o0

The main result of this paper is that in this case, P(7 > n) decays at a polynomial
rate.

Theorem 3.2. Assumption (5.1) implies

im PP 4y e 0,00)

n—oo —Inn

3.2. Survival inside of a valley. In this section we cover the case where (3.1) is
violated, meaning there are no valleys with w® = 0 on the inside. It may however
happen that there are valleys consisting of locations that are not too dangerous in
the sense that w” decays with n. We denote such an event by

Tn(l',bhbg,h) = Sg(.’ﬂ,bl,bQ,h) (33)
V(z) = minyer, V(y)
= {Vi €l,:w)< } NS V(r)—V(x—blnn) > hlnn
n
V(z—bylnn) —V(z) > hlan
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To decide when T,, has positive probability we look at

1
pf =P (lnpo > 0,w) < )
n

1
jo :—P(lnpo <O,w8 < )

n
0 01
pn ::P lnpO:O,UJOSn
By monotone convergence we see that (3.1) being violated implies
lim min {p:,p;} =0 (3.4)
n—oo
For this section assume
Vn : min {p;'[,p;} >0 (3.5)

Then T, has positive probability for all n. In order to compute P(T,,) we need some
regularity in the way Inp. behaves when conditioning on {w® < 1}. We assume
the following limits exist as weak limits of probability distributions:

Pr():=P (lnpo € - |wd

IN

,In py > O) — PT() (3.6a)

IN

Sl= 3= 3= 3

P ()=P (—lnpo € -|wh (3.6b)

=
S
o
A
o
N———
lg
A

Qi():=P (111,00 €-lwp < =,Inpg > 0) — QT () (3.6¢)

%)= (- e[ <

5

=

o

IN

o
N————

f

Q () (3.6d)

n—0o0

Here = denotes weak convergence, and PT, P~ , Q1 and Q~ are the limiting mea-
sures having support in [0,00). We make the following assumption to ensure that
the first two limits are non-degenerate, meaning (0, c0) has positive probability.

3t > 0 such that P ([t,00)) >0 and P~ ([t,00)) > 0 (3.7)

Note that QT or Q~ are allowed to be degenerate, by which we mean equal to the
Dirac measure in zero. Also note that in the previous case we had

Pt (:) = P(lnpy € -Jwo = 0,1n py > 0)

and (3.1) implied (3.7). We need to look at the limiting distribution of In p. still a
little closer: Define

1
gf = sup{s:P(wg < —,Inpo >6) >O}
n

1—¢
w8§ 0

:sup{51P<lnp0>s ,lnp0>0>>0}<ln

Here the last inequality is due to (UE). The sequence (&), is decreasing and
bounded by zero, therefore some limit exists:

€o

et = lim &
n—oo
We have P ([e}f,00)) = 0 all n > m. Therefore PT([¢)},00)) = 0 for any m, and

(3.7) implies e* > 0. Alternatively, e is the essential supremum of a random
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variable having distribution P*. We define e~ € (0, 00) similarly as the essential
supremum of a random variable with distribution P~. In the same way the essential
infima can be controlled:

5+ = sup {tz 0:Q*([0,4) :0} >0 (3.8)

This is an increasing sequence bounded by ¥, and we set
5T = lim 6} €[0,€"]
n—oo

Note that 67 and §~ correspond to the essential infima of random variables having
distribution Q% and Q. Both 6T or = may be zero, for example if (3.4) holds
together with P(w) = 0,wj =w, = %) > 0. Those quantities will now play a role
in the value of the exponent.
3.3. The intermediate case.

Lemma 3.3. In addition to assumptions (3.4) - (3.7), assume the following limits
exist in [0, 00]:

Inp, In p?
at = lim npi and af := lim npi
n—00 lnpn n—oo lnpn
and set
Inp; - Inp§
a” = lim npz = a+) Y as well as ap = lim n—pf :cfao+
n— oo lnpn n—00 lnpn
We then get
In P(T,,(xz,b1,b2,h
im 2P 1+2_)) = C(by, by, h) (3.9)
n—oo Inn In(min{p; , pn })
where
C(by, by, h) = min{1,a” }C " (by, h) +min{1,a™}C~ (b1, h) (3.10)
and
_ h+6%by + min{l,a",ay }(—h +bie™)
C™ (b, h) = — 0
( 1 ) e— +6+
C* (b, h) = h+6"by + min{Jlr, a+,7ag)"}(—h + boe™)
et +4

This result applies uniformly for all by € [Ei,,k:],bg € [E%, k] and furthermore we

have
{0 e [24]) -

. h h
wfer e[ -

In the lemma, we set % = 00, é :=0and In0 := —oo. Because of this last part,
pY = 0 for some n implies af = a, = oo.

The intuition behind asr is that this quantity measures how much P+ and Qt
differ: If af > 1, then Pt = Q% holds, while aj < 1 implies Q*({0}) = 1.

Similarly to the quantity Dy (h) in lemma 3.1, we write

a4 =

D.— min{l,a"} . min{{, at}

et €
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so that
inf{C(bl,bz,m b=l > h} — D

Then we have the following result

Theorem 3.4. We work under the assumptions of lemma 5.5. Assume that for
some Kk > 0
1 . +7 p—
o i 0 )
n—00 —In"n

=ce€ (0,00) (3.11)
then

1 K ke . . InP(r >n) . InP(r > n)
T+r (1+H> D <liminf — —Fr~ <limsup — -~ <D (3.12)

3.4. The stretched-exponential case. We have obtained some results for the case
where min{p},p, } is of constant order or of the order e=¢"" " for some &, ¢ > 0.
Now we give a weaker result for the remaining case.

Theorem 3.5. Assume that the assumptions of lemma 3.3 hold, but instead of
(5.11) we have some r > 0 such that

. + —
o Imingpt,pr )

n— o0 —nhk

=c € (0,00) (3.13)

Then we have

In(—InP In(—InP
< lim inf n(= InP(r > n)) < limsup n(=InP(r > n))
1+ 5k n—»00 Inn n—s00 Inn

<k  (3.14)

Let us briefly consider why the concept of valleys is not well suited for handling
the case of Theorem 3.5. Consider two measures P and P on the environment such
that both satisfy

min{p}, p;} ~ce™™"
but
1
P(wgo,wgw(;Q) =:v>0 (3.15)

and

- 1

P (wg =0,wf =wy = 2) = (3.15)
Denote the RWREs having measure P and P for the environment by P respectively
P. We define for the interval I,, := [ —n3,n3 | the event

1
S = {Vmeln:wgzo,wj:w;:2}

that the RWRE inside the interval I,, is a simple random walk. We have P(S) ~

exp(2n3 Invy). We can use the following result for simple random walks starting in
Z€T0:

Theorem 3.6. Let U, be the first time that the random walk hits the boundary an

interval of length l(n) around zero. Moreover assume

12
lim I(n) =cc0 and lim (n)
n—oo n—00 n

=0
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Then for ¢ >0

12 2
lim (n) In P(U,, > cn) = T

The proof can be found in Spitzer (1976), pp 237. Using this Theorem with

I(n) = n3, we have
P(r > n) > P(S5) inng(Un >n) > exp { (—g +2In~y — e) n%}
we

On the other hand there is no corresponding lower bound for P. Now for k > % this
bound is better than the one obtained by surviving on the inside of a valley, since
the cost of creating a valley is of the order e="" (") However the probability that
a valley occurs does not depend on whether (3.15) or (3.15’) hold.

3.5. Remarks.

Remark 3.7. In the definition of the model, we introduced the quantity r as the
probability that the random walk dies once it stays at the same location. One notes
that r does not appear in the constants in (3.2) and (3.10). That is because we
have obtained the results under conditions (3.1) and (3.5), which imply that there
are valleys, where on the inside the probability for survival is 1 in the first case, and
some positive constant depending on r in the second case. In the proofs we show
that the survival probability is dominated by the probability that such a valley is
formed, which depends only on the environment and not on r.

Remark 3.8. An interesting question is whether for any sequence (¢n)nen, we can
find a probability measure for which min{p;’, p,, } decays exactly as (gn)n. Indeed
we can easily construct a suitable measure. It is enough to describe the distribution
of wp because P is a product measure. For this, let (g, ), be any real sequence in
[0, 1] decreasing to zero. Define

_(ltef(, 1\ 1 1 (1
T\ 24¢ n)'n 2+¢ n
(L 1) Lisef 1
T \2+¢ n)'n 2+¢ n

wozﬂz == po=1+¢

IT

S+

II

S

Then for any n

wo =TI, = po=(14¢)""

Now we define P as the discrete probability measure taking values in the set
{II : n € N}, with
Plwg =II}) = P(wo =11 ) = q";ﬂ €[0,1],neN
c
Here ¢ := qq is the normalizing constant such that P is a probability measure. Now
independently of n

1 1 1
P (lnﬂo €-|wg < —5Po # 1) = 55— n(i4e)(+) + §5ln(1+s)(')

where §,. is the Dirac distribution in . Conditions (3.6a),(3.6b) are satisfied with

P*([t,00)) = P~ ([t,00)) = Lin(1+4¢),00) ()
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Moreover we get et =e~ =§" =§~ =In(l+¢) and a™ = a~ = 1. We summarize
this in the following corollary:

Corollary 3.9. For every sequence (qn)n in [0,1] decreasing to zero there is a prob-
ability measure P such that
min{p,},p,} = ¢, Vn € N

In particular, for every k > 0 we find a probability measure P and constants ¢y, ca >
0 such that for all n large enough

14k n

P! In't*n S P(T > n) S e 2 In

4. Proofs - the polynomial case

The proofs in this section modify the proof of Theorem 1.3 in Gantert et al.
(2009)". We use Cramer’s Theorem from large deviations’:

Theorem 4.1. Let (X,,)n>1 be i.i.d. random variables taking values in R with law
Q such that the moment generating function A(t) := Eq(e'*1) is finite for some
t > 0. Then for all x > E(X;) we have

o QG X > )
Iim —
k—oco k

= A*(2) (4.1)

where A* is the Legendre transform of Q:

A*(z) = sup{tx — In A(¢)}
>0
Proof of lemma 5.1: For ease of notation we will omit the integer parts, that is we
treat bolnn, by Inn and hlnn as integers. We fix k and say that a location z is
safe if w) < 1. Consider the following events:

Al :={w; is safe Vi € [z,z + by Inn]} (4.2a)

A, ={w; is safe Vi € [z — by lnn, z|} (4.2b)
z+bs Ilnn

B ::{ Z Inp; > hlnn} (4.2¢)

B ;—{ > Ipi> hlnn} (4.2d)
i=z—bylnn

CH={V(z) =min{V(y) : y € [x,z + by Inn]}} (4.2¢)

C, ={V(z) =min{V(y):y € [t — by Inn, z|}} (4.2f)

Now S¥ decomposes as
S*(xz,b1,ba,h) = A NBIfNCINnA, NnB, NC,

Conditioned on A, the distribution of In p; for i =0, ..., by Inn is
1
m%=P@mﬁ~%<k>
4 ¢f. Gantert et al. (2009), pp 7

5 ¢f. for example section 2.2.1 in Dembo and Zeitouni (2010), in particular corollary 2.2.19
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For by < h(E(Inpolw] < £))~! we can applying Theorem 4.1 with k replaced by

boInn and z by %, which yields
In P(BF|AF
lim InP(By|4y) _ by A* 12 (4.3)
n—o00 —Inn by
where
1
A*(x) = sup {tz —InFE <p6 wh < ) } (4.4)
t>0 k

For larger values of by the limit in (4.3) is zero, while the supremum in (4.4) is
attained at ¢ = 0 and also equals zero. The following relation is therefore valid for
all b1,b2 >0

n(PBEIADPADPBLADPUAD] ) (h<1)
~ k

lim
n— 00 —Inn

1 1
+ sup {th—bglnE (pé’wg < )} + sup {th—bllnE (pat|w8 < )}
>0 k >0 k

Now we have (using h > 0)

bolnnP (Af, B, CY) =

bolnn balnn
=> P (A;, > Inp; > hlnn, V(0) :min{V(a:):x:O,...,bglnn}
j=0

i=0
baInn balnn
> Z P (A;I", Z Inp; > hlan,V(j) = min{V(x) cx = 0,...,b21nn}>
§=0 i=0
balnn
>P <Ai, Z lnp; >hlan,3j:V(j) = min{V(x) cx=0,....,b9 lnn}>
i=0
=P (A}, BY)
Therefore
+ B+ O+ + B+
lim InP(AF,BY,CH > lim In P(A}, BY) + In(be Inn) _
n—00 Inn n—o0 Inn
+ g+
i WP BD)
n—00 Inn

Since the converse inequality is always true, this shows (3.2). By definition

1 1
wggk)}—bglnP<w8§ )}—i—

Dy.(h) = inf {sup {ht —bynE (pé

b2>0 | t>0

0
“o

INA
| =
N~~~
H/_/

\

>

=

=3

~
7N

&
oo

IN
| =
~
N
=

inf ht —byInE ( pg*
i g e e (o

For the second claim, consider the functions

1
fiE [0,00)—>R,t»—>E(p§t wh < k)
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Because of uniform ellipticity both functions are finite everywhere, and additionally
they are strictly convex, infinitely differentiable and satisfy f*(0) = 1 and f*(¢) —
oo for t — oo. Therefore there exist unique t,f > 0 such that

) =E (pff

1 1
O )l=— = 51 4.
“’O—k> PWl<h) (46)

bt

et = (oo
Inserting ¢; and ¢;, in (4.5) yields
Dy(h) > h(t} +t;) (4.7)

We claim that equality holds in (4.7). To see this, set

gp(t) :=th —bln [E (pg wy < llc) P <w8 < ;)}

The function g, is concave for every b > 0, since by Cauchy-Schwarz:

”?2012 0l o1 ] 01
E | po WOS% < E|pg WOSE E\ po WOS%

By dominated convergence (using again that P is uniformly elliptic) we get
4 P(plwy < 1) = E(4£p'|wd < 1) and therefore

_ bE(phIn polwg < 3)
E(phlwd < 1)

— _ o+ 1 1 -1
b=>b(t{):=h <E <p0’° In pg |wh < ) P <w8 < >)

yields that gé(t;) = 0 and thus by concavity

inf {sup{gn(t)}} < g5(t]) =t
2>0 " ¢>0

Wiy Loy
°=k%) T PWI<D)

g(t) =

and setting

oyl
o

Using the same reasoning for the second line in (4.5) we conclude
Di(h) = h(t} +1t;)

It remains to show limy_,oo ;7 = tZ. First note that {¢ : k € N} is bounded:
Because of (3.1) we find o > 0 such that

1
P(w8:0,w022+a>:5>0

Therefore

v

1 1 1 th
> - F k 0 < Z > E ( k 0 — 0) 2] 0 =0
P(w)=0) ~ P(w < 3) (,00 “o = k’) > B (pg [« (o =0)

That is:




On the survival probability of a RWRE with killing 835

Now choose any subsequence such that ¢’ := lim;_, tx, exists. Then

1 ; 1 im B oo 1)
— = 1M ——F—— = l1m -
P(wg =0) i-ooo P(o.)g < 1717) i—00 Po|¥o = ki
E( t 1 t’
W en)) B (1)
_ 1 0=k, — Wo= _ E t 0 _ 4

Here the second to last equality is due to dominated convergence, the boundedness
of ¢ and uniform ellipticity. We conclude that ¢’ satisfies (4.6). Since tI is the
unique positive value satisfying this equation, we see t' = tI_. O

Proof of Theorem 3.2: We start with the lower bound. Let a > 0 and choose
b1,by > 0 arbitrary. We write

U, :=inf {n > O’Xn e {|-b1Inn], b lnnJ}}
Then
PO(r > n) = P(S37(0,by,b1, 1)) inf_ {Pw(Un > n)Py(r > n|Uy, > n)}

By lemma 3.1 there is an ng so that for all n > ng we have:
P(5%°(0,by,by,1)) > n~Coclbzibr)—a

Remember that for w € S2°, zero has minimal potential in [—by Inn, be Inn] and

H = H(-bilnn,bylnn) > Inn. By corollary 2.3 we get for some ¢y > 0:

P)(Un 2n) =P, (73 n(2In(n)(by + bl))e% > 3 In(21n(n)(by + bl));> >

1 n
> () (ba 5 1) exp (—’)/3 In(21n(n)(by + bl))e—H) >exp(—calnlnn)  (4.9)

Moreover, conditional on the random walk never leaving the interval
[—b1 Inn, be Inn], the probability of surviving is 1, since here the probability for
staying at the same location equals zero. In total we get
InPO(r >
mint 22T S 0 b 1) —a
n—00 nn
Letting « tend to zero and taking the infimum over all by, by yields

) InPo(r > n)
limsup——=
n—00 Inn

< Doo(1) (4.10)

Now we address the upper bound: Let a, (3,7, > 0 and k € N. We say z is
dangerous if W) > % and we write © for the set of dangerous locations. An

environment is called good if the following conditions apply:

Ve € [~ In' T n, In' T n], by, by > 0 we do not have S¥(z,by,b1,1 —68)  (4.11)

1 1
|©N[0,In* ]|, |©N [ In't*n, 0] > 5P(wg > ) In'*t*n (4.12)

We estimate the probability of not being in a good environment: In (4.12), we
have the event that a binomial random variable with [In'"®n| trials and success
probability P (w§ < 1) has at least $P(w) < 1) In'* 1 successes. The probability
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that this does not occur can be bounded by e= "™ n for some c3 > 0. Now

concerning (4.11): Because of uniform ellipticity a valley of depth 1 — § requires

SR
by, by > (1—06) (m °>

€0
So the number of valleys in the interval [~ In'™* n, In't® n] is at most
21n 1= Iptte g
£0 =:¢csIn%n

2(1—=9¢)Inn

Since those valleys must remain inside [— In' T n, In' T n| and may only have inte-
ger length we can estimate for large enough n

[In'*ton|

by by
P(3by,b : S%(0,by,b1,1 —6)) < P(SFl0o,— — 1-6))<
( 2, V1 >O Sn(07 2, V1, )) = Z (Sn <07 lnnalnnv )) =~
bl,bzzl
[In'Te n|
< Z n*Ck(%’%’1*5)+B§1n2(1+a)(n)n_D’“(1_5)+*3
bl,bzzl

So for large n we have
P(w is not good ) < e C3 Inttepn + C4€<7Dk(176)+5) In n+lIn(2a(1—a) In? n) (413)

From here on, let w be a good environment. The idea is to consider time intervals
of length n'=% and show that in each such interval the probability of hitting a
dangerous locations is at least a constant. Since there are Lngj such time intervals
we can then conclude that the extinction probability decays fast.

Let a,b € © be such that [a,b] C [—In' T n,In'"*n] and (a,b) N O = @. Then
by (4.12) the interval [a, b] satisfies H := H(a+ 1,b — 1) < (1 — ) Inn. However
we can not directly use lemma 2.1 since it applies only to environments with no
holding times. Therefore consider a random walk X,, according to the measure P,
which is P,, conditioned on the random walk never staying in one place:

- +
wz;—< Y g,k _> for all = € Z (4.14)

wi +wz T wi +wz
Obviously this does not change the potential. We write U, ;, (resp. U(Lb) for the first
time X,, (resp. X,,) hits {a,b} and we choose v > 1 small enough that (1—7) > 0.
Using lemma 2.1 yields:
min PZ ((Yt) ¢ (a,b) for some t < (1 - 1) n'~ ) =
z€(a,b) k

U, 1—F)ni-%
:1—maxP$< b >( pn >

z€(a,b) m(c—a)ted = v(c

(1 'S (1 on
>1—ex —— | >1—ex -
N P < vi(c—a)*ef | — P 1671 In*tte

We choose n large, so that this probability is at least % Let Y be the number of

[SIEY

time steps until U, Anl=3 during which (X,,) remains at the same location. Since
Wl < % for all locations inside the valley, Y is dominated by a binomial random
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variable with [n!~% | trials and success probability 1. Let B} :={Y < %nl_%}
and note that P(E}) — 1. Under both E} and {Ua’b <(1- %)nk%} we see
Uasp = UGJ, +Y < (1 — %) nl=3s + %nl_g —nl=t
Choosing n large enough that P(E}) > 1, we conclude
1
min P ((Xt) ¢ (a,b) for some t < nl_g) > - (4.15)
z€(a,b) 4
Now we consider the event
E? = {(X;) ¢ [-In'"T*n,In"" n] for some ¢t < n}
Since w is good, the random walk has to pass at least
1 1
§P <w8 > k:> In'*(n) =: ¢5 In' T (n) (4.16)

dangerous locations. However, on (E?l)c, let Z be the number of time intervals of
the form

{k’nl_%, (k + 1)n1_%) , k=0,.., Ln%j

where the random walk hits a dangerous location. By (4.15), Z is dominated by a
binomial random variable with Lngj trials and success probability i. We write E2

for the event {Z < %n% }, and note that for some cg > 0,

P, (E}) < exp(—cﬁng) (4.17)
Finally we get

PO(1 > n) < P(w is not good) + sup {Pw(T > n)} <

w is good

P(w is not good) + sup {Pw (Ef;) +PB,(r > n|E,21) + P, (T >n ‘(E?l)c, (Ef;)c) }

w is good

<emeTUn oy [(—Di(1—6) + B)Inn +In(2a(1 — a)Inn)] +

1
+exp (—cﬁn%> + exp <C5 In (1 — %) Intte n) + exp <8 In (1 — %) ng>

In the last line, the first three terms are due to (4.16), (4.13) and (4.17). The last
two terms come from the fact that at every visit to a dangerous location the process
dies with probability at least 1 — %, and on E? and (E32)¢ we have a lower bound
on the number such visits. Letting S tend to zero this shows

) InPO(7 > n)
limsup ————*~
n—00 Inn

< -Dp(1-6) 222 D (1-6) 2% —Do(1)  (4.18)

The claim follows by (4.10) and (4.18). O
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5. Proofs - the intermediate case

Proof of lemma 5.5: For n fixed we will call a location x safe if wQ < %, and we
say that a safe location x is positive, neutral or negative if In p, is positive, zero
or negative, respectively. We start with the upper bound. Recalling definitions
(4.2a)-(4.2d) in the previous proof we have

P(T,(x,b1,b2,h)) < P(AS, BHP(A,,B,)
We will do the calculations for the left probability. By the definitions of &;} and
J,, we know that, on A, a positive location in [z,x + be Inn] satisfies In p, < &}

whereas a negatlve/neutral location satisfies —In p, > §,;. Let k be the number of
positive locations in [x,2 4 by Inn]. Then

z+ b2 Inn|
> Inp < kel =6, (lb2Inn| — k)

1=z

The event B, therefore requires k > [d,, Inn], where d,, . We write By, j,
for the event that exactly k locations are positive and (\_bg In nJ — k) are negative

or neutral. Since A;F N B = U,Ebz FZ:IJH n] Bk we get
b2 Inn]
PAINBf) = Y P(Bug) < (b2 — dy) Innmax P(B, ;)
k=[d,Inn] F
byl
= (b — d,) lnn max (L zknnj) (pi) (pr- + p) L2 Inml—k

Here and from now on the maximum is taken over k = [d,, Inn], ..., |ba Inn]. Using
(2) < (%)k we see that for some c¢; > 0:

P(AT N BF) < (c7)™™ max e(npn —In(n +27))+1b2 lnn) In(py +27) (5.1)

n n — k

We now use the fact that for decreasing sequences (Zn)nen, (Yn)nen, (2n)nen in
(0,1) we have
Iny, . Inz, . In(yn + 20)

lim —— =y, lim =z = lim
n—oo In x,, n—oo In x,, n—o0 Inx,,

= min{y, z}
Assume first that min{a®,af} < 1. Then for all 5 € (0,1 — min{a*,aj}) we can
choose n large enough that
(min{a® +af} —n)Inp: > In(p, +p°) > (min{a™ +ad} +n)Inp,
which implies
npf — In(py +p%) < npt (1 — min{a*,af} - )

>0

Therefore the maximum from equation (5.1) is attained at k equal to [d, Inn], and
inserting this yields
P(A+ N B+) < (c7>1nnelnn lnpz(dn(l—min{aJr,aO} —n)+ba( rn1n{a+,a0 )

Since Inp;" tends to —oco this implies

In P(Af N B;F
lim inf M > lim dn(1 —min{a™,af} —n) + be(min{a™, af} + 7))
n— oo lnnlnpn n—o00
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h—+07b . .
= ﬁ(sf(l —min{a®, ag’} —n) + ba(min{a™, ag’} +n)
n—=0 h+bod~ —l—min{a"’,a_g}(—h + bae™) O (hyb)
et +4

Now let min{a*,af} > 1, that is we get C*(h,by) = by. Then for > 0 we have
1 —min{a™,a”} —n < 0 and (for n large enough) the maximum in equation (5.1)
is attained at k equal to |byInn]. That is,
In P(A} +
lim inf 22 0 By
n—00 lnnlnp;f

Z b2 = C+(b23h)

Now we would like a corresponding lower bound on the same probability. The same
reasoning as in the proof of lemma 3.1 shows that

lim InP(A} NBfNnChH) — lim In P(A} N B

n—00 lnnlnpﬁ n—00 lnnlnpﬁ

Let n € (0,&™) and choose

d— {W if min{a®,af} <1

bo else
Let E, be the event that there are exactly |dInn] positive locations in [0, bs Inn]
while the remaining |bsInn| — |dlnn] locations are negative or neutral. If
min{a*,af } > 1 we have
In P(E,
lim M =d = C" (b, h)
n—oco Innlnpy,
while otherwise
P(E,) > eldmnl(npy—n(, +p,))+(b2 In) (o +p7)

and
InP(E
lim sup M

< d(1 — min{a*,a}) + by min{a+,ag}) 1205 O (b, h)
n—oo Innlnpy,

Remembering assumptions (3.6a) and (3.6d) on the convergence in distribution, we
see that

P<lnpy26+n "

Wy

IN

1
ﬁ,lnpy > O> — PT([e" —n,00)) =71 >0

1
P(lnpy > —0—n|wy < E,lnpy SO) = Q ([07 +n,00))=72>0

Therefore, conditional on F,,, the event

b2 Inn |
Z Inp; >d(et —n)lnn — (by —d)(§ + n)lnn > hlnn
i=0

has probability at least %Ld nn] WQU’Z Inn]=ldlnn] _

In P(AF N B InP(E,) +InP(AY N B E,
poup BPALOBD) L P(E,) + In P(A; 0 B |E,)

n—00 lnnlnp;f n—o0 lnnlnpj{

< O (ba, h) + lim sup 08+ = C"(ba, h)

n—oo N Pn

:clf™. Now in total we have

<
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The same reasoning can be applied to P(A; NB,, ), and it remains to show equation
(3.9). We have
Inp} 1

I _ — min{l,a"
00 min{lnp;!,Inp,}  max{l,at} min{l,a”}

Inp 1
lim Z = = min{1,a"
n—oc min{lnp},Inp,} max{l,a"} { }

and therefore
In[P(A} N B)P(A, N B,)]

lim =
n—00 Innmin{ln p;\, In p;, }
. InP(AFNnB;) Inp;} InP(A, NB;) Inp;,
= lim . - —— + — - a — =
n—oco  Innlnp, min{In pyy, pn } In pr, min{lnp;,Inp, }

= Ct(by, k) min{1,a~} + C~(by,h) min{1,a™} = C(by, by, h)
(]

Proof of Theorem 3./: We adapt the steps of the previous Theorem. First for the
lower bound we choose by, by > 0 arbitrarily and estimate
PO(r > n) > P(Ty(0,b2,b1,1))  inf {Pw(Un > n)Py(r > n|Uy, > n)}
WETy (0,b1,ba,1)

where U, is the first time the random walk X, hits {|—b1Inn]|, [beInn|}. We can
not directly apply lemma 2.1 because w® may be non-zero in the interval. Therefore
consider the random walk X,, conditioned on never staying in one place. That is, we
replace w by the environment @ from (4.14) and consider a random walk (X, )nen
with law Pg. Obviously U, < U, and so we get (repeating the computation from
(4.9)) for some c¢g > 0

PO(U,, >n) > PYU, >n) > exp(—cyInlnn)

Moreover, on {U,, > n} the random walk visits only locations with w® < + and

therefore for n large enough

1
n

1\" 1
Pw > Un Z 2 1_7 Z o
(r>nl n) < n> 2e

Since P(T,,(0,b1,b2,1)) decays faster than e~¢™In7 this shows
InP(r > InP(In P(T,, (2, by, ba, 1
lim sup - <T_f) — < limsup n P(ln P( (x +1 E ) =
n—oo Innlnmin{ps,ps} n—oo InnInmin{p;;, pr }
=min{l,a” }CT (b, 1) + min{1,a*}C™ (b1,1)

When taking the infimum over all by,bs > 0 we see that the exponent is increasing
in b; and that the infimum is attained at

b= b=(e7)!
Inserting those values in equation (3.9) yields

) InP(r > n)
lim sup p -
n—oo Innlnmin{py},pn}

S inf{C’(bl,bg, ].) : b1 Z E for i = 1,2}

min{1,a™"} n min{l,a”}

€
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Now the upper bound: Let «,y € (0,1) and set 8 := 1?70‘};—:*/ We say z is

dangerous if w% > n~?. Moreover, we say w is good if

_ _ Jz,y are dangerous, no location in between is
Va,y € [-n,n]: { e r—yl< 10"+ (5.2a)
T (x,be, b1, B) does not occur for any x € [—n,n],ba, by >0 (5.2b)

We need to bound the probability of not being in a good environment: Assume
(5.2a) is not satisfied. That is, there is an interval of length at least [In**"n]
which does not contain any dangerous location. There are at most 2n such intervals,
therefore

)1n2+~ n < 26111 n+1npln2+” n

P((5.2a) fails for w) < 2nP (wy < n~ @ (5.3)

Here p =P (wg < n’“)7 with p < 1 for n large enough. Moreover

In P(Tye (0, by, by, I P(T,(0, by, by,
i B (1+1 28) _ iy B 1(+ 1,02, 3))
n—o0 —In""n noee (L)Y pltteg

= an+lc(b17 b27 ﬂ)

and so for n large enough we get (using the definition of /)
P(w not good) < e~ (=) F DI’ n

From now on we again consider a good environment w. Let a and b be dangerous
locations in [—n, n] such that no location in (a, b) is dangerous. Then by (5.2b) and
(5.2a) we have

H:=H(a+1,b—1) <plnn®*=aflnn

and b—a < p*tr In?t*n

Let U = U, be the first time a random walk X, in the environment @ from (4.14)
hits {a,b}. We can conclude as in (4.15) that for n large enough

_ neB(1+7) Uas neB1+)
PilUp< ————)=1-P2 &l > >
¢ ( =T > ¢ (71(3)— a)te = 2y (b— a)4€H> -
naB+y) 1 neBy 1
1-— —_— | > 1 - — > — 5.4
exp< 271(1)_@)461,{) > eXp< 99 TR ln4(2+ﬁ)n> Z 5 (5.4)

In the same way as in the previous proof we obtain a bound on U, ; from the one
on Ua,b, so that

P (U p < naﬁ(1+7)) > 1
w a,b —= 4

Consider |n'~*#0+7)] time intervals of length n®?(1+7) and let Z be the number
of time intervals during which the random walk hits a dangerous location. Then

P <Z < 1n1ab’(1+v)) < p—cio nt TN
<3 <

Let E,, := {Z > %nl_aﬁ(l‘w)} be the complementary event. On E,,, the random
walk hits at least L§n1*a5(1+v)J dangerous locations and the process survives with
probability at most

1, 1—ap(1+
poER T asaa—a
1 e” s
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Note 1 — af(1+7v) —a =+(1 — «) > 0, and therefore we get

P(r > n) < P(w not good) + sup {Pw<7' > n)}

w good

< P(w not good) + sup {Pw(E;) Y P, (r>nl|E,) }

w good
< 6_()4”(1_@) 1112JDIH1+K ny g—cio nl—aB(+y) + e,g,ﬂ(l-a) (5.5)
This proves
InP(r > 1-
lim inf M a"(1—a) D

n—oo —clntthp = 1+~

229 05(1—a)D

Now some easy calculations show that the maximum over all « is attained at a =

145 resulting in the lower bound in equation (3.12). O

6. Proofs - the stretched exponential case
Proof of Theorem 3.5: For the lower bound, let «, 8 € (0,1) and v > 0. Then for
n large enough we have by lemma 3.3

P (T (0,b1,02,8)) > e~ (D+7)afn® Inn

As in the previous proofs, we introduce a random walk X, in an environment w
without holding times, and denote by U, the first time this random walk leaves the
interval [—bs Inn, by Inn]. Now we can use corollary 2.3, so that

_ s

( Un > naﬂ) > - exp (_ 73 1D(2(b1 + b2) lnn))n ) —. g C11 Inlnn
2(by + bo) Inn nob

As before, we have P, (U, > n*?) > P5( U, > n®?), and conditional on the event

T(0, b1, ba, B) N {U, > n*P}, the walk visits only locations = with w® < n~® until
time n®?. In this case the probability for survival until n®? is at least

P

naB af—a
(1 - L) R N
no - -2
Now conditional on 7 > n®?, the random walk survives the remaining n steps
with probability at least (012)"17(”3, where c¢12 := (1 — r)(1 — 2¢¢) is due to (UE).

In total we have shown

1—ap

P(r > n) > P(T(0,by,bs, B))

X inf {Pw(Un > nP, (1 > n*?|U, > n*®)P, (1 > n|r > n“'@)}
weTe (0,b1,02,8)

apB

ecll Inlnn

> 167(D+'y)a[fn‘m Inn+Incian'~

We want to minimize max{ax, 1 — a3} subject to o, 3 € (0,1). Setting 3 := 1=9%

«@
this maximum is equal to ak, where a > 1_%% This proves

Jim sup In(—InP(r > n)) < ok

al K
< —_—
n—o00 Inn 1+k
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Now concerning the upper bound: Let «, 8 € (0,1), v € (0, %) and 6 > 0. We
say x € Z is safe if wQ <n~*. We call w good if

T (x,be, b1, B) does not occur for any x € [—n,n], by, by >0 (6.1a)
Yo,y € [-n,n] : x,y are dangerous, no location in between is (6.1b)
= |z —y| <n
By the same reasoning as in the previous proofs,
P((6.12) does not occur) < ef13fnnn®”
so that
P(w is not good) < e n 4 e cwsBaln(n)n®”
Choosing as before an interval [a, b] C Z with
[a, b] N {safe locations} = {a,b}
and modifying equation (5.4) yields
. naB+4'y+5 na5+4’y+5 1
T - _ - -
o (U“”’ = ) =l-ew ( 271n4maﬂ> =2
Again we easily convert this into a bound for the random walk with holding times:
1
P2 (Upy <m0 47ty > 1

Let Z be the number of time intervals of length n®#+47%9 during which the random
walk hits a dangerous location, and F,, := {Z > §n1*47’°‘ﬁ*5}. Then

P(ES) < emersn' 70T

On the other hand, on E, the probability of surviving until n is at most

%nl—él—yfaﬁfé

T 1—4y—aB—56—
1-— <e tem T
ne -

For this to make sense we assume that 8 and § are small enough such that the
exponent in the last equation is positive. In total we get

1—dy—aB—35 rpl—dr—af—s—a

P(T > n) < e—cluﬂ + e—cl3a51n(n)n“" 4 e—c1sn e T
and now have to find «, 3,7, such that
min{vy,ak,1 —4y—af — 0,1 —4y —af —§ — a}

becomes maximal. Disregarding the third term, setting ax = v and ak =1 —4y —
af — 6 — a we get
1-9
a=—
1+55+ 0

and therefore
lim inf (= P(r > n)) > k(1 —0) ps0 K
n—oo Inn 1+5:‘i+ﬁ 1_’_5’@

Acknowledgements

We would like to thank Nina Gantert for several inspiring conversations. We
also want to thank an anonymous referee for pointing out several mistakes in a
preliminary version.



844 Stefan Junk

References

A. Dembo and O. Zeitouni. Large deviations techniques and applications, vol-
ume 38 of Stochastic Modelling and Applied Probability. Springer-Verlag, Berlin
(2010). ISBN 978-3-642-03310-0. Corrected reprint of the second (1998) edition.
MR2571413.

A. Fribergh, N. Gantert and S. Popov. On slowdown and speedup of transient
random walks in random environment. Probab. Theory Related Fields 147 (1-2),
43-88 (2010). MR2594347.

N. Gantert, S. Popov and M. Vachkovskaia. Survival time of random walk in
random environment among soft obstacles. FElectron. J. Probab. 14, no. 22, 569—
593 (2009). MR2480554.

A. Giacometti, A. Maritan and H. Nakanishi. Statistical mechanics of random paths
on disordered lattices. J. Statist. Phys. 75 (3-4), 669-706 (1994). MR 1279766.
A. Giacometti and K.P.N. Murthy. Diffusion and trapping on a one-dimensional
lattice. Physical Review E 53 (6), 5647-5655 (1996). DOI: 10.1103/Phys-

RevE.53.5647.

F. Spitzer. Principles of random walk. Springer-Verlag, New York-Heidelberg,
second edition (1976). Graduate Texts in Mathematics, Vol. 34. MR0388547.
O. Zeitouni. Random walks in random environment. In Lectures on probability
theory and statistics, volume 1837 of Lecture Notes in Math., pages 189-312.

Springer, Berlin (2004). MR2071631.


http://www.ams.org/mathscinet-getitem?mr=MR2571413
http://www.ams.org/mathscinet-getitem?mr=MR2594347
http://www.ams.org/mathscinet-getitem?mr=MR2480554
http://www.ams.org/mathscinet-getitem?mr=MR1279766
http://dx.doi.org/10.1103/PhysRevE.53.5647
http://dx.doi.org/10.1103/PhysRevE.53.5647
http://www.ams.org/mathscinet-getitem?mr=MR0388547
http://www.ams.org/mathscinet-getitem?mr=MR2071631

	1. Introduction
	2. Preliminaries
	3. Results
	3.1. The polynomial case
	3.2. Survival inside of a valley
	3.3. The intermediate case
	3.4. The stretched-exponential case
	3.5. Remarks

	4. Proofs - the polynomial case
	5. Proofs - the intermediate case
	6. Proofs - the stretched exponential case
	Acknowledgements
	References

