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1. Introduction

A square matrix over Fq is said to be semisimple if its minimal polynomial has no repeated roots in

the algebraic closure ofFq. An element of a finite classical group G (that is a linear, unitary, symplectic,

or orthogonal group) is said to be regular if its centralizer in the corresponding group over the algebraic

closure ofFq has dimension as small as possible. For the general linear, unitary, and symplectic groups,

a matrix is regular if and only if its characteristic polynomial is equal to its minimal polynomial; this

is not true for orthogonal groups.

In this paper we study the enumeration of regular semisimple conjugacy classes in finite classical

groups. Results for GL(n, q) and PGL(n, q), using topological arguments, appear in [12]. The paper [6]

treats these groups too, and SL(n, q),U(n, q), SU(n, q) as well. Fleischmann [4] treats PSL(n, q) and

the groups PSU(n, q), Sp(2n, q), and PSp(2n, q). Results for exceptional Lie groups are on the website
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[15], and Lehrer [13] discusses the closely related problem of enumerating regular semisimple orbits

on the Lie algebra. The problemof enumerating regular semisimple classes in orthogonal groups, to the

best of our knowledge, is not treated in the literature, and the main point of the present paper is to fill

this gap. It turns out that in all cases, the answer has a simple form. For example in even characteristic,

we show that for n � 2, the number of regular semisimple classes of SO±(2n, q) is

qn − qn−1 ∓ (−1)n(q − 1).

We argue using generating functions, and also show how this approach gives elementary derivations

of the known results for GL(n, q), SL(n, q), U(n, q), SU(n, q), and Sp(2n, q).
For furthermotivation, note that the set of regular semisimple elements of a finite group of Lie type

plays an important role in representation theory [3]. There are many papers in the literature which

have studied the enumeration of such elements. The papers [5] and [11] give expressions enumerating

regular semisimple elements; however the formulae are very complicated and it seems hard to use

them to obtain simple upper and lower bounds. Guralnick and Lübeck [10] show that for simple G,

the proportion of regular semisimple elements is at least 1 − 3/(q − 1) − 2/(q − 1)2. Neumann and

Praeger [16] show that the proportion of regular semisimple matrices (not necessarily invertible) is at

least 1 − q2

(q2−1)(q−1)
− 1

2
q−2 − 2

3
q−3 and is at most 1 − q−1 + q−2 + q−3. Perhaps the most precise

results are obtained using generating functions; the papers [7] and [17] use generating functions to

show that for fixed q, the large n proportion of regular semisimple elements of GL(n, q) approaches

1 − q−1 as n → ∞. Wall [17] gives error terms for the convergence rate to this limit. The memoir [9]

applies the generating function approach to obtain results for other finite classical groups.

Estimates on the proportion of regular semisimple elements played a crucial role in the solution of

the Boston-Shalev conjecture stating that the proportion of fixed point free elements of a finite simple

group in a transitive action on a finite set X with |X| > 1 is uniformly bounded away from zero [8]. We

also note that the set of regular semisimple elements has been studied from the topological viewpoint

by Lehrer [11] and Lehrer and Segal [14].

The organization of this paper is as follows. Section 2uses generating functions to count the number

of regular semisimple classes of GL(n, q) and SL(n, q). This is also carried out for U(n, q) and SU(n, q)
in Section 3 and for Sp(2n, q) in Section 4. Section 5 contains our main new results: simple formulae

for the number of regular semisimple classes in the special orthogonal groups. We treat both odd and

even characteristic.

2. Linear groups

In this section we derive a formula for the number of regular semisimple conjugacy classes of

GL(n, q) and SL(n, q). This result is already known from [6], but we argue using generating functions.

We elaborate a bit on the comments of the introduction. If G is equal to GL(n, q), U(n, q), SL(n, q),
SU(n, q) or Sp(2n, q), an element is semisimple regular if and only if its minimal polynomial is equal

to its characteristic polynomial which has no multiple roots. Moreover, since these groups are simply

connected (i.e. the derived subgroups of the corresponding algebraic group are), two semisimple el-

ements of G are conjugate if and only if they are conjugate in the algebraic group if and only if they

have the same characteristic polynomials.

Let N(q; d) be the number of monic irreducible polynomials of degree d over Fq with non-zero

constant term. The following lemma is well known; see for instance part c of Lemma 1.3.10 of [9].

Lemma 2.1.∏
d�1

(1 + ud)−N(q;d) = (1 + u)(1 − qu)

(1 − qu2)
.

Theorem 2.2 counts regular semisimple conjugacy classes in GL(n, q).
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Theorem 2.2. The number of regular semisimple conjugacy classes of the group GL(n, q) is

qn+1 − qn + (−1)n+1(q − 1)

q + 1
.

Proof. As we have seen above, the regular semisimple conjugacy classes of GL(n, q) correspond to

monic, degree n squarefree polynomials, with non-0 constant term. Hence the number of such classes

is the coefficient of un in∏
d�1

(1 + ud)N(q;d).

From Lemma 2.1 one obtains that

∏
d�1

(1 + ud)N(q;d) = 1 − qu2

(1 + u)(1 − qu)
.

Taking coefficients of un gives

qn+1 − qn + (−1)n+1(q − 1)

q + 1
.

Indeed,

1 + ∑
n�1

un

[
qn+1 − qn + (−1)n+1(q − 1)

q + 1

]

= 1 + 1

q + 1

∑
n�1

[unqn+1 − unqn − (−u)n(q − 1)]

= 1 + 1

q + 1

[
uq2

1 − uq
− uq

1 − uq
+ (q − 1)u

1 + u

]
= 1 − qu2

(1 + u)(1 − qu)
. �

Remark: The quantity in Theorem 2.2 is a polynomial in q, and can be written as

qn − 2(qn−1 − qn−2 + · · · + q) + 1,

for n even, and as

qn − 2(qn−1 − qn−2 + · · · − q) − 1,

for n odd.

To treat the special linear groups, some further background is needed. We let �q−1 denote the

q− 1st roots of unity in C, and let ω be an element of �q−1. Let ζ be a generator of the multiplicative

group F
∗
q . For α ∈ F

∗
q , define r(α) to be the element of Zq−1 such that ζ r(α) = α. For a polynomial φ,

define r(φ) = r((−1)deg(φ)φ(0)).
The following lemma of Britnell (Identity 3.5 of [1]) will be helpful.

Lemma 2.3. If ω �= 1, then

∏
φ

(1 + ωr(φ)udeg(φ)) =
⎧⎨
⎩ 1 if ω �= −1

1−qu2

1−u2
if ω = −1.

Here the product is over φ which are monic, irreducible polynomials over Fq satisfying φ(0) �= 0.

Next we enumerate the regular semisimple conjugacy classes of SL(n, q).
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Theorem 2.4. The number of regular semisimple conjugacy classes of the group SL(n, q) is

qn+1 − qn + (−1)n+1(q − 1)

q2 − 1

if n is odd or q is even, and is

qn+1 − qn − (q − 1)

q2 − 1
− 1

if n is even and q is odd.

Proof. The number of regular semisimple classes of SL(n, q) is the number of monic, squarefree

polynomials with constant term (−1)n. This is equal to the coefficient of un in

1

q − 1

∑
ω∈�q−1

∏
φ

(1 + ωr(φ)udeg(φ)).

Here the product is over φ which are monic, irreducible polynomials over Fq satisfying φ(0) �= 0.

Assume that q is even. Then no ω ∈ �q−1 is equal to −1, so Lemmas 2.1 and 2.3 imply that the

number of regular semisimple classes of SL(n, q) is the coefficient of un in

1

q − 1

1 − qu2

(1 + u)(1 − qu)
+ q − 2

q − 1
.

The first term corresponds to ω = 1 and the second term corresponds to ω �= ±1. By the proof of

Theorem 2.2, this is equal to
qn+1−qn+(−1)n+1(q−1)

q2−1
.

Next assume that q is odd. Then −1 ∈ �q−1, so Lemmas 2.1 and 2.3 imply that the number of

regular semisimple classes of SL(n, q) is the coefficient of un in

1

q − 1

1 − qu2

(1 + u)(1 − qu)
+ 1

q − 1

1 − qu2

1 − u2
+ q − 3

q − 1
.

The first term corresponds to ω = 1, the second term to ω = −1, and the third term to ω �= ±1. If n

is odd, this is easily seen to be equal to
qn+1−qn+(−1)n+1(q−1)

q2−1
, and if n is even, this is easily seen to be

equal to
qn+1−qn−(q−1)

q2−1
− 1. �

Remark: The quantity
qn+1−qn+(−1)n+1(q−1)

q2−1
is equal to

qn−1 − qn−2 + qn−3 − · · · + (−1)nq − (−1)n,

and for n even, the quantity
qn+1−qn−(q−1)

q2−1
− 1 is equal to

qn−1 − qn−2 + qn−3 − · · · + q − 2.

3. Unitary groups

In this section we derive a formula for the number of regular semisimple classes of U(n, q) and

SU(n, q). This was first done in [6], using different methods.

To beginwe need some background on polynomials. Themapσ : x �→ xq is an involutory automor-

phism ofFq2 and it induces an automorphism of the polynomial ringFq2 [t] in an obvious way, namely

σ : ∑
0�i�n ait

i �→ ∑
0�i�n a

σ
i t

i. An involutory map φ �→ φ̃ is defined on those monic polynomials
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φ ∈ Fq2 [t] that have non-zero constant coefficient, by

φ̃(t) = φ(0)−σ tdeg(φ)φσ (t−1).

Thus if

φ(t) = tn + an−1t
n−1 + · · · + a1t + a0

with a0 �= 0, then its ∼-conjugate is given by

φ̃(t) = tn + (a1a
−1
0 )σ tn−1 + · · · + (an−1a

−1
0 )σ t + (a−1

0 )σ .

We say that φ is self-conjugate (or ∼-self-conjugate) if φ(0) �= 0 and φ̃ = φ. We let Ñ(q; d)
denote the number of monic irreducible self-conjugate polynomials φ(t) of degree d over Fq2 , and let

M̃(q; d) denote the number of (unordered) conjugate pairs {φ, φ̃} of monic irreducible polynomials

of degree d over Fq2 that are not self conjugate. The following lemma, part b of Lemma 1.3.14 of [9],

will be useful.

Lemma 3.1.

∏
d�1

(1 + ud)−Ñ(q;d)(1 + u2d)−M̃(q;d) = (1 + u2)(1 − qu)

(1 + u)(1 − qu2)
.

Theorem 3.2 counts the regular semisimple conjugacy classes of U(n, q).

Theorem 3.2. The number of regular semisimple classes of U(n, q) is equal to

(q + 1)[qn+1 − qn + (−1)n+1(−1)
n/2�(q − (−1)n)]
q2 + 1

.

Proof. The semisimple conjugacy classes of U(n, q) correspond to monic, degree n self-conjugate

polynomials over Fq2 with non-zero constant term, and therefore the regular semisimple conjugacy

classes of U(n, q) correspond to squarefree, monic, degree n self-conjugate polynomials over Fq2 with

non-zero constant term.

It follows that the number of regular semisimple conjugacy classes of U(n, q) is the coefficient of

un in ∏
d�1

(1 + ud)Ñ(q;d)(1 + u2d)M̃(q;d).

By Lemma 3.1, this is the coefficient of un in

(1 + u)(1 − qu2)

(1 + u2)(1 − qu)
.

One computes that

1 + ∑
n�1

un

[
(q + 1)(qn+1 − qn + (−1)n+1(−1)
n/2�(q − (−1)n))

q2 + 1

]

= 1 + q + 1

q2 + 1

∑
n�1

un(qn+1 − qn) − q(q + 1)

q2 + 1

∑
n�1

un(−1)n(−1)
n/2�

+ q + 1

q2 + 1

∑
n�1

un(−1)
n/2�.

Since
∑

n�1 u
n(−1)n(−1)
n/2� = −u−u2

1+u2
and

∑
n�1 u

n(−1)
n/2� = u−u2

1+u2
, this simplifies to
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1 + q + 1

q2 + 1

[
uq2

1 − uq
− uq

1 − uq

]
− q(q + 1)

q2 + 1

[−u − u2

1 + u2

]
+ q + 1

q2 + 1

u − u2

1 + u2

= (1 + u)(1 − qu2)

(1 + u2)(1 − qu)
,

as desired. �

Remark: From Theorem 3.2, one sees that the number of regular semisimple classes of U(n, q) can
be rewritten

qn − 2(qn−2 − qn−4 + · · · + (−1)n/2q2) + (−1)n/2

if n is even, and

qn − 2(qn−2 − qn−4 + · · · + (−1)(n−1)/2q3) + (−1)(n−1)/2(2q + 1)

if n � 3 is odd.

To treat the case of SU(n, q), some further definitions are needed. We let �q+1 denote the q + 1st

roots of unity in C. We let ζ be a generator of the cyclic subgroup of order q + 1 in F
∗
q2
. For φ a monic

irreducible polynomial over Fq2 with non-0 constant term, we define s(φ) ∈ Zq+1 by

ζ s(φ) =
⎧⎨
⎩ (−1)deg(φ)φ(0) if φ = φ̃

φ(0)φ̃(0) if φ �= φ̃.

The following identity of Britnell (Identity 4.3 of [2]) will be helpful.

Lemma 3.3. For ω �= 1 ∈ �q+1,

∏
φ=φ̃

(
1 + ωs(φ)udeg(φ)

) ∏
{φ,φ̃}
φ �=φ̃

(
1 + ωs(φ)u2deg(φ)

)
.

is equal to⎧⎨
⎩ 1 if ω �= −1

1−qu2

1+u2
if ω = −1.

Here φ ranges over monic irreducible polynomials over Fq2 with non-0 constant term.

Next we enumerate the regular semisimple conjugacy classes of SU(n, q).

Theorem 3.4. The number of regular semisimple conjugacy classes of the group SU(n, q) is

qn+1 − qn + (−1)n+1(−1)
n/2�(q − (−1)n)

q2 + 1

if n is odd or q is even, and is

qn+1 − qn − (−1)n/2(q − 1)

q2 + 1
+ (−1)n/2

if n is even and q is odd.
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Proof. Thenumber of regular semisimple classes of SU(n, q) is thenumber of squarefree characteristic

polynomials of elements of SU(n, q). This is the coefficient of un in

1

q + 1

∑
ω∈�q+1

∏
φ=φ̃

(
1 + ωs(φ)udeg(φ)

) ∏
{φ,φ̃}
φ �=φ̃

(
1 + ωs(φ)u2deg(φ)

)
.

Here φ ranges over monic irreducible polynomials over Fq2 with non-0 constant term.

Assume that q is even. Then no ω ∈ �q+1 is equal to −1, so Lemmas 3.1 and 3.3 imply that the

number of regular semisimple classes of SU(n, q) is the coefficient of un in

1

q + 1

(1 + u)(1 − qu2)

(1 + u2)(1 − qu)
+ q

q + 1
.

The first term corresponds to ω = 1 and the second term to ω �= 1. By the proof of Theorem 3.2, this

is
qn+1−qn+(−1)n+1(−1)
n/2�(q−(−1)n)

q2+1
.

Next assume that q is odd. Then −1 ∈ �q+1, so Lemmas 3.1 and 3.3 imply that the number of

regular semisimple classes of SU(n, q) is the coefficient of un in

1

q + 1

(1 + u)(1 − qu2)

(1 + u2)(1 − qu)
+ 1

q + 1

1 − qu2

1 + u2
+ q − 1

q + 1
.

The first term corresponds toω = 1, the second term toω = −1, and the third term toω �= ±1. This

is equal to
qn+1−qn+(−1)n+1(−1)
n/2�(q−(−1)n)

q2+1
for n odd, and equal to

qn+1−qn−(−1)n/2(q−1)
q2+1

+ (−1)n/2 if

n is even. �

4. Symplectic groups

This section uses generating functions to enumerate regular semisimple classes in Sp(2n, q).
First we need some background on polynomials. For a monic polynomial φ(t) ∈ Fq[t] of degree n

with non-zero constant term, we define the ∗-conjugate φ∗(t) by

φ∗(t) = φ(0)−1tnφ(t−1).

Thus if

φ(t) = tn + an−1t
n−1 + · · · + a1t + a0

then

φ∗(t) = tn + a1a
−1
0 tn−1 + · · · + an−1a

−1
0 t + a

−1
0 .

We say that φ is self-conjugate (or ∗-self conjugate) if φ(0) �= 0 and φ∗ = φ.

We letN∗(q; d) denote the number of monic irreducible self-conjugate polynomialsφ(t) of degree
d over Fq, and let M∗(q; d) denote the number of (unordered) conjugate pairs {φ, φ∗} of monic irre-

ducible polynomials of degree d over Fq that are not self conjugate. The following lemma, part b of

Lemma 1.3.17 of [9], will be useful.

Lemma 4.1. Let e = 1 if the characteristic is even and let e = 2 if the characteristic is odd. Then

∏
d�1

(1 + ud)−N∗(q;2d)(1 + ud)−M∗(q;d) = (1 + u)e(1 − qu)

1 − qu2
.
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Theorem 4.2 is the main result of this section, and was proved in [4] by different methods.

Theorem 4.2. The number of regular semisimple conjugacy classes of the group Sp(2n, q) is

q−1

q+1
(qn + (−1)n−1) if q is even

(−1)n(n + 1) + ∑n−1
i=0 (−1)i(2i + 1)qn−i if q is odd.

Proof. The semisimple conjugacy classes of Sp(2n, q) correspond to monic, degree 2n, self-conjugate

polynomials over Fq with constant term 1, and the regular semisimple conjugacy classes of Sp(2n, q)
correspond to squarefree, monic, degree 2n self-conjugate polynomials over Fq with constant term 1.

Note that by parity arguments, a regular semisimple conjugacy class of Sp(2n, q) can not have a z − 1

factor.

It follows that the number of regular semisimple conjugacy classes of Sp(2n, q) is the coefficient of
un in ∏

d�1

(1 + ud)N
∗(q;2d)(1 + ud)M

∗(q;d).

By Lemma 4.1, this is the coefficient of un in

(1 − qu2)

(1 + u)e(1 − qu)
,

where e = 1 if q is even, and e = 2 if q is odd.

Now if q is even, comparing with the proof of Theorem 2.2 shows that this is the same as the

generating function for regular semisimple conjugacy classes of GL(n, q), so the result follows from

Theorem 2.2. If q is odd, we need to compute the coefficient of un in
1−qu2

(1+u)2(1−qu)
. Letting [un]f (u)

denote the coefficient of un in a power series f (u), we obtain that

[un] 1

(1 + u)2(1 − qu)
=

n∑
j=0

[uj] 1

(1 + u)2
[un−j] 1

1 − qu
=

n∑
j=0

(−1)j(j + 1)qn−j.

Thus

[un] 1 − qu2

(1 + u)2(1 − qu)
= [un] 1

(1 + u)2(1 − qu)
− q[un−2] 1

(1 + u)2(1 − qu)

=
⎛
⎝ n∑

j=0

(−1)j(j + 1)qn−j

⎞
⎠ − q

⎛
⎝n−2∑

j=0

(−1)j(j + 1)qn−2−j

⎞
⎠

= (−1)n(n + 1) +
n−1∑
i=0

(−1)i(2i + 1)qn−i,

as needed. �

Remark: As noted in the proof of Theorem 4.2, if q is even then the number of regular semisimple

conjugacy classes of Sp(2n, q) is equal to the number of regular semisimple conjugacy classes of

GL(n, q). It would be nice to have a more direct proof of this.

5. Orthogonal groups

This section contains our main new results. Subsection 5.1 enumerates regular semisimple classes

in odd characteristic, and Subsection 5.2 treats even characteristic.
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5.1. Odd characteristic

In this subsection we suppose that q is odd. Lemma 5.1 characterizes what it means for an element

of SO±(n, q) to be regular semisimple.

Lemma 5.1. An element of SO±(n, q) is regular semisimple if and only if:

• For all polynomials φ �= z ± 1, the corresponding Jordan block partition has size at most 1
• For φ = z + 1, the Jordan block partition is either empty or consists of two blocks of size 1
• For φ = z − 1, the Jordan block partition is either empty, consists of one block of size 1, or consists of

two blocks of size 1

Proof. Wework in the corresponding algebraic groupX := SO(n, Fq)whereFq is the algebraic closure

of the field of order q. Let x ∈ X be a semisimple regular element. If α �= ±1, then the α eigenspace

of x is totally singular and the sum of the α and α−1 eigenspaces is nondegenerate. If the multiplicity

of the α-eigenspace is d, then we see that there is a subgroup GL(d, Fq) centralizing x, whence d � 1.

Let W denote the fixed space of x. Then W is nondegenerate and so SO(W) is contained in the

centralizer of x. Since this must be a torus, it follows that dimW � 2. The same argument applies to

the −1 eigenspace. Note that the −1 eigenspace must be even dimensional.

Conversely, if the conditions hold,we see that the connected part of the centralizer of x is a torus. �

We also note that if the partition corresponding to z + 1 or z − 1 is nonempty, it can be of either

positive or negative type.

Lemma 5.2 characterizes what it means for x, y regular semisimple elements of SO±(n, q) to be

conjugate in O±(n, q).

Lemma 5.2. Let x, y ∈ SO±(n, q) be regular semisimple elements. Then x and y are conjugate in O±(n, q)
if and only if they have the same characteristic polynomial and the ±1 eigenspaces have the same type.

Proof. Let V denote the natural module for O±(n, q). Let f be the characteristic polynomial of x. Write

f = (z − 1)a(z + 1)bg1g2 . . . gm where gi is either irreducible and self conjugate or gi is a product of

two irreducible polynomialswhich are conjugate to one another. Let Vj denote the kernel of gj(x). Then
each Vj is nondegenerate. If gj is irreducible, Vj is even dimensional of − type and if gj is a product of

two irreducible polynomials, then Vj is even dimensional of + type. The result now follows by Witt’s

theorem. �

Lemma 5.3 describes which classes of SO±(n, q) are obtained by splitting a class of O±(n, q).

Lemma 5.3. A conjugacy class of regular semisimple elements of SO±(n, q) is obtained by splitting a class

of O±(n, q) if and only if its characteristic polynomial has no z ± 1 factors.

Proof. Let x ∈ C be anO±(n, q) class of semisimple regular elements contained in SO±(n, q). Note that
C splits into two classes in SO±(n, q) if andonly if the centralizer of x is contained in SO±(n, q). Suppose
that x commutes with an element y ∈ O±(n, q) with det(y) = −1. We may assume that y is a 2-

element and so in particular y is semisimple. It follows that the−1 eigenspace of y is odd dimensional

and nondegenerate. Any odd dimensional nondegenerate x-subspace must have an eigenvalue ±1

(because the other eigenvalues are paired on any nondegenerate invariant subspace).

Conversely, if x has eigenvalue either ±1, it obviously has a nondegenerate 1-dimensional space,

whence it commutes with a reflection. �

Let N∗(q; d),M∗(q; d) be as in Section 4. The following complement to Lemma 4.1 will be useful.

It is part c of Lemma 1.3.17 of [9].
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Lemma 5.4. Suppose that the characteristic is odd. Then

∏
d�1

(1 − ud)−N∗(q;2d)(1 + ud)−M∗(q;d) = (1 − u)(1 + u)2

1 − qu2
.

Let rsG denote the number of regular semisimple conjugacy classes of a group G. Define

RSO+(u) = 1 + ∑
n�1

rsSO+(2n,q)u
n,

RSO−(u) = ∑
n�1

rsSO−(2n,q)u
n,

RSO(u) = 1 + ∑
n�1

rsSO(2n+1,q)u
n.

The following lemma is crucial.

Lemma 5.5. Suppose that the characteristic is odd.

(1)

RSO+(u2) + RSO−(u2) + 2uRSO(u
2)

=
[
(1 + 2u2)(1 + 2u + 2u2) + 1

] (1 − qu4)

(1 + u2)2(1 − qu2)
− 1.

(2)

RSO+(u2) − RSO−(u2) = 2(1 − qu4)

(1 + u2)2(1 − u2)
− 1.

Proof. For the first part, the term (1 + 2u2) comes from the polynomial z + 1; the 1 is for the empty

partition, and the 2u2 is for the partition with two blocks of size 1, either of + or − type. The term

(1 + 2u + 2u2) comes from the polynomial z − 1; the 1 is for the empty partition, the 2u is for the

partition of size 1 (either of + or − type), and the 2u2 is for the partition consisting of two blocks of

size 1 (either of + or − type). Further note by Lemma 5.3 that one must count twice those conjugacy

classes with no z ± 1 term. We conclude from Lemma 5.2 that

RSO+(u2) + RSO−(u2) + 2uRSO(u
2)

= (1 + 2u2)(1 + 2u + 2u2)
∏
d�1

(1 + u2d)N
∗(q;2d)(1 + u2d)M

∗(q;d)

+ ∏
d�1

(1 + u2d)N
∗(q;2d)(1 + u2d)M

∗(q;d) − 1

=
[
(1 + 2u2)(1 + 2u + 2u2) + 1

] (1 − qu4)

(1 + u2)2(1 − qu2)
− 1.

the final equality being Lemma 4.1.

For part 2 of Lemma5.5, note that due to cancelation of positive andnegative types, the polynomials

z±1 both contribute a factor of 1 to RSO+(u2)−RSO−(u2). Again onemust count twice those conjugacy

classes with no z ± 1 term. Observe that the space corresponding to a self-conjugate polynomial

φ �= z±1has negative type,whereas the space corresponding to a conjugate pair of non-self conjugate

polynomials has positive type. Thus by Lemmas 5.2 and 5.4,
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RSO+(u2) − RSO−(u2) = 2
∏
d�1

(1 − u2d)N
∗(q;2d)(1 + u2d)M

∗(q;d) − 1

= 2(1 − qu4)

(1 + u2)2(1 − u2)
− 1. �

One can now solve for RSO+(u), RSO−(u), RSO(u).
Indeed, taking odd degree terms in part 1 of Lemma 5.5 gives that

2uRSO(u
2) = (1 + 2u2)2u

(1 − qu4)

(1 + u2)2(1 − qu2)
,

which simplifies to

RSO(u
2) = (1 + 2u2)(1 − qu4)

(1 + u2)2(1 − qu2)
.

Similarly, taking even degree terms in part 1 of Lemma 5.5 gives that

RSO+(u2) + RSO−(u2) = [(1 + 2u2)2 + 1](1 − qu4)

(1 + u2)2(1 − qu2)
− 1.

Part 2 of Lemma 5.5 gives that

RSO+(u2) − RSO−(u2) = 2(1 − qu4)

(1 + u2)2(1 − u2)
− 1.

Thus

RSO+(u2) = (1 + 2u2 + 2u4)(1 − qu4)

(1 + u2)2(1 − qu2)
+ (1 − qu4)

(1 + u2)2(1 − u2)
− 1

and

RSO−(u2) = (1 + 2u2 + 2u4)(1 − qu4)

(1 + u2)2(1 − qu2)
− (1 − qu4)

(1 + u2)2(1 − u2)
.

We now obtain the main result of this section.

Theorem 5.6. Assume that the characteristic is odd.

(1) The number of regular semisimple classes of SO(3, q) is q, and the number of regular semisimple

classes of SO(5, q) is q2−q−1. For n � 3, the number of regular semisimple classes of SO(2n+1, q)
is

qn − qn−1 − qn−2 + 3qn−3 − 5qn−4 + 7qn−5 + · · · + (−1)n(2n − 5)q − (−1)n(n − 1).

(2) The number of regular semisimple classes of SO+(4, q) is q2 − 2q + 3. For n � 4 even, the number

of regular semisimple conjugacy classes of SO+(2n, q) is

qn − qn−1 + qn−2 − 3qn−3 + 5qn−4 − · · · + (2n − 7)q2 −
(
5n − 10

2

)
q + 3n

2
.

(3) The number of regular semisimple classes of SO+(2, q) is q−1 and the number of regular semisimple

classes of SO+(6, q) is q3−q2+2q−4. For n � 5 odd, the number of regular semisimple conjugacy

classes of SO+(2n, q) is

qn − qn−1 + qn−2 − 3qn−3 + 5qn−4 − · · · − (2n − 7)q2 +
(
5n − 11

2

)
q − 3n − 1

2
.
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(4) The number of regular semisimple classes of SO−(4, q) is q2 − 1. For n � 4 even, the number of

regular semisimple conjugacy classes of SO−(2n, q) is

qn − qn−1 + qn−2 − 3qn−3 + 5qn−4 − · · · + (2n − 7)q2 −
(
3n − 10

2

)
q + n − 4

2
.

(5) The number of regular semisimple classes of SO−(2, q) is q+1 and the number of regular semisimple

classes of SO−(6, q) is q3−q2. For n � 5odd, thenumberof regular semisimple classes of SO−(2n, q)
is

qn − qn−1 + qn−2 − 3qn−3 + 5qn−4 − · · · − (2n − 7)q2 +
(
3n − 9

2

)
q − n − 3

2
.

Proof. Let [un]f (u) denote the coefficient of un in a power series f (u). For the first part of the theorem,

the generating function for RSO(u
2) gives that number of regular semisimple classes of SO(2n + 1, q)

is equal to

[un] (1 + 2u)(1 − qu2)

(1 + u)2(1 − qu)
= [un] (1 − qu2)

(1 + u)2(1 − qu)
+ 2[un−1] (1 − qu2)

(1 + u)2(1 − qu)
.

By the proof of the symplectic group case (Theorem 4.2),

[un] (1 − qu2)

(1 + u)2(1 − qu)

= qn − 3qn−1 + 5qn−2 − 7qn−3 + · · · + (−1)n−1(2n − 1)q + (−1)n(n + 1)

and

2[un−1] (1 − qu2)

(1 + u)2(1 − qu)

= 2qn−1 − 6qn−2 + 10qn−3 + · · · + 2(−1)n−2(2n − 3)q + (−1)n−12n.

Addition now proves the first part of the theorem.

For the second part of the theorem, we assume n is even, and need to evaluate

[un]
(

(1 + 2u + 2u2)(1 − qu2)

(1 + u)2(1 − qu)
+ (1 − qu2)

(1 + u)2(1 − u)

)
.

We write this as a sum of three terms:

[un] (1 + 2u)(1 − qu2)

(1 + u)2(1 − qu)
+ 2[un−2] (1 − qu2)

(1 + u)2(1 − qu)
+ [un] (1 − qu2)

(1 + u)2(1 − u)
.

By part one of the theorem, the first term is equal to

qn − qn−1 − qn−2 + 3qn−3 − 5qn−4 + 7qn−5 + · · · + (2n − 5)q − (n − 1).

By the odd characteristic case of Theorem 4.2, the second term is equal to

2
(
qn−2 − 3qn−3 + 5qn−4 − 7qn−5 · · · − (2n − 5)q + (n − 1)

)
.

The third term is easily seen to equal − n
2
q +

(
n
2

+ 1
)
. Adding these three terms proves part 2 of the

theorem.

For the third part of the theorem, we assume n is odd, and need to evaluate

[un]
(

(1 + 2u + 2u2)(1 − qu2)

(1 + u)2(1 − qu)
+ (1 − qu2)

(1 + u)2(1 − u)

)
.
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Again we write this as a sum of three terms:

[un] (1 + 2u)(1 − qu2)

(1 + u)2(1 − qu)
+ 2[un−2] (1 − qu2)

(1 + u)2(1 − qu)
+ [un] (1 − qu2)

(1 + u)2(1 − u)
.

By part one of the theorem, the first term is equal to

qn − qn−1 − qn−2 + 3qn−3 − 5qn−4 + 7qn−5 + · · · − (2n − 5)q + (n − 1).

By the odd characteristic case of Theorem 4.2, the second term is equal to

2
(
qn−2 − 3qn−3 + 5qn−4 − 7qn−5 · · · + (2n − 5)q − (n − 1)

)
.

The third term is easily seen to be n−1
2

q −
(
n+1
2

)
. Adding the three terms proves part three of the

theorem.

To prove part 4 of the theorem, by part 2 of Lemma 5.5, it is enough to verify that for even n, the

number of regular semisimple classes in SO+(2n, q) minus the number of regular semisimple classes

in SO−(2n, q) is the coefficient of un in

2(1 − qu2)

(1 + u)2(1 − u)
.

For even n, this coefficient is easily proved to equal −nq + (n + 2), which indeed is the difference

between the expressions in parts 2 and 4 of the theorem.

To prove part 5 of the theorem, by part 2 of Lemma 5.5, it is enough to verify that for odd n, the

number of regular semisimple classes in SO+(2n, q) minus the number of regular semisimple classes

in SO−(2n, q) is the coefficient of un in

2(1 − qu2)

(1 + u)2(1 − u)
.

For odd n, this coefficient is easily seen to equal (n − 1)q − (n + 1), which is the difference between

the expressions in parts 3 and 5 of the theorem. �

5.2. Even characteristic

Next suppose that q is even. We need only consider SO±(2n, q), as SO(2n + 1, q) is isomorphic

to a Sp(2n, q) and g ∈ SO(2n + 1) is regular semisimple if and only if the corresponding element of

Sp(2n, q) is regular semisimple.

Lemma 5.7 characterizes the regular semisimple elements of SO±(2n, q). The proof is identical to

the case of odd characteristic.

Lemma 5.7. An element of SO±(2n, q) is regular semisimple if and only if:

• For all polynomials φ �= z − 1, the corresponding Jordan block partition has size at most 1
• For φ = z − 1, the Jordan block partition is either empty or consists of two blocks of size 1

Lemma 5.8 characterizes what it means for x, y regular semisimple elements of SO±(n, q) to be

conjugate in O±(n, q).

Lemma 5.8. Let x, y ∈ SO±(n, q) be regular semisimple elements. Then x and y are conjugate in O±(n, q)
if and only if they have the same characteristic polynomial.
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Proof. Let τ be an element inO±(n, q) outside SO±(n, q). LetFq be the algebraic closure of the field of

q elements. Since SO(n, q) is simply connected, the centralizers of semisimple elements are connected

and so x and y are conjugate in SO±(n, q) if and only if they are conjugate in SO(n, Fq) (and similarly

for x and yτ ).

So suppose that x and y have the same characteristic polynomial. Let V be the natural module

for SO(n, Fq). So V = V1 ⊕ V2 where each Vi is isotropic and the characteristic polynomial of x

on Vi is fi (and the fi are conjugate to one another). We can similarly decompose V = W1 ⊕ W2

for y (with the same characteristic polynomials). Since pairs of complementary totally isotropic sub-

spaces are in a single O(n, Fq) orbit (there are two orbits for SO(n, Fq)), we may conjugate y by an

element of O(n, Fq) and assume that Wi = Vi. The stabilizer of this pair of subspaces is a subgroup

H ∼= GL(V1). Then conjugating by an element of H we may assume that x and y agree on V1 and thus

also on V2. �

Lemma 5.9 describes which classes of SO±(n, q) are obtained by splitting a class of O±(n, q).

Lemma 5.9. A conjugacy class of regular semisimple elements of SO±(n, q) is obtained by splitting a class

of O±(n, q) if and only if its characteristic polynomial has no z − 1 factor.

Proof. Let x ∈ C ⊂ SO±(n, q) with C a semisimple conjugacy class of O±(n, q). If the 1-eigenspace

is nontrivial, then it is even dimensional and nondegenerate. Thus, x commutes with a transvection y.

Since SO±(n, q) contains no transvections, the centralizer of x is not contained in SO±(n, q), whence

C is a single conjugacy class of SO±(n, q).
Conversely, if the 1-eigenspace of x is trivial, then we see that the centralizer of x in GL(n, q) is a

torus and in particular has odd order (and so is contained in SO±(n, q)). �

The following lemma, part c of Lemma 1.3.17 of [9], will be useful.

Lemma 5.10. Suppose that the characteristic is even. Then

∏
d�1

(1 − ud)−N∗(q;2d)(1 + ud)−M∗(q;d) = 1 + u

1 − qu2
.

As in the odd characteristic section, we define generating functions:

RSO+(u) = 1 + ∑
n�1

rsSO+(2n,q)u
n,

RSO−(u) = ∑
n�1

rsSO−(2n,q)u
n.

Lemma 5.11 solves for the generating functions RSO+(u), RSO−(u).

Lemma 5.11. Suppose that the characteristic is even.

(1)

RSO+(u2) = 1 − qu4

1 − qu2
+ 1 − qu4

1 + u2
− 1.

(2)

RSO−(u2) = 1 − qu4

1 − qu2
− 1 − qu4

1 + u2
.

Proof. It suffices to prove the two equalities:
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•
RSO+(u2) + RSO−(u2) = 2(1 − qu4)

(1 − qu2)
− 1,

•
RSO+(u2) − RSO−(u2) = 2(1 − qu4)

(1 + u2)
− 1.

To calculate RSO+(u2) + RSO−(u2), there is a term 1 + 2u2 coming from the polynomial z − 1, the 2u2

corresponding to the fact that the partition consisting of two blocks of size 1 can have either positive

or negative type. Further note by Lemma 5.9 that we need to count twice those conjugacy classes with

no z − 1 term. We conclude from Lemma 5.8 that

RSO+(u2) + RSO−(u2) = (1 + 2u2)
∏
d�1

(1 + u2d)N
∗(q;2d)(1 + u2d)M

∗(q;d)

+ ∏
d�1

(1 + u2d)N
∗(q;2d)(1 + u2d)M

∗(q;d) − 1.

By Lemma 4.1, this is equal to

(1 + 2u2)(1 − qu4)

(1 + u2)(1 − qu2)
+ (1 − qu4)

(1 + u2)(1 − qu2)
− 1 = 2(1 − qu4)

(1 − qu2)
− 1,

as claimed.

To calculate RSO+(u2) − RSO−(u2), the polynomial z − 1 contributes 1+ u2 − u2 = 1. Further note

by Lemma 5.9 that we need to count twice those conjugacy classes with no z − 1 term. Observe that

the space corresponding to a self-conjugate polynomial φ �= z − 1 has negative type, whereas the

space corresponding to a conjugate pair of non-self conjugate polynomials has positive type. Hence

by Lemma 5.8,

RSO+(u2) − RSO−(u2) = 2
∏
d�1

(1 − u2d)N
∗(q;2d)(1 + u2d)M

∗(q;d) − 1.

By Lemma 5.10, this is equal to

2(1 − qu4)

(1 + u2)
− 1,

as claimed. �

Applying Lemma 5.11 gives the main result of this section.

Theorem 5.12. Assume that the characteristic is even. The number of regular semisimple classes of

SO±(2, q) is q ∓ 1, and for n � 2, the number of regular semisimple classes of SO±(2n, q) is

qn − qn−1 ∓ (−1)n(q − 1).

Proof. Consider the case of SO+(2n, q). Letting [un]f (u) denote the coefficient of un in a power series

f (u), Lemma 5.11 gives that the number of regular semisimple classes of SO+(2n, q) is

[un]
(
1 − qu2

1 − qu
+ 1 − qu2

1 + u

)
= [un] 1

1 − qu
+ [un−2] −q

1 − qu
+ [un] 1

1 + u
+ [un−2] −q

1 + u

= qn − qn−1 − (−1)n(q − 1).

The argument for SO−(2n, q) is nearly identical. �
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