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Metallic implants in MRI cause spin-echo (SE) images to be
distorted in the slice and frequency-encoding directions. Chang
and Fitzpatrick (IEEE Trans Med Imaging 1992;11:319–329) pro-
posed a distortion correction method (termed the CF method)
based on the magnitude images from two SE acquisitions that
differ only in the polarity of the frequency-encoding and slice-
selection gradients. In the present study we solved some prob-
lems with the CF method, primarily by modeling the field inho-
mogeneities as a single 3D displacement field built by 3D cubic
B-splines. The 3D displacement field was applied in the actual
distortion direction in the slice/frequency-encoding plane. To
account for patient head motion, a 3D rigid body motion cor-
rection was also incorporated in the model. Experiments on a
phantom containing an aneurysm clip showed that the knot
spacing between the B-splines is a very important factor in both
the final image quality and the processing speed. Depending on
the knot spacing and the image volume size, the number of
unknowns range from a few thousands to over 100,000, leading
to processing times ranging from minutes to days. Optimal knot
spacing, a means of increasing the processing speed, and other
parameters are investigated and discussed. Magn Reson Med
54:169–181, 2005. © 2005 Wiley-Liss, Inc.
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Magnetic resonance imaging (MRI) is known for its ability
to provide superior tissue contrast. Furthermore, MR im-
ages often provide better delineation of tumors compared
to CT when used for the planning of radiation surgery.
However, MR images suffer from geometrical distortions.
Object-independent sources of distortion include main
static field imperfections and gradient nonlinearities. In
addition, the object (patient) induces field inhomogene-
ities in areas with spatially varying magnetic susceptibility
(e.g., at tissue–air or tissue–bone boundaries). With con-
ventional (non-EPI) imaging, the distortion at these bound-
aries is quite small—on the order of a pixel. In contrast,
the susceptibility difference between metal and human
tissue is much higher, and often leads to substantial geo-
metric distortions near (nonferromagnetic) metallic im-
plants such as aneurysm clips, stents, dental braces, etc.
(1–4). The nature of the distortion depends on the degree
of local field inhomogeneity and the type of pulse se-
quence used.

Different approaches have been used to address the geo-
metrical distortions in spin-echo (SE) imaging. In one ap-
proach, spatial localization is achieved with the use of
phase encoding along all three axes (5). The resulting
image is completely free of distortions, but the scan times
are on the order of an hour. In addition to long scan times,
aliasing and motion artifacts occur in all three directions.
Hybrid solutions with somewhat shorter scan times
(thanks to readout sampling of only short segments) have
also been proposed (6,7). However, phase discontinuities
at the edges of the segments along the kx direction may
induce ghosting and incoherent stimulated echoes (6).

The phase evolution of a pixel is dependent on the local
magnetic field and the echo time (TE). Using this informa-
tion to estimate the magnetic field map has been proposed
for conventional imaging (8–10) and EPI (11). By subtract-
ing the phase from two images scanned with different TE,
one can obtain a phase map that is proportional to the field
inhomogeneity. Because of the 2� phase cycle, the phase
map must first be unwrapped (12–16) before it is used to
correct the distorted images. Multiecho approaches that
circumvent the phase unwrapping process have also been
proposed (17).

Another approach proposed for distortion reduction is
“view angle tilting” (VAT) (18,19), whereby an extra gra-
dient during the readout is applied in the slice-selection
direction. This results in a nonorthogonal image encoding,
which effectively reduces the apparent distortion at the
expense of image blurring.

In an interesting postprocessing approach proposed by
Chang and Fitzpatrick (20), two measurements are ob-
tained with the same spin-echo pulse sequence, but with
the signs of the readout and slice-selection gradients al-
tered. With this method (termed the CF method), two
distorted images are obtained such that the direction of
distortion is reversed. From these images the distortion
field can be calculated and the images can be corrected.
After correction, the images can be averaged to gain signal-
to-noise ratio (SNR), and hence there is a minimal penalty
in terms of SNR per scan time. This method uses the
reconstructed magnitude images to correct for the geomet-
rical distortion, and relies on signal conservation. There-
fore, regions with signal dropouts (e.g., due to B1 inhomo-
geneities near the metallic object) cannot be rectified. Kan-
nengiesser et al. (21), who implemented the CF method,
pointed out that the technique has not been widely used
up to now. We believe this is primarily because 1) each
column (along the frequency-encoding direction) of the
displacement field is estimated separately, which leads to
a discontinuous field due to slight errors in the distortion
estimates; 2) movement between the two scans is not ac-
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counted for; and 3) the definition of common landmarks in
the two images before correction is a complicating factor
(21,22).

In a recent paper we introduced a 3D version of the CF
method for distortions in EP images (23). Improvements
were made to the original CF method as follows:

1. Smooth and continuous displacement fields are guar-
anteed by the use of smooth and continuous basis
functions.

2. The number of parameters to estimate, which is very
large in a 3D setting, is reduced.

3. There is no need to define common landmarks in the
two images.

4. Subject movements are incorporated into the model.

In this paper we present a postprocessing method that is
based on the 3D CF method, with the following important
modifications:

1. We estimate the displacement field along the angle of
distortion, given that there are distortions along both the
slice-selection and frequency-encoding directions. The
original CF method describes this angle of distortion, but
only in-plane distortion corrections were presented in the
original study (20).

2. The 3D field is modeled by a B-spline basis set instead
of a cosine-basis set. The main difference is the local
support of the B-splines vs. the global support of the co-
sine basis set. While the EPI distortions are of fairly low-
spatial-frequency content, the distortions due to metallic
objects are not. To model higher spatial frequencies, a
larger basis set is required. Given the internal memory
capacity of a few GBs in present-day computers, this
would limit the number of basis functions that can be
included for the 3D cosine set, primarily due to the storage
requirements for the Hessian of the objective function. The
Hessian is a matrix of size nxyz � nxyz, i.e., the square of
the total number of parameters that define the displace-
ment field.

MATERIALS AND METHODS

Theory

A field inhomogeneity, �B, present in SE imaging induces
geometric distortion in both the frequency and slice
planes, effectively along a direction vm, where vm depends
on the slice thickness sz, frequency-encoding voxel size sx,
excitation bandwidth �exc, and receiver bandwidth �recv

[Hz/pixel] according to

vm � �
�sx/�recv 0 sz/�exc�

T

��sx/�recv 0 sz/�exc��

where � � � cos��
�

2� 0 sin��
�

2�
0 1 0

	sin��
�

2� 0 cos��
�

2� �,

� � �
0 if Gx � 0 & Gz � 0
1 if Gx � 0 & Gz � 0
2 if Gx � 0 & Gz � 0
3 if Gx � 0 & Gz � 0

, [1]

and ��� denotes the norm. The subscript m denotes that vm

is defined in the metric system, which is appropriate for
determining the direction in which the anatomy moves in
real-world coordinates. For practical purposes, from now
on we define the distortion direction in voxel coordinates
by simply dropping sx and sz according to

v � �
�1/�recv 0 1/�exc�

T

��1/�recv 0 1/�exc��
[2]

Furthermore, the relation between magnetic field inhomo-
geneity and displacements, d(x), in voxel units along v is
defined as

d
x� � ��B
x���1/�recv 0 1/�exc�� [3]

where x 
 [ x, y, z]T. The distortions will cause compres-
sion or stretching of the image (along v) in areas where the
directional derivative of �B(x) is nonzero. Because the
refocusing pulse preserves the total signal in SE imaging,
this compression/stretching will give rise to an intensity
(Jacobian) modulation (24). The intensity modulation in
the frequency and slice directions are analogous, although
the latter is due to the change in slice thickness. The
resulting intensity modulation becomes

J
x� � �1 � �� d
dx


d
x�� 0
d
dz


d
x��	, v
� � 
1 � ��d
x�, v��

[4]

where ��d(x), v� is the directional derivative of d along v.
If we knew the �B(x) field, we could use Eqs. [2]–[4] to

resample the acquired data at the points x� 
 x � d(x) and
remove both the geometric and intensity distortions using
the following relation:

Ic
x� � Iacq
x � d
x�v�J
x� [5]

However, in reality, �B (and therefore d) is unknown, and
hence we want to estimate d using the CF method.

Pulse Sequence Modifications for the CF Method

To obtain the appropriate input data for the CF correction
method, we employ two data sets (I� and I–) with opposite
polarity of the slice-selection and frequency-encoding gra-
dients, using an SE (or any other RF refocused sequence).
Because the direction of the chemical shift of fat will be
reversed as the gradients are negated, a leading fat satura-
tion pulse is necessary to avoid simultaneous chemical
shift and distortion differences between the two image
volumes. The I� and I– images are identical except for the
opposite distortion directions, �v and –v, and possibly
also different receiver gains. Minimizing the sum-of-
squares difference (SSD) between these images is what
drives the correction method in the iterative search for
d(x).
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Modeling the Displacement Field

Since the unknown �B(x) is a continuous 3D scalar field,
we have in this work modeled d(x) as such. This is in
contrast to previous works, in which each column was
modeled separately (20–22,25).

Estimation of a continuous 3D displacement field can be
achieved by using some form of regularization and/or by
building d(x) from a basis set that is limited in spatial
frequency. One advantage of a basis set is that the param-
eters to be estimated are the coefficients of the basis func-
tions rather than each and every voxel in d(x), which
results in fewer parameters (by several magnitudes) to
estimate.

Recently, we also used the CF method to estimate a
continuous field to correct for EPI distortions. For that
application we chose the cosine basis set (26) to model the
3D displacement field. The cosine set is suitable for EPI
distortions, which consist of fairly low spatial frequencies.
However, because of its global support the computational
effort and memory storage requirements grow as the reso-
lution of the displacement field is raised to the power of
six. This poses a problem for �B(x) fields induced by
metallic objects, which generate inhomogeneities of high
spatial frequencies.

One way to solve this problem is to use 3D cubic B-
splines (27–29). The most apparent advantage is its local
support, i.e., each B-spline is nonzero only over a very
limited volume, which allows the calculations to be per-
formed in smaller pieces. A detailed definition of
B-splines and how they are used in this work can be found
in Appendix A. The displacement field, d(x), which is of
the same dimensions as the image data, is built up from
identical 3D B-splines centered on knots placed regularly
on a 3D grid. The size of each B-spline is given by the knot
spacing h 
 [hx, hy, hz] in voxel units. Since the support
(the range in which it is nonzero) of a cubic B-spline by
definition is 5 knots in each direction, each B-spline “cov-
ers” K 
 (4hx � 1) � (4hy � 1) � (4hz � 1) voxels. The
smaller the knot spacing, the more B-splines are needed to
build up d(x), and higher spatial frequencies can be mod-

eled. After the knot spacing h has been defined according
to the nature of the distortions and the voxel size, the
modeled displacement field is given by the coefficients in
the scalar field c(k)

d
x� � �
k�K

c
k��3
x/h � k� [6]

where x 
 [ x, y, z] � V, i.e. the entire image volume, h is
the knot spacing, k is a shift parameter, and c(k) is the field
of B-spline coefficients. Using B-splines with equidistant
knot spacing implies that the modeled function falls off to
zero at the boundaries. This can potentially be an issue if
there are distortions near the edges of the image volume.
To circumvent this, one can simply extend the image
volume with 1 or 2 knots in each direction and pad the
data with zeros (30).

Estimation of the Displacement Field

Let us illustrate with a 2D example how to estimate the
displacement field from the image data itself (note again
that all work is actually done in 3D). Assume that we have
a square object (Fig. 1a) and a magnetic field inhomogene-
ity, as in Fig. 1b. In this example the distortion direction,
v 
 [0 1], goes vertically in the image. Scanning this object
twice with different signs of the readout gradient yields
position shifts along �v or –v (Fig. 1c and d, respectively).
Only distortions on the borders of isointensity reveal the
existence of distortion when one looks at the two images.
However, since the position shift also changes the appar-
ent proton density, we get an intensity (Jacobian) modula-
tion as well (Eq. [4], Fig. 1e and f). The two latter images
correspond to the actual images we would acquire given
this square object and this field. The Jacobian modulation
means that we can also see the effects of distortion inside
a region of isointensity.

The task now is to search for the coefficient field c(k)
that builds d using a certain knot spacing h, which mini-
mizes the SSD between the two scanned images (Fig. 1e

FIG. 1. Assume that we have a 2D square object (a) and a true 2D displacement field (b) that produce distortions in the vertical direction
(v 
 [0 1]). Scanning with normal and reversed gradients will result in geometric distortion (c and d) and intensity modulation (e and f) of
the images. g: The estimated displacement field d(x,y), which was built of 10 � 10 2D B-splines (i.e., 100 unknown parameters). The
scanned images (e and f) are resampled at coordinates �x,y � d
x,y�� and �x,y � d
x,y�� (h and i), and intensity modulated with 1

�
d

dy

d
x,y�� and 1 �

d
dy


d
x,y�� (j and k), which are very similar to the true object (a). By averaging j and k, higher SNR is obtained. The

true (b) and estimated (g) fields are not the inverse of each other because the true field pushes the data to wrong locations while the
estimated field is applied on the distorted images as a pulling operation.
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and f) after resampling (Fig. 1h and i) and intensity mod-
ulation (Fig. 1j and k). The objective function becomes

O
c� � �
x�V

�I�
x � d
x, c�v� � 
1 � D
d��

� I	
x � d
x, c�v� � 
1 � D
d���2 [7]

where c is an unraveled vector form of c(k), and D(d) 

��d(x, c), v� is the directional derivative of d(x). Given
that the length, N, of c may be on the order of tens of
thousands, a fast search algorithm using derivatives is
necessary to achieve acceptable execution times. The der-
ivation of an expression for the first derivative of Eq. [7] is
left for Appendix B.

We chose to use the variable metric (VM) method, which
uses the first derivative of the objective function, as our
search algorithm. The VM starts off as a gradient descent
method, but in each iteration it improves an estimate of the
inverse of the Hessian, which is initially set to the unity
matrix, and gradually becomes more similar to the Gauss-
Newton method. The advantage of the VM (over the con-
jugate gradient method) is that it is able to handle the
different scale of the movement (see below) and distortion
parameters quite gracefully.

Once a minimum of the N-dimensional parameter space
is reached, the modeled displacement field (Fig. 1g) is an
approximation to the underlying but unknown �B(x) field.
The careful reader notices that the estimated displacement
field (Fig. 1g) is not the scaled and approximated inverse of
�B(x) field (Fig. 1b), as one might at first expect given that
the �B(x) field generates the distortions while the displace-
ment field corrects for the distortions. This is because
�B(x) pushes the data into the wrong locations, while we
use d(x,c) to go into the distorted image space and pull the
data into the correct locations.

For large and rapidly changing displacement fields,
where the derivative of the field is larger than one, voxels
with negative Jacobian will arise, leading to negative im-
age intensities and reordering of voxels after correction,
even if the true field is known (see Eq. [5]). Since these
effects cannot be handled by the model, we restrict our-
selves to correct the data outside this region.

Motion Between the I� and I– Volumes

In a clinical setting, the two image volumes may also differ
due to patient motion. Because of the high-spatial-fre-
quency content in the �B(x) field, even subvoxel head
motion will have an impact on the outcome of the correc-
tion. We therefore chose to include a 3D rigid motion
model of the I� image to the I– image simultaneously with
the estimation of d(x,c). The new objective function to
minimize becomes a function of a new parameter vector p,
given by

p � � m
c 	 [8]

where m is a 6 � 1 vector containing the 3D rigid body
motion parameters.

The objective function now becomes

O
p� � �
x�V

�I�
T
m�x � d
x, c�v� � 
1 � D
d��

� I	
x � d
x, c�v� � 
1 � D
d���2

where, �T
m� 
 rigid body transformation matrix based on m

m 
 �xtrans, ytrans, ztrans, pitch, roll, yaw�T

[9]

Strictly, since T(m) is a 4 � 4 matrix, the 3 � 1 vector x
must be extended to [xT 1]T for this equation to hold.

EXPERIMENTS

The purpose of the experiments was to investigate the
performance of the correction algorithm for image data on
objects containing small metallic objects. Both phantom
studies and a clinical scan were performed. The sign re-
versal of the x- and z-gradients was implemented on both
an SE and an FSE sequence, for T1-weighted and T2-
weighted imaging, respectively. However, in this study
only T1-weighted revSE images were obtained, because
they are the most useful for stereotactic imaging. The ex-
citation bandwidth, �exc, was fixed in the sequence to
860 Hz.

The phantom experiments were performed on a GE 1.5T
Twinspeed system (23 mT/m, 75 T/(ms) using the whole-
body gradient mode). A cylindrical phantom was filled
with household gelatin, with an aneurysm clip embedded
in the central part of the phantom. The clip was placed
about a centimeter away from square plastic structures in
the phantom (Fig. 2). A total of 80 axial contiguous 1-mm
slices were scanned with FOV 
 24 � 24 cm, resolution 

512 � 256 (zero-filled to 512 � 512), four averages, and
receiver bandwidth �recv 
 �15.63 kHz/FOV 

61.05 Hz/pixel. The direction of distortion was v 

�[0.998 0 	0.071] (vm 
 �[0.989 0 	0.150]). For
code validation purposes, images with other resolutions,
slice thicknesses, and receiver bandwidths were also ac-
quired (data not shown).

The MR scanner used for the patient study was a GE
1.5T Echospeed system (23 mT/m, 120 T/(ms)). A stereo-
tactic patient with a meningioma near an aneurysm clip
was scanned with the revSE sequence with 18 contiguous
2-mm slices. The relevant imaging parameters were FOV 

26 � 26 cm (to include the fiducles), resolution 
 256 �
256, �recv 
 122.1 Hz/pixel, TE/TR 
 20/440 ms, and two
averages. Flow compensation and fat saturation were ap-
plied. For the postprocessing, the knot spacing for the
clinical case was set to 3 � 3 � 2 mm.

The two image volumes of the phantom, each of which
originally consisted of 21 million voxels, were cropped in
the xy-plane to exclude irrelevant embedded oil bottles in
the phantom far from the metallic clip. The number of
voxels in each of the two cropped image volumes, centered
on the clip, was reduced by one order of magnitude to
151 � 174 � 80, corresponding to a volume size of 70.8 �
81.6 � 80 mm3. To investigate convergence speeds and
optimal spatial resolution of d(x), we applied our CF cor-
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rection algorithm to the cropped image data using different
knot spacings. These spacings ranged from 10 � 10 �
10 mm to 2 � 2 � 2 mm, which is equivalent to �400 to
�60,000 parameters. For all runs, the termination criterion
was fixed to 30 iterations. The current estimate of c was
stored for each iteration so that the results with different
iteration lengths could be compared.

Due to current implementation with integer knot spac-
ing, the image volume size was padded with zeros to
maintain full support for the last B-spline in each direc-
tion. Since the outermost B-splines (and therefore also
d(x)) fall off to zero at the volume edges, no distortions can
be modeled at the border of the volume. To circumvent
this, an extra knot was added on each of the six sides of the
volume.

The most time-consuming operation in the calculation
of O(p) (Eq. [9]) is the resampling of the image volume
based on the current estimate of p. One way to reduce the
calculation time of O(p), during the estimation process
only, is to reduce the image resolution. To test this, we also
performed runs in which the voxel size of the image vol-
umes was increased by a factor of 2 in each direction on
phantom data. The subsampling was done by averaging
rather than interpolating the voxels to gain SNR. While
these low(er)-resolution image volumes were used to esti-
mate d(x), the estimated displacement field was eventually
applied to the original image data. Cubic B-spline interpo-
lation (which is not to be confused with the cubic B-
splines forming d(x)) was used for image resampling dur-
ing the iteration process.

All routines were written in C with a Matlab interface
and run on a Linux 2.67 GHz CPU with 4 GB of RAM.

RESULTS

In Fig. 3, axial (a–c) and reformatted sagittal views (d–f) of
the phantom are shown. The white dashed lines show the
location of the other image plane. Figure 3a and d, and b
and e represent the uncorrected I� and I– image volumes,
respectively. The corresponding difference images, I� 


I� 	 I	
, are presented in Fig. 3c and f. The axial slice
(Fig. 3a–c) is located a few millimeters from the aneurysm
clip, just outside the core area where the pixels shifts are
so large that there is no proper object information in either
image. In Fig. 3d–f one can anticipate the distortion direc-

FIG. 3. Phantom data. Axial images (a) I� and (b) I–, scanned with
normal and reversed gradients, respectively. d and e: A sagittal
cross section of the image volumes corresponding to the dashed
vertical lines in a and b, and vice-versa. c and f: The absolute
difference image I� � 
 I� � I	


FIG. 2. The phantom used in this work was
filled with a water gel solution. An aneurysm
clip was embedded in the gel near plastic
structures.
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tion vm by looking at the angle of the white stripes origi-
nating from the location of the clip.

The performance of the correction of the image volumes
in Fig. 3 was primarily dependent on the choice of knot
spacing. For knot spacings over about 5 � 5 � 5 mm, the
estimated displacement field had a too-low spatial fre-
quency content to adequately model the distortions close
to the clip. This is illustrated in Fig. 4, in which columns
1–3 (axial view) and 4–6 (sagittal view) display the esti-
mated field, the corrected I� image, and the difference
image after correction, respectively. The difference in d(x)
for knot spacings of 6.1 � 6.1 � 6 mm (Fig. 4j) and 4.2 �
4.2 � 4 mm (Fig. 4k) is obvious. The corresponding cor-
rected I� and I� image reveals residual distortions for the
larger knot spacing, most notably in the area below the clip
(Fig. 4d, g, m, and p). However, for 3–4-mm knot spacing,
which was found to be optimal for this clip and phantom,
the correction algorithm performed quite well. In both the
axial and sagittal views the rectangular plastic objects in
the I� image appear straight and the I� image shows little
residual mismatch. Knot spacing smaller than 3 mm did
not improve the performance. At the smallest knot spacing
tested in this work (�2 � 2 � 2 mm), excessive warps
occurred in regions with or near low signal intensity,
which can be appreciated in the center of the image of the
axial I� (black arrow, Fig. 4f). This is reasonable, because
for small knot spacings each B-spline supports a smaller

volume, which makes its coefficient less accurate due to
noise.

The quadratic relationship between the processing time
and the size of the coefficient field c(k) is demonstrated in
Fig. 5a for various knot spacings ranging from 2 to 10 mm.
For our image volume size, the size of c(k) became 11 �
13 � 13, 18 � 21 � 19, and 37 � 43 � 39 for 6.1 � 6.1 �
6, 4.2 � 4.2 � 4, and 1.88 � 1.88 � 2 mm knot spacing,
respectively, yielding processing times of about 30 min,
45 min, and 181⁄2 hr, respectively.

The goal of subsampling the image volumes during the
correction is to increase processing speed without (at best)
affecting the estimate of d(x) as the metric knot spacing is
kept constant. In this case, with a subsampling of 2 � 2 �
2, there is an eightfold decrease in the number of voxels.
The estimated d(x) is rescaled and finally applied on the
original image data. In Fig. 5b, the sum-of-squares differ-
ence (SSD) of the image volumes with the current estimate
of d(x) is plotted against the processing time, with and
without subsampling of the image volumes during the
iteration. The SSD is calculated from the original data in
both cases in order to achieve a fair comparison (i.e., there
are no differences in partial volume effects between the
two curves of Fig. 5b, but only because of the accuracy of
the current d(x)). For both curves the metric knot spacing
was 3.75 � 3.75 � 4 mm. As expected, subsampling made
the SSD decrease faster, though not quite as fast as in

FIG. 4. Corrected data. The data in a–i and j–r correspond to the slice locations in Fig. 3. In this figure the estimated d(x), the corrected
I�, and the I� images are shown for three different resolutions of the displacement field. With �6 mm knot spacing (top row) the field has
insufficient resolution to adequately correct for the distortions. This can be appreciated by the residual intensity modulation in d and the
remaining I� intensity in g. By comparing m and n, it is also evident that there are remaining distortions in the middle below the dashed line
(white arrow). At �4 mm knot spacing (mid row), the best results were obtained as shown by the straight and homogeneous shapes of the
phantom in e and n, as well as very low I� intensity in i and r (below the dashed line). It is not obvious that the results improve by going
to smaller knot spacing (i.e., 2 mm). Note, for example, the artifactual structure indicated by the black arrow in f. The same grayscale levels
as in Fig. 3 have been used.
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theory. However, after the larger mismatches are corrected,
the residual distortions can only be addressed without
subsampling. This can be elucidated by comparing the six
I� images in Fig. 5b referring to different iteration steps
(e.g., after �2 min the same degree of distortion correction
is achieved using subsampling as was achieved after
nearly 8 min without). After 15 min, the curves cross. For
the presented slice, slightly better performance was ob-
tained without subsampling. Still, there are improvements
to be made on the displacement field at this point. After 30
iterations without subsampling, I� reached its final mini-
mum intensity for the given knot spacing. A test with 100

iterations confirmed that there are no apparent improve-
ments in I� over 30 iterations (data not shown).

In Fig. 6 two axial cross sections through the meningi-
oma of the patient are shown. Panels a–d are located
0.8 mm below panels e–h. Panels a and e, and b and f show
the uncorrected I� and I– images, respectively. The corre-
sponding corrected I� images are presented in c and g. In
panels d and h the average of the corrected I� and I– image
is depicted, which ideally should be identical to c and g
except for the higher SNR. Any residual mismatch be-
tween the corrected images should come out as blurring in
panels d and h, which we find not to be the case. In a
comparison of a and b, the shape of the tumor differs
considerably, which is likely to impair proper surgical
planning. Furthermore, the vessel (white arrow, Fig. 6h)
running posterior to the tumor is visible but distorted in a
and b, and is hard to distinguish in panel e. After correc-
tion the vessel is correctly depicted in both d and h, as can
be judged by following the vessel across the slices, as well
as by looking at the I� images (not shown), which reveal
virtually no residual mismatch.

DISCUSSION

The method proposed in this work is more robust to noise
because it works with a continuous 3D distortion field
instead of about ny � nz individual 1D fields. The latter
may introduce signal discontinuities in the corrected im-
age (see, e.g., Fig. 4 in Ref. 23). Furthermore, our 3D ap-
proach corrects for distortion in the actual distortion di-
rection (v), which is important because the through-plane
distortion is seldom negligible. For example, in a typical
clinical setting, voxel excitation/receiver bandwidths of
860/125 Hz, slice thicknesses of �4 mm, and frequency-
encoding pixel sizes of �1 mm are common, and result in
distortion angles on the order of 30°. The angle increases
for higher receiver bandwidths and thicker slices. To cor-
rect the data along v, preferably thin slices with little
cross-talk are desired to obtain continuous data in the slice
direction.

The use of basis functions for the displacement field,
together with a 3D rigid body motion correction included
in the model, eliminates the need to define anatomical
landmarks or edges, and at the same time allows scanning
of patients without the use of stereotactic frames or other
types of fixation devices. Since head movements are 3D,
including rotations, 1D correction approaches will also
have problems defining common landmarks due to inter-
volume motion.

Despite the use of basis functions, the number of param-
eters is several thousand in a 3D setting. Since a single 3D
field is to be estimated, the problem is not really suitable
for parallel processing either. Consequently, code optimi-
zation and the use of fast search algorithms utilizing the
derivatives of the objective function are required to
achieve convergence within reasonable times. The use of a
B-spline instead of a cosine basis set was necessary be-
cause the latter would have required from several GB up to
more than one TB of RAM for similar resolutions of the
displacement fields used in this work, not to mention
massive computation time. This is because the cosine set
has global support, implying that each cosine term to be

FIG. 5. a: The quadratic dependence between processing time and
the total number of B-spline coefficients is presented. The rightmost
data point corresponds to [1.88 � 1.88 � 2] mm knot spacing,
which was found to be suboptimal with respect to both processing
time and correction performance (Fig. 4). b: The SSD of the original
image data is plotted vs. the processing time for the “optimal”
[3.75 � 3.75 � 4] mm knot spacing. For the solid curve (�), a 2 �
2 � 2-fold reduction in the I� and I– image volume sizes was
obtained by nearest-neighbor averaging before the correction
started to increase the processing speed. For the dashed curve (*),
no subsampling was performed, and hence the initial convergence
is slower. However, after 10–15 min the SSD of the solid curve
stops decreasing, while the I� images reveal that the objective
function has not reached its asymptote. After 49 min (30 iterations
without subsampling), the estimate of d(x) does not change any
further.
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determined depends on the entire image volume. Also, a
change in a single cosine term affects all other terms. On
the other hand, the B-spline set has local support, meaning
that each cubic B-spline covers only a subvolume ((4 �
knotspacing � 1)3 voxels). Even though the displacement
field covers the entire volume, each B-spline does not,
which makes it feasible to work with at clinically relevant
resolutions for SE imaging.

We primarily worked on phantom data of the same size
and computational burden as for typical clinical scans
(151 � 174 with 80 slices � 256 � 256 with 32 slices) and
managed to get promising results within less than an hour.
We consider this duration to be the upper limit for stereo-
tactic planning applications. Longer processing times may
prolong the time the patient has to wear the uncomfortable
stereotactic frame. For other types of patients who do not
require the stereotactic frame, several hours of processing
time may be acceptable.

The subsampling technique presented in Fig. 5b shows
that a “multi-image resolution” approach could reduce the
processing time to some extent. By first performing a few
iterations with subsampled image data and then continu-
ing with the full-resolution image data, one could reduce
the processing time by 10–15%. This is not a considerable
reduction, but for other scenarios in which larger knot
spacings are optimal, the subsampling technique would be
more beneficial because the smoothness of the displace-
ment field is then higher in relation to the subsampled
image data used in the process.

We also experimented with increasing the processing
speed by using a multi-resolution approach for the dis-
placement field, as was previously proposed for B-splines
for spatial normalization (30,31) (data not shown). One
starts the process with a higher knot spacing to obtain a
coarse estimate of the field. Then the displacement field is
rebuilt by B-splines with smaller knot spacing to also
model higher frequencies in the field. Although this tran-
sition of B-spline resolution can be made exact (30,32),
and has been reported to be effective (33), we found the
benefit to be limited on the phantom data. Considering the
different appearances of the d(x) field in Fig. 4j–l, the
change in knot spacing implies that a lot of rebuilding
rather than refining of the field has occurred in the core
area of the clip, where the distortions are not correctable
anyway.

A further approach to reduce the number of knots could
be to use variable knot spacing, i.e., different resolutions of
the field across the (full) volume. Denser knot spacing
could be defined either manually or automatically for ar-
eas in which the original mismatch between I� and I– is
higher. Possibly, the knot spacing could also be dynami-
cally changed during the iteration process. However, this
would require continuous recalculations of the B-splines,
which would counteract the goal of short computation
times.

For the phantom data used in this work, excessive warps
occurred with knot spacings of 2 � 2 � 2 mm. To prevent
this, we tried to use the second directional derivative of
the field as a regularization term. Preliminary results show
that this did not have a significant impact on the residual
mismatch of the phantom images. However, this may
change with other objects and SNR levels.

Since T1-weighted images are often scanned with two
averages to achieve a clinically acceptable SNR, there is a
minimal SNR per scan time penalty associated with the
use of this method. In fact, we expect that our averaging of
two motion-corrected magnitude image volumes will per-
form better than standard complex averaging in k-space
because interacquisition phase inconsistencies and blur-
ring due to potential motion are affected only in the latter.

CONCLUSIONS
The reversed-gradient CF method can be used to correct
distortions from the magnitude images themselves, with-
out the need to scan, calculate, and unwrap a separate
phase map. We have shown that by modeling the distor-
tion field as a continuous 3D field built from cubic B-
splines, good distortion correction is obtained without
introducing discontinuities in the corrected images. A 3D
rigid body correction between the two scanned image vol-
umes was also included in the process to allow correction
for patients without stereotactic frames. We scanned only
one clinical case involving a metallic clip near a meningi-
oma. Other clinical cases, such as stents in the spine,
remain to be explored.

APPENDIX A
B-Splines
A cubic (or third-order) 1D B-spline (B as in “basic”) is
defined as follows (30,34):

FIG. 6. Patient data. An axial slice near the
metallic clip, showing the distortion near the
meningioma. Panels a–d are located
0.8 mm below panels e–h. Panels a and e,
and b and f show the uncorrected I� and I–
images, respectively. c and g: The corre-
sponding I� images after correction. d and
h: The average of the corrected I� and I–
images is given, which clearly has higher
SNR compared to c and g, without intro-
ducing significant blurring. A knot spacing
of 3 � 3 � 2 mm was used. h: The white
arrow points to a vein that is visible after
distortion correction.
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�3,x
x� � �
2
3

� 
1 � 
x
/2�x2 ; 0 � 
x
 � 1


2 � 
x
�3/6 ; 1 � 
x
 � 2
0 ; 
x
 � 2

[A1]

and is depicted in Fig. A1a. The B-spline is nonzero only
over the [	2,2] interval, in which each integer value is
referred to as a “knot.” Hence a cubic B-spline always
covers (is nonzero over) five knots. The first derivative of
the B-spline is (Fig. A1b):

��3,x
x� � �
3
2

sign
x�x2 � 2x ; 0 � 
x
 � 1

	
sign
x�

2

2 � 
x
�2 ; 1 � 
x
 � 2

0 ; 
x
 � 2

[A2]

In Eqs. [A1] and [A2], the knot spacing is unity and thus
was omitted. A 3D cubic B-spline with knot spacings hx, hy

and hz is obtained from three 1D B-splines in x, y, and z
using the Kronecker tensor product:

�3 � �3
x,y,z� � �3,z
z/hz � �3,y
y/hy� � �3,x
x/hx� [A3]

A 2D version is shown in Fig. A1c. Numerically, the three
1D B-splines vectors z�3,x, �3,y, and �3,z are column vec-
tors of size nx � 1, ny � 1, nz � 1, and the Kronecker tensor
products yield a vector of size nxnynz � 1, which is an
unraveled vector representation of the 3D B-spline.

A general spline curve S (e.g., a displacement curve d(x))
uses B-splines as building blocks, each shifted by one
knot. The coefficients (or weighting) of the B-splines and
the knot spacing determines the final shape of the curve. In
theory, the knot spacing does not need to be equidistant.

Non-equidistant knot spacing can provide an efficient way
to represent curves that are irregular in one part (dense
knot spacing required) and smooth in another part (sparser
knot spacing suitable) of the curve. However, for our pur-
poses (i.e., we want to build up a 3D spline curve (the
displacement field) without any a priori knowledge of the
true underlying �B(x) field), the knot spacing was chosen
to be equidistant in each of the three dimensions. The use
of variable knot spacing would also be more time-consum-
ing because of the variable size of the B-splines.

An example of a 1D spline curve is illustrated in Fig. A2,
where the spline curve consists of 11 B-splines with coeffi-
cient vector c 
 [0 1 1 1 1 0 	0.2 0 0.3 0 0]
and 11�4 knots in total. Figure A2a shows each individual
B-spline, weighted with the corresponding element in c,
and the sum of these (Fig. A2c) is written as

S
x� � �
k�Z

c
k��3
x/hx � k� [A4]

The first derivative of S is simply obtained by weighting
��3( x/hx) with c (Fig. A2b), yielding (Fig. A2d)

S�
x� � �
k�Z

c
k���3(x/hx	k) [A5]

The expression for the 3D displacement field, d(x), be-
comes

d
x, c� � d
x, y, z� � �

kx,ky,kz��K

ckx,ky,kz��3
x/hx	kx�

��3
y/hy	ky��3
z/hz	kz�� [A6]

and can be rapidly calculated since the 3D �3 (due to fixed
knot spacing) only has to be calculated once and then

FIG. A1. Illustration of (a) 1D and (c) 2D cubic
B-splines, �3. b and d: The first derivative for the
1D and 2D case, respectively. In d, the arbitrary
chosen distortion direction v 
 [0.45 0.89]T can be
appreciated. In this work, 3D cubic B-splines and
its first directional derivative along the distortion
direction, v, were used.
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applied to different parts of the image volume. After the I�
and I– images are resampled using d(x), the data are inten-
sity modulated, which involves the current estimate of the
directional derivative of d(x):

Dv
d
x�� � ��d
x�, v�

where

�d
x� � �
�


kx,ky,kz��K

ckx,ky,kz
��3
x/hx � kx��3
y/hy � ky��3
z/hz � kz��

�

kx,ky,kz��K

ckx,ky,kz
�3
x/hx � kx���3
y/hy � ky��3
z/hz � kz��

�

kx,ky,kz��K

ckx,ky,kz
�3
x/hx � kx��3
y/hy � ky���3
z/hz � kz�� � [A7]

For a fast implementation of Eq. [A7], the directional de-
rivative of the 3D B-spline is first calculated once

Dv
�3� � ���3, v� � � 
�3,z � �3,y � ��3,x�
T


�3,z � ��3,y � �3,x�
T


��3,z � �3,y � ��3,x�
T 	T

v [A8]

and then

Dv
d
x�� � �

kx,ky,kz��K

ckx,ky,kz
Dv
�3�� [A9]

A 2D version of Dv(�3) with v 
 [0.45 0.89]T is shown in
Fig. A1d.

APPENDIX B
The Objective Function and its First Derivative

The objective function used in work is

O
p� � �
x�V

�I�
T
m�x � d
x, c�v�
1 � Dv
d
x, c���

� I	
x � d
x, c�v�
1 � Dv
d
x, c����2 [B1]

where x 
 [ x y z 1]T, m 
 [ xtrans, ytrans, ztrans,
pitch, roll, yaw]T are the six rigid body motion parame-
ters to be estimated, T(m) is the corresponding transforma-
tion matrix, c is the coefficient vector, p 
 [mT cT]T is
the full parameter vector, v 
 [1/�recv 0 1/�exc]T/�[1/
�recv 0 1/�exc]� is the distortion direction, and Dv(d)

 ��d(x, c), v� is the first directional derivative of d

Equivalently, we could express Eq. [B1] in vector form
as

O
p� � 
f� � f	�T
f� � f	� [B2]

where

FIG. A2. A 1D example of how (a) cubic B-splines
and (b) their first derivatives build (c) the displace-
ment field and (d) its first derivative (used for intensity
modulation). A set of 11 1D (a) cubic B-splines and (b)
first derivatives of different amplitudes defined by co-
efficient vector c 
 [0 1 1 1 1 0 	0.2 0 0.3 0 0] is
shown. The splines are shifted relative to each other
by one “knot” that generates curves c and d. In 3D, the
vector c is a 3D coefficient field.
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� f� � I� J J� � �I�
T
m�x � d
x, c�v�� J �1 � Dv
d
x, c���
f	 � I	 J J	 � �I	
x � d
x, c�v�� J �1 � Dv
d
x, c���

and where J denotes element-wise multiplication.

Derivation of 	O/	mi

The partial derivative of our objective function with re-
spect to the ith movement parameter can be expressed as

�O
�mi

� 2
f� � f	�T

1�n

outer derivative
�f�

�mi

n�1

inner derivative

[B3]

where the derivatives of the image w.r.t. the movement
parameters are expressed in mm–1 and radians–1, and

where its jth element of x� 
 T(m)x � d(x, c)v is calcu-
lated according to

� �f�

�mi
�

j

�
1
�

�

M	1WiM�x�j � x�j�, �f�
x �j � [B4]

M in Eq. [B4] is

M � �
sx 0 0 xoff

0 sy 0 yoff

0 0 sz zoff

0 0 0 1
� [B5]

and represents the mapping from voxel to metric coordi-
nates. sx, sy, sz defines the voxel size, and xoff, yoff, zoff is
the translation between the origin of the voxel system and
the rotation point. Wi reflects how a � change of motion
parameter i changes the metric coordinate frame

W1 � �
1 0 0 �
0 1 0 0
0 0 1 0
0 0 0 1

�, W2 � �
1 0 0 1
0 1 0 �
0 0 1 0
0 0 0 1

�, W3 � �
1 0 0 1
0 1 0 0
0 0 1 �
0 0 0 1

�, W4 � �
1 0 0 0
0 cos
�� sin
�� 0
0 	sin
�� cos
�� 0
0 0 0 1

�
W5 � �

cos
�� 0 sin
�� 0
0 1 0 0

	sin
�� 0 cos
�� 0
0 0 0 1

�, W6 � �
cos
�� sin
�� 0 0

	sin
�� cos
�� 0 0
0 0 1 0
0 0 0 1

�
The derivation of �/O/�ci is

�O
�ci

� 2
f� � f	�T

1�n

outer derivative

��f�

�ci
�

�f	

�ci
�

n�1

inner derivative

[B6]

The outer derivative of [B6] is the same as above. The inner
derivatives of Eq. [B6] w.r.t. ci become

�
�f�

�ci
�

�

�ci

I� J J�� �

�I�

�ci
J J� � I� J

�J�

�ci

�f	

�ci
�

�

�ci

I	 J J	� �

�I	

�ci
J J	 � I	 J

�J	

�ci

[B7]

The I� and I– images are functions of d(c), which in turn is
a function of c. According to the chain rule, the derivatives
of I� and I– w.r.t. ci are

�I�

�ci
�

�

�d
�I�� J

�

�ci
d
c� [B8]

�zI	

�ci
�

�

�d
�I	� J

�

�ci
d
c� [B9]

The first factor in Eq. [B8] is calculated as

�

�d
�I�� �

I�
x� � �dv� � I�
x��

�d
� ��I�, v� � Dv
I��

[B10]

which is the directional derivative of I� along v. Corre-
spondingly, the first factor in Eq. [B9] is the directional
derivative of I– along -v

�

�d
�I	� � ��I	, 	v� � 	��I	, v� � 	Dv
I	� [B11]

The second factor of Eqs. [B8] and [B9] is the same, and is
the inner derivative of I� and I–

�

�ci
d
c� �

�

�ci
�

k
1

N

ck�3 �
all terms but i � k

become zero � �3,i

[B12]

which simply is the unscaled ith B-spline, shifted in the
image volume depending on the index i 
 (kzNc,y �
ky) Nc, x � kx, where Nc,x Nc,y denote the number of coef-
ficients in the x and y direction, respectively. Equations
[B8] and [B9] become

�
�I�

�ci
� Dv
I���3,i

�I	

�ci
� 	Dv
I	��3,i

[B13]
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The second terms of Eqs. [B7] contain the derivatives of
the Jacobian w.r.t. the coefficient ci.

�
�J�

�ci
�

�

�ci
�1 � ��

k
1

N

ckDv
�3��	 �
all terms but i � k

become zero

Dv
�3,i�

�J	

�ci
�

�

�ci
�1 � ��

k
1

N

ckDv
�3��	 
	Dv
�3,i�

[B14]

Since Eqs. [B13] and [B14] are zero outside the support of
the ith B-spline, so are Eqs. [B7] and [B6], which allows for
reasonable computation times for the entire vector of par-
tial derivatives of the objective function.

In summary, using Eqs. [B7]–[B14], the final expression
in Eq. [B6] becomes

�O
�ci

� 2
f� � f	�T

1�n

outer derivative

���I�

�ci
J J� � I� J

�J�

�ci
� � ��I	

�ci
J J	 � I	 J

�J	

�ci
��

n�1

inner derivative

� 2
f� � f	�T� 
Dv
I�� J �3 J J� � I� J Dv
�3�� � · · ·

	Dv
I	� J �3 J J	 � I	 J 	Dv
�3��

�
� 2
f� � f	�T� �Dv
I�� J J� � Dv
I	� J J	� J �3 � · · ·

�I� � I	� J Dv
�3�
� [B15]

The “i” in �3,i was dropped to indicate that the same �3 is
used for all i.
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