
tput
n and
s are
model
ent of

ocess,
Power
ment
lman

to the
asured
rement

erived
sually

the
nd a
tro-
n and

Downloaded From

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX
A. Nauerz
Institute of Applied Mechanics,

University of Kaiserslautern,
D-67661 Kaiserslautern,

Germany

C.-P. Fritzen
Institute of Mechanics and Control Engineering,

University of Siegen,
Germany

Model Based Damage
Identification Using Output
Spectral Densities
A damage identification method utilizing an existing computational model and ou
spectral densities is presented. The problem covered here is the detection, localizatio
quantification of damage in real vibrating elastomechanical structures. The damage
localized by means of changes in the dynamic characteristics between a reference
and the actual, measured system. The main contribution is that the exact measurem
the input signals is ignored. These signals are assumed to be an ergodic random pr
whose statistical properties such as mean and covariances must be estimated.
spectral densities allow random excitations to be dealt with. The lack of measure
information is treated by means of the dynamic condensation technique and the Ka
Bucy filter technique. In the first case the size of the model matrices are reduced
number of measured degrees of freedom (dof). In the second procedure the me
responses are expanded to the size of the model matrices. With equally sized measu
and model matrices a linear equation system for the desired parameter changes is d
by using the sensitivity approach. The equation system for this inverse problem is u
ill-conditioned and must be regularized in some way. One possibility is to reduce
subset of parameters to be in error. The algorithm is applied to a beam structure a
measured laboratory structure, a multi story frame, in which artificial damage is in
duced by weakening one column between two stories. So, it is shown that the locatio
the size of the corresponding stiffness decrease can be detected.
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1 Introduction
The ability to detect damage or faults is an important factor

the usage of machinery and plants. It is desired to get informa
about the structural integrity during normal operation. The dev
tion of the dynamic behavior from normal operating conditio
allows a diagnosis of the damages. As symptoms for dam
changes of eigenfrequencies and mode shapes@1–3# and equally
frequency response functions~FRFs! or time signals can be use
e.g.@4–7#. To get the FRFs or modal data usually a forced vib
tion test with additional devices like shakers etc. is required. T
determination of modal parameters from output-only data us
the ambient excitation of the structure from traffic, wind etc.
described by@8#. Their approach works under the assumption t
the unknown excitation is white noise. Another method which
based on the random decrement technique was proposed by@9#. In
this article the physical parameters are determined directly f
the power spectral densities of the output-only signals. Simila
Peeters and De Roeck the assumption of a broadband excit
under operating conditions is made.

Those methods based on parameter identification techni
particularly require an accurate model. This reference model
resents the undamaged state of the system and is used to ge
residuals between its own characteristic dynamic properties
the corresponding, measured data. In addition, the model all
the calculation of sensitivities of the dynamic characteristics w
respect to any parameter describing the system. The sensitiv
are important in solving the inverse problem. The number of
rameters necessary to describe all possible locations and typ
damage may be very large. One major problem is to achiev
small subset of parameters which characterize the real dam
Often the analyst may not be aware of the nature of the fault.
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behavior of a damaged structure must be sensitive to variation
the parameter but that does not necessarily mean that a fau
associated with this parameter@4#.

2 The Mathematical Model
The dynamic behavior of the vibrating elastomechanical sys

with n degrees of freedom is described by the linear, viscou
damped model

Mẍ1Cẋ1Kx5f„t… (1)

M ,C,K PRn3n are the symmetric mass, damping, and sti
ness matrices,

ẍ,ẋ,x PRn are the accelerations, velocities, and di
placements of the system,

f„t… PRn is the external excitation.

If the system is excited by random loads, as they occur dur
normal operating conditions, Eq.~1! is hard to solve. In place of
Eq. ~1!, a formulation based on power spectral densities does
have the difficulties of the differential equation in the time d
main. The Wiener-Khintchine transformation allows the transf
mation of a linear system with stochastic inputs in the freque
domain

KDSXXKD* 5SFF , (2)

with KD5K1 ivC2v2M ;
~ . . . !* : conjugate transposed of~ . . . !;

SXX~v!5EH 1

T
X~v!X* ~v!J ; SFF~v!5EH 1

T
F~v!F* ~v!J .

SXX andSFF are the matrices of the power spectra of the displa
ments and forces, respectively. The diagonal elements are the
auto power spectra e.g.,E$(1/T)X iX i* %, while the off elements

he

ate
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are the complex cross power spectra e.g.,E$(1/T)X iX j* %. The
operatorE$ . . . % symbolizes the expectation of a quantity. Th
factor T is the measurement duration Fig. 1.

2.1 Localization. If the excitation is an ergodic random sig
nal, which provides statistical the same power spectral dens
SFF in the actual and in the reference state, then the relation
tween the actual measured system~index m! and the analytical
reference model~index a! follows from Eq.~2!

KDSXXm
KD* 5KDaSXXa

KDa* . (3)

KD is the dynamical stiffness matrix of the damaged system.KDa
represents the known, undamaged, reference model. All term
the right side of Eq.~3! are known. On the left side only th
measured power spectraSXXm

are known. The differences in th
intensity of the excitation are taken into account by calculating
average integralI m of all auto power spectral densities of th
measured signals and the corresponding model spectraI a in the
observed frequency rangeSXXa

5(I m /I a)SXXa

(h) , with SXXa

(h) as the
initial, not intensity adjusted reference power spectral densit
The differences between the matrixKD and the matrixKDa are
small expected as

KD5KDa1DKD. (4)

For the unknown difference matrixDKD, a sensitivity approach a
in @5# is used. The differences are approximated by a linear Ta
series, whose arguments are the correction parametersDaj
j 51,2, . . . ,np .

DKD5(
j

KDa, j
Daj , (5)

with the partial derivativeKDa, j
5]KDa /]aj .

Indeed the linear relation between the correction parame
Daj and the matrix changesDKD is exact in many cases. Param
eters with a similar influence on the model as Young’s modu
and the Moment of Inertia should not be used concurrently
cause they amplify the ill-conditioned problem. In this case it
better to use the bending stiffness. For numerical reasons the
rection parameter should be dimensionless. Therefore, a co
tion parameter is the change of the physical parameterDpj5pj
2pjo with respect to the original model parameterpjo ~e.g., mass,
bending stiffness etc.! Daj5pj2pjo /pjo @10#. Inserting Eq.~4!
and ~5! into Eq. ~3! and neglecting the higher order terms, yiel
the localization equation

(6)

Arranging the correction parameters in a vectorDaPRnp,
building this equation system for every measured frequencyvk ,
k51,2, . . . ,nf and splitting it into real and imaginary part pro
vides the final overdetermined equation system

Fig. 1 Measured displacements
692 Õ Vol. 123, DECEMBER 2001
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ADa5b (7)

with APRm3np; bPRm; m52nf(n
2/2)

which has to be solved. The solution of Eq.~6! requires equal
sized matrices. But in most cases there is a lack of measurem
information SXXm

PCnm3nm with nm<n. The following two sec-
tions will deal with this problem.

2.2 Dynamic Condensation. One possibility to overcome
the sizing problem is to reduce then model dof to thenm<n
measured dof. If the reduction is performed on the basis of ph
cal laws, it is termed ‘‘condensation’’ Reference@10# gives a sur-
vey. One method is the dynamic condensation, using the m
mum energy as a constraint. The condensation process has
done for every observed frequencyvk and provides

KD5KDMM2KDMNKDNN

21 KDNM
(8)

with KDPCnm3nm.
Index M stands for the measured dof, indexN for the not mea-

sured and reduced dof. The partial derivativeKDa, j
is built by the

derivative of every term of Eq.~8! with respect to the correction
parameter

KDa, j
5KDMM , j

22KDMNKDNN

21 KDNM, j
1K

DNN

21 KDNN, j
KDNN

21 .

(9)

The corresponding power spectra toSXXm
are obtained by extract

ing the appropriate componentsSXXa
from the complete matrix

SXXa
. Following this step the localization equation is

(
j

$KDaSXXm
KDa, j* 1KDa, j

SXXm
KDa* %Daj

5KDa~SXXa
2SXXm

!KDa* . (10)

If a correct reference model does not exist, the difference in
dynamic characteristics between measurement and model ar
principal, caused by modelling errors. Adapting the model to
measurement seems to be the more sensible way. Still the que
is open on which dof the output signals should be measured to
reliable results. The mode shapes of a previous finite elem
model could be helpful indicators. Those dof should be tak
which have deflections, in as many as possible mode shapes

2.3 Expansion in the Frequency Domain. An alternative
possibility to solve the sizing problem is to expand the measu
power spectraSXXm

to the size of the model matrices. A suitab
tool is the Kalman Bucy Filter~KBF! @11#. This filter is developed
as the optimal state estimator for linear systems under stoch
noise. The starting point is the state equation

ż5Asz1Bsu1Gsw (11)

with the accompanying measurement equation

y5Csz1Dsu1v. (12)

The state vectorz, the system matrixAs and the input matrixBs
follow from the equation of motion~1!

z5S x
ẋDPR2n, As5F 0 I

2M21K 2M21CGPR2n32n,

Bs5F 0
M21GPR2n3n.

0,IPRn3n are a zero and a identity matrix.
The vectoru stands for measurable external input.w is the

random excitation or system noise due to disturbances and m
elling inaccuracies with known means and covariances. Ifu andw
both are forces, thenGsÄBs
Transactions of the ASME
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The matricesCs andDs link z andu with the measurementsy
PRnm, which are corrupted by additive noisev with known means
and covariances. The components ofCs and Ds are dependen
upon the measured values. LetH be the observation matrix with
entries one and zero for measured and not measured dof. In@6# it
is shown, if the measured signals are displacements

Cs5@H 0#PRnm32n, Ds5@0#PRnm3n, (13)

if they are measured velocities

Cs5@0 H#PRnm32n, Ds5@0#PRnm3n (14)

and for measured accelerations results

Cs5@0 H# AsPRnm32n, Ds5@0 H# BsPRnm3n. (15)

Random excitationw, measurement noisev and the initial state
vectorz0 should be mutual uncorrelated:

E$wvT%50; E$z0vT%50; E$z0wT%50.

The mathematical background described above are the basi
KBF equation~16!, which provides the optimal 2n-dimensional
estimationẑ for the wanted state vectorz

ż̂5Asẑ1Bsu1KG~y2 ŷ!

with (16)
ŷ5Csẑ1Dsu.

KG is the stationary Kalman gain matrix, which is determined t
the symmetric covariance matrixP5E$(z2 ẑ)(z2 ẑ)T is mini-
mized. In the case of big measurement noiseKG should effect a
low amplification.ŷ should rather follow the signalCsz than the
noisev. Strong random excitationw excits the statez strong and
KG has to amplify the difference between measurement and
mation (y2 ŷ) to show a good following characteristic. It can b
shown that

KG5PCs
TR21 (17)

is the optimal filter@11–13#. The inverse of the positive definit
covariance matrix of the measurement noiseR5E$vvT% effects a
low amplification for big measurement noise and the linearity toP
consider the case of strong random excitation. If the KBF eq
tion ~16! is transformed into the frequency domain, fort>0 and
initial condition z050, one obtains for measured displaceme
and velocities

L21Ẑ5BsU1KGY,

with (18)
L215 ivI2~As2KGCs!

andẐ(v),U(v),Y(v). The corresponding equation for measur
accelerations is Eq.~19!.

L21Ẑ5~Bs2KGDs!U1KGY. (19)

Expressed by power spectra Eq.~19! gives

SẐẐ5LK GSYYKG
TL* 1LK GSYU~Bs2KGDs!

TL*

1L ~Bs2KGDs!SUYKG
TL*

1L ~Bs2KGDs!SUU~Bs2KGDs!
TL* (20)
Journal of Dynamic Systems, Measurement, and Control
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from which the n-dimensional matrixSX̂X̂m
can be obtained

directly.

SẐẐ5FSX̂X̂m SX̂X̂
˙

m

SX̂
˙
Ẋm

SX̂
˙
X̂
˙

m

GPC2n32n.

In the more sophisticated case, if the measurable external inpu
is zero or unknown (Bs5Ds50) and the system is excited only b
ergodic random signalsw, which are considered inKG , Eq. ~20!
and the corresponding equation for displacements and velociti
shortened to

SẐẐ5LK GSYYKG
TL* . (21)

This Eq.~21! is the expansion equation for output-only measu
ments in the frequency domain. The detour of transforming
panded time signals in the frequency domain is not neces
@14#.

2.4 Regularization. To get a stable solution of Eq.~7! with
the least square error method is in general not successful.
reason is, the coefficient matrixA is an ill-conditioned matrix.
Measurement noise and truncation errors amplify the instabi
To obtain a stable solution the equation system must be re
larised in some way. Here the regularisation is performed by
ducing the subset of parameters to be in error. The proposa
@15# transform the equation system~7! gradually into the orthogo-
nal equation system

Wg5b, (22)

which is solved with the least square methodWTWg5WTb.
WTW is an easy invertable diagonal matrix with the compone

W i
TW j5H iW j i2 for i 5 j

0 for iÞ j .

In the first transformation step for every columnA i the equation
error

« i5b2A iDai (23)

is calculated. This column, which provides the minimum error,
written in the first column of a new orthogonal matrixW and the
chosen column number is registered in a transformation vec
The maximum error in the least square sense iseTe5bTb. Every
parameter-column combinationW jgj , which is taken into accoun
reduces the error. The error reduction with respect to the m
mum error is the error reduction ratio~err!

errj5
gjW j

TW jgj

bTb
. (24)

The err is the selection and order criterion for every followin
columnW j and the crucial criterion to reduce the solution spa
In every step that columnW j

(h) is selected, which maximizes th
err.

W j
~h!5A i2(

k51

j 21

Wk

Wk
TA i

Wk
TWk

and gj
~h!5

W j
~h!T

b

W j
~h!T

W j
~h!

. (25)
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Wk, k51, . . . ,j 21 are the previously determined columns ofW.
The transformation ends, when all column ofA has been consid
ered. The columns inW are ordered now by decreasingerr. Look-
ing at the err values shows that only the first few values a
significantly greater than zero. This means that only the co
sponding columns ofW provide a significant contribution to solv
the equation system. All the other columns are necessary to re
duce the noise and modelling error polluted right hand sideb best
but they contribute nothing to the desired solution. Having t
background only those column ofW are used, whoseerr values
are significantly greater than a predefined bound. The correc
parameters, which belong to the remaining columns, are se
zero. This strategy reduces the solution space and the solutio
Eq. ~22! becomes stable.

3 Example
The first example tests the damage identification by mean

condensed model matrices and expanded displacements
asimulated beam structure. In the second example, the dam
identification and condensation method is applied to a real m
story frame. Output signals in this case are measu
accelerations.

Fig. 2 Dof of the beam structure

Fig. 3 Beam structure with simulated damages

Fig. 4 Starting situation

Table 1 Design parameter

length l 50.08m
cross section areaA51.26•1024 m2

Moment of Inertia J57.077•1029 m4

Young’s modulus E51.95•1011
N

m2

density r57850
kg

m3

spring stiffness cf5106
N

m
modal damping Di50.01
694 Õ Vol. 123, DECEMBER 2001
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3.1 Beam Structure. The finite element model of the beam
structure consists of 16 beam elements with 34 dof as show
Fig. 2. Spring elements represent the elastic bearings at both e
The dof inx-direction are neglected. Table 1 contents the des
parameter for the beam elements of the reference model.

To generate a simulated damage the bending stiffnessEJ of
element five and element eight are reduced by 20%. This re
sents damages at two locations, as shown in Fig. 3.

The reference model and the ‘‘damaged structure’’ are exc
by zero mean white noise on each dof, because only unkn
forcesw should act on the systems. Knowing the modeshape
the structure the dof~5, 7, 9, 11, 13, 15, 25, 27, 29! are choosen as
master dof, to test the condensation technique. Figure 4 show
auto power spectral density of the 15. dof in the starting situat
It demonstrates, the higher the frequency, the bigger the differe
between actual and reference state. The frequency ranges bet
the peaks, has not much information. Therefore one should
the highest eigenfrequencies one could get. To keep the equ
system Eq.~7! small, only frequencies around the eigenfreque
cies in the range between 140.5 Hz–896 Hz are used~Fig. 4!.

The first iteration provides the results shown in Figs. 5–7.
Fig. 5 the error reduction ratios corresponding to the columns
matrix W are listed. As described above theerr decreases fast
Only the first two values are significant greater than zero. Now
regularisation starts. The parametersg32g16 are set to zero and
Eq. ~22! is solved with the first two columns ofW only. The result
for g1 andg2 back transformed to the corresponding parameter
shown in Fig. 6. As expected, the parameters five and eight,
spectively,EJ5 and EJ8 are detected as wrong.EJ5 has to be
reduced by 0.14 respectivelyDEJ55214% andEJ8 by DEJ8

Fig. 5 Error reduction ratios of the first iteration

Fig. 6 Localization result of the first iteration

Fig. 7 Power spectral density of the first iteration
Transactions of the ASME

f Use: http://www.asme.org/about-asme/terms-of-use



i

d

g

n

d

i
t

o
r

Downloaded From
5217%. The damage location is detected but the severity is
correct. Figure 7 shows the auto power spectral density after
model is updated with the calculation result forEJ5 andEJ8 .

The difference between the measurement and the model ou
is now considerable smaller. After two further iteration the resu
for EJ5 and EJ8 are nearly excact. But with the decreasing d
ference between real structure and the model the algorithm
susceptible for noise or model inaccuracies.

The same beam is now used to prove the expansion metho
rotational dof of the damaged structure are unknown and hav
be calculated. The result of the first iteration is shown in Fi
8–10. Unfortunately, allerr-values are small. The first twoerr
values belong to the damaged elements, but witherr150.131 and
err250.109 the regularization criteria is not very sharp. Solvi
Eq. ~22! with the first two columns ofW and settingg32g16 to
zero provides the result forg1 and g2 resp. DEJ5 and DEJ8
shown in Fig. 9.EJ5 have to be updated byDEJ55215% and
EJ8 by DEJ85220%. In Fig. 10 this step is done.
Because of the smallerr-values the model cannot be improved b
additional iterations. This example demonstrates, that under
same requirements the damage identification with conden
model matrices works better than the identification with expan
measurement data.

3.2 Multi-Story Frame. The next example is the mult
story frame shown in Fig. 11. The whole frame has a heigh
approximately 500 mm. The six aluminum plates have a size
310 mm3280 mm315 mm and a mass including screws
mP53.6 kg. The steel strips between the plates have a c
sectional area ofA58•1025 m2, a Moment of Inertia ofJ

Fig. 8 Error reduction ratios of the first iteration

Fig. 9 Localization result of the first iteration

Fig. 10 Power spectral density of the first iteration
Journal of Dynamic Systems, Measurement, and Control
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Fig. 11 Laboratory structure

Fig. 12 Elastomechanical model

Table 2 Parameter of the reference model

story 1 2 3 4 5

EJ@Nm2# 27.28 31.85 28.28 33.15 24.68
kf@N/m# 5.24•106
DECEMBER 2001, Vol. 123 Õ 695
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Fig. 13 FRFs of the measurement and the initial model

Fig. 14 FRFs of the measurement and the reference model

Fig. 15 Removed steel strip as artificial damage
696 Õ Vol. 123, DECEMBER 2001
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52.66•10211 m4, a Young’s modulus ofE52.1•1011 N/m2 and a
density ofr57850 kg/m3. Plates and steel strips are connected
that the frame can only vibrate in horizontal and vertical dire
tions. But vertical vibrations are small. Rotational dof are co
strained. The structure is excited with a random signal by a sha
at the bottom plate.

The corresponding elastomechanical model is shown in Fig.
The steel strips are modeled as Timoshenko beam elements.
masses are considered as lumped masses. The proportional d
ing approachC5aM1bK , a,bPR is used as damping model

The shaker is a good excitation source for an ergodic rand
signal, but it is fixed on the structure and affects the dynam
properties of the structure. To get the influence of the shake
detour in the updating process is done. The shaker is turned
and the whole system, story frame and shaker are excited suc
sively by a Dirac impulse at all floors and the output accelerati
at the third, fourth and fifth dof are measured. The linearity of
whole system is checked by the reciprocity of the measured FR
Comparing the measured and the modeled FRFs in Fig. 13 sh
that the model represents the shape of the measured FRFs
But the position of the eigenfrequencies indicates that the mod
too stiff. With formula~26! presented by@16#, the reference mode
is adapted in two steps.

(
j 51

1

lmi

wai
T ,~Ka, j2lai ,Ma, j !wai ,Daj5

lmi
2lai

lmi

, (26)

lmi
,lai

, measured and analytical eigenvalues,
wai

, analytical eigenvector.
In the first step the correction parametersDaj are the shaker stiff-
nesskf and a common bending stiffnessEJB for the beam ele-
ments. Based on the real structure, the bending stiffness of
first, third, and fifth floor are four timesEJB and in the second
and fourth floor five timesEJB . With a shaker stiffnesskf

55.24•106 N/m and a bending stiffness ofEJB56.30 N m2, the
model represents the first two peaks, which depends most o
shaker and his mounting on the frame. In the next step the
rection parameters are the bending stiffnesses of the five flo
The result is shown in Table 2. Figure 14 compares the develo
reference model with the measurement.

A test for damage identification with the condensed model f
lows. Therefore, artificial damage is introduced by removing
steel strip in the fourth floor, as shown in Fig. 15. The bend
stiffness of the fourth storyEJ4 of the real system is now reduce
by 20%. The shaker excites the frame with random noise.

Fig. 16 Starting situation
Transactions of the ASME
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model is excited by white noise. Measured are the accelera
signals inx direction at the third, fourth, and fifth dof, respective
at the third, fourth, and fifth aluminum plate counting bottom u
To compare even scaled power spectral densities of the mea
ment and the condensed model, the measured spectral den
have to be scaled byv24. The scale factor depends on the Four
transformation of accelerations, which providesF$ẍ„t…%
52v2X(v) for t>0 andx050; ẋ050.

Figure 16 shows the resulting deviations in the power spec
densities. The task of the damage identification algorithm is n
to locate the position and the severity of damage.

As in the previous example the equation system~7! is built only
for some frequencies around the second to the fifth eigen
quency in the range of 29.5–85 Hz. The solution of the dam
identification algorithm is shown in Figs. 17–19.

Figure 17 shows a sharp decreasing of theerr and that only one
parameter provides an appreciable contribution to the solut
Solving the Eq.~22! with column W1 , setting g22g5 to zero,

Fig. 17 Error reduction ratios of the first iteration

Fig. 18 Localization result of the first iteration

Fig. 19 Comparison of the power spectral densities after
updating
Journal of Dynamic Systems, Measurement, and Control
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checking the selection sequence and back transformation ofg to
Da provides the result shown in Fig. 18. As expected it is para
eter four, which should be decreased byDEJ45222%. If the
model is updated with this result and the damage identifica
algorithm is started a second time, the value is adjusted and
final result a correction ofDEJ45219% is made. The corre
sponding power spectral densities are shown in Fig. 19

In both examples the excitation signals are unknown. But
damages are localized and the serverity of the damages are
identified.

4 Conclusion
A method for the identification of damages in structural mod

has been presented, which is particularly used for the localiza
and quantification of structural faults. The main contribution
that the identification is based on power spectral densities. Th
offer the possibility of working with an ambient excitation an
using output-only signals. The only assumption is that the in
spectral density can be approximated by ergodic white noise.
advantage is that the damage identification can be done du
normal operating conditions. Time consumptions to perform
namical tests with artifical test signals are not necessary. With
test signals, the required excitation equipment like shakers
could also be saved. The deficiency of measurement informa
is treated by condensing the model matrices and by expanding
measurement data. A further contribution is that the expans
technique is able to deal with measured signals in the freque
domain. The example shows that the condensation techn
works better and should be preferred in solving the sizing pr
lem. The ill-conditioned linear equation system is regularized a
solved by an orthogonal parameter estimation algorithm, wh
provides the error reduction ratios for the single columns of
coefficient matrix. With this important information it is possible
reduce the solution space and stabilize the solution of the equa
system. Comparing the algorithm with the model based meth
using FRFs like in@5#, in this algorithm the equation system~7! is
nm/2 times bigger. This results because the algorithm needs
upper or lower triangle matrix of the hermitian power spect
density matricesSXX PCnm3nm instead of one columnH i PCnm of
a FRF matrixH. Therefore, the time consumption for the alg
rithm is higher as for the methods using FRFs. But a lot more ti
could be saved because the method dispense, with breaks fo
tifical test signals. Another aspect is that if the excitation can
be measured, the FRF based methods cannot be applied.

The algorithm has been applied to two examples. Both sh
that the location and the size of the deviation between the m
sured structure and the finite element model could be obtain
But the application to laboratory structures can only be a preli
nary goal and the extension to industrial parts should be the
step.
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