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Model Based Damage
Identification Using Output
Spectral Densities

A damage identification method utilizing an existing computational model and output

A. Nauerz spectral densities is presented. The problem covered here is the detection, localization and
Institute of Applied Mechanics, quantification of damage in real vibrating elastomechanical structures. The damages are
University of Kaiserslautern, localized by means of changes in the dynamic characteristics between a reference model
D-67661 Kaiserslautern, and the actual, measured system. The main contribution is that the exact measurement of
Germany the input signals is ignored. These signals are assumed to be an ergodic random process,
C.-P. Fritzen whose statisti_c_al properties such as mean and covarianqes must be estimated. Power
ol spectral densities allow random excitations to be dealt with. The lack of measurement
Institute of Mechanics and Control Engineering, information is treated by means of the dynamic condensation technique and the Kalman
University of Siegen, Bucy filter technique. In the first case the size of the model matrices are reduced to the
Germany number of measured degrees of freedom (dof). In the second procedure the measured

responses are expanded to the size of the model matrices. With equally sized measurement
and model matrices a linear equation system for the desired parameter changes is derived
by using the sensitivity approach. The equation system for this inverse problem is usually
ill-conditioned and must be regularized in some way. One possibility is to reduce the
subset of parameters to be in error. The algorithm is applied to a beam structure and a
measured laboratory structure, a multi story frame, in which artificial damage is intro-
duced by weakening one column between two stories. So, it is shown that the location and
the size of the corresponding stiffness decrease can be detected.
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1 Introduction behavior of a damaged structure must be sensitive to variations of

The ability to detect damage or faults is an important factor itghe parameter but that does not necessarily mean that a fault is

the usage of machinery and plants. It is desired to get im‘ormatior%SOCIateOI with this paramefet].

about the structural integrity during normal operation. The devia-

tion of the dynamic behavior from normal operating conditions

allows a diagnosis of the damages. As symptoms for damag@e, The Mathematical Model

changes of eigenfrequencies and mode shiibeS] and equally The dynamic behavior of the vibrating elastomechanical system

frequency response functiofiBRF9 or time signals can be used . . : : ) .
e.g.[4-7]. To get the FRFs or modal data usually a forced vibra\évg;pneger%%eesl of freedom is described by the linear, viscously

tion test with additional devices like shakers etc. is required. The
determination of modal parameters from output-only data using
the ambient excitation of the structure from traffic, wind etc. is
described by 8]. Their approach works under the assumption that
the unknown excitation is white noise. Another method which is g 5 cR" are the accelerations, velocities, and dis-
based on the random decrement technique was propogeéx. ty o placements of the syst’em, '

this article the physical parameters are determined directly fromgt) cR" s the external excitation.

the power spectral densities of the output-only signals. Similar to

Peeters and De Roeck the assumption of a broadband excitaﬁ
under operating conditions is made.

MX + CXx+ Kx =f(t) (1)

M,C,K eR™" are the symmetric mass, damping, and stiff-
ness matrices,

Plhe system is excited by random loads, as they occur during
normal operating conditions, E€L) is hard to solve. In place of
LI':ec?. (1), a formulation based on power spectral densities does not

particularly require an accurate model. This reference model rer‘l)é\fe the difficulties of the differential equation in the time do-

resents the undamaged state of the system and is used to 9Nl The Wiener-Khintchine transformation allows the transfor-

residuals bEtW‘?e“ its own characteristic dynamlc properties 30dinn of a linear system with stochastic inputs in the frequency
the corresponding, measured data. In addition, the model allo ain

the calculation of sensitivities of the dynamic characteristics wit

respect to any parameter describing the system. The sensitivities KoSxxKE5 =Sk, )
are important in solving the inverse problem. The number of pa- )

rameters necessary to describe all possible locations and typed/h Kp=K +ioC—w’M;

damage may be very large. One major problem is to achieve a (- ..)": conjugate transposed of . .);

small subset of parameters which characterize the real damage.

Often the analyst may not be aware of the nature of the fault. Thes ()= E{%X(w)x*(w)]; Ser(w)= E{% F(w)p*(w)}_

o Sobuted by the Dyramic Sytems and Conrol Dvsion o peblcaton 1 0, and .. are the matices of the power spectra of the displace-
received by the Dynamic Systems and Control Division April 7, 1999. Associafg.'emS and forces, respectively. The*dlago_nal elements are the real
Editor: S. Fassois. auto power spectra e.g{(1/T)X;X{}, while the off elements
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AAa=b (7

with Ae R™": be R™, m=2n:(n?/2)

which has to be solved. The solution of E&) requires equal
sized matrices. But in most cases there is a lack of measurement
information Sxxme‘]”mx"m with n,<n. The following two sec-

tions will deal with this problem.

Fig. 1 Measured displacements 2.2 Dynamic Condensation. One possibility to overcome
the sizing problem is to reduce themodel dof to then,=<n
measured dof. If the reduction is performed on the basis of physi-
cal laws, it is termed “condensation” ReferenH] gives a sur-
are the complex cross power spectra eE{(1/T)X;X]'}. The vey. One method is the dynamic condensation, using the mini-
operatorE{ ...} symbolizes the expectation of a quantity. Thénum energy as a constraint. The condensation process has to be
factor T is the measurement duration Fig. 1. done for every observed frequenay and provides

’CD:KDMM_KDMNKB,\TNKDNM 8

XN,

2.1 Localization. If the excitation is an ergodic random sig-
nal, which provides statistical the same power spectral densiti@ith 1Cpe C"m
Sce in the actual and in the reference state, then the relation bedndexM stands for the measured dof, ind&Xor the not mea-
tween the actual measured systéimdex m) and the analytical sured and reduced dof. The partial derivam@a,j is built by the

reference mode(index a) follows from Eq.(2) derivative of every term of Eq8) with respect to the correction
. . parameter
KDSXXmKD = KDaSXXaK Da- 3

_ _ _ ) KDa,j:KDMM,J-_ZKDMNKDNlNKDNM,j"‘K;lKDNN,jKD;N-
Kp is the dynamical stiffness matrix of the damaged systé€g). NN )
represents the known, undamaged, reference model. All terms on
the right side of Eq(3) are known. On the left side only the The corresponding power spectraSgy_are obtained by extract-
measured power spect@o(m are known. The differences in theing the appropriate componen&xa from the complete matrix
intensity of the excitation are taken into account by calculating th&, . Following this step the localization equation is
average integral,, of all auto power spectral densities of the °
measured signals and the corresponding model spegirathe

* *
observed frequency rang&x = (Im/l2) h>)<a, with &h}(a as the Z 1IC0aSkx,, JCba,  Kpa, Sxx,, Fpat A2y
initial, not intensity adjusted reference power spectral densities. .
The differences between the matiix, and the matrixKp, are = ICpal(Sxx, ~ Sxx,,) Koba - (10)

small expected as If a correct reference model does not exist, the difference in the

— dynamic characteristics between measurement and model are, in
Kp=KpatAKp. 4) e h .

principal, caused by modelling errors. Adapting the model to the
For the unknown difference matrixK p, a sensitivity approach as measurement seems to be the more sensible way. Still the question
in [5] is used. The differences are approximated by a linear Taylisropen on which dof the output signals should be measured to get
series, whose arguments are the correction parameters reliable results. The mode shapes of a previous finite element
j=12,...np. model could be helpful indicators. Those dof should be taken

which have deflections, in as many as possible mode shapes.

AKp=, Kpa, Ad (5) o _ .
] 2.3 Expansion in the Frequency Domain. An alternative

. . I _ . possibility to solve the sizing problem is to expand the measured

with the partial derivative< Da,; K palda; . power spectrayy to the size of the model matrices. A suitable

Indeed the linear relation between the correction paramet : . o
Aa; and the matrix changesK , is exact in many cases. Param‘-%%l is the Kalman Bucy Filte(KBF) [11]. This filter is developed

eters with a similar influence on the model as Young's modul s the optimal state estimator for linear systems under stochastic
and the Moment of Inertia should not be used concurrently pao!Se: The starting point is the state equation
cause they amplify the ill-conditioned problem. In this case it is 7=AZ+Bu+Gw (11
better to use the bending stiffness. For numerical reasons the coy- . .

rection parameter should be dimensionless. Therefore, a corrdéh the accompanying measurement equation

tion parameter is the change of the physical param&fgr= p; y=Cgz+Du+v. (12)
— Pjo With respect to the original model paramegey (e.g., mass, ) ) )
bending stiffness ett.Aa;=p;—pjo/pjo [10]. Inserting Eq.(4) The state vector, the system matrids and the input matrixBs
and(5) into Eq. (3) and neglecting the higher order terms, yieldéollow from the equation of motiortl)

the localization equation 0 |

MK —-M~IC

7= ERZnXZn,

X) eR™, A 2[

X S [
E {KDaSXXme‘;a . +Kp,, jSXXme‘;a}Aa 7= Kpa( SXXH - SXXm)K Da-

j

c R2n><n-

0
A B Bs= M1

J
6
©) 0,1 e R™" are a zero and a identity matrix.

Arranging the correction parameters in a vectbae R", The vectoru stands for measurable external input.is the
building this equation system for every measured frequengcy random excitation or system noise due to disturbances and mod-
k=1,2,...n¢ and splitting it into real and imaginary part pro-elling inaccuracies with known means and covariances afidw
vides the final overdetermined equation system both are forces, theG =B
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The matricesC; and Dy link z andu with the measuremenis
e R™m, which are corrupted by additive noisavith known means
and covariances. The components @f and D, are dependent directly.
upon the measured values. L& be the observation matrix with

from which the n-dimensional matrixS;<§<m can be obtained

entries one and zero for measured and not measured dd] in S S
is shown, if the measured signals are displacements = " Xm o (2nx2n
Skxy  Sxx
Ce=[H 0]e R™*2"  D=[0]eR"m*", (13) " "

In the more sophisticated case, if the measurable external input
is zero or unknownBs=D¢=0) and the system is excited only by
ergodic random signals, which are considered i, Eqg. (20)

and the corresponding equation for displacements and velocities is
shortened to

if they are measured velocities
C=[0 H]eR™*2"  D=[0]eR"m*" (14)

and for measured accelerations results

~a T %

C=[0 H] AR, D.=[0 H] Bee R™*". (15) S22~ K eSrel ™. (1)
Random excitatiorw, measurement noise and the initial state 1his EQ.(21) is the expansion equation for output-only measure-
vectorz, should be mutual uncorrelated: ments in the frequency domain. The detour of transforming ex-

panded time signals in the frequency domain is not necessary

E{w'}=0; E{zov"}=0; E{zgw"}=0. [14].

The mathematical background described above are the basis fo2.4 Regularization. To get a stable solution of E¢7) with

KBF equation(16), which provides the optimal r-dimensional the least square error method is in general not successful. The
estimationz for the wanted state vectar reason is, the coefficient matrik is an ill-conditioned matrix.
Measurement noise and truncation errors amplify the instability.
To obtain a stable solution the equation system must be regu-
larised in some way. Here the regularisation is performed by re-
ducing the subset of parameters to be in error. The proposal of

2=AZ+Bu+Ke(y—9)

with R R (16)  [15] transform the equation systef gradually into the orthogo-
y=Cg+Duu. nal equation system
K¢ is the stationary Kalman gain matrix, which is determined that Wg=b 22)

the symmetric covariance matriR=E{(z—2)(z—2)" is mini-
mized. In the case of big measurement ndise should effect a o ) T T
low amplification.§ should rather follow the signal than the Which is solved with the least square methdd Wg=W b.
noisev. Strong random excitatiow excits the state strong and W'W is an easy invertable diagonal matrix with the components
K¢ has to amplify the difference between measurement and esti-
mation (y—9y) to show a good following characteristic. It can be ”Wj”Z for i=]
shown that Wiw;= o
0 for i#]j.
Kg=PCIR™? 7 , , ,
In the first transformation step for every column the equation

is the optimal filter{11—13. The inverse of the positive definite ©MO"

covariance matrix of the measurement ndise E{w'} effects a

low amplification for big measurement noise and the linearitf to ei=b—A|Aq (23)
consider the case of strong random excitation. If the KBF equa-

tion (16) is transformed into the frequency domain, f6r0 and s calculated. This column, which provides the minimum error, is
initial condition z,=0, one obtains for measured displacementgyritten in the first column of a new orthogonal matki and the

and velocities A chosen column number is registered in a transformation vector.
L 1Z=BU+KgY, The maximum error in the least square sense'is=b'b. Every
parameter-column combinatiai;g; , which is taken into account
with (18) reduces the error. The error reduction with respect to the maxi-
L~ =iwl—(A—KsCo mum error is the error reduction ratierr)
andZ(w),U(w),Y(w). The corresponding equation for measured ngjTngj
accelerations is Eq(19). =5 (24)
L~*Z=(Bs~KgDyU+KgY. (19) The err is the selection and order criterion for every following
) columnW; and the crucial criterion to reduce the solution space.
Expressed by power spectra E@9) gives In every step that colum/{" is selected, which maximizes the
err.
S25=LK 6SyyKEL* +LK Sy y(Bs— KD TL*
+L(Bs— KDy SuyKIL* ) 3w, A (w'
W} ):Ai*E WKW and gf ):W. (25)
+L(Bs—KgDgSyy(Bs—KgDo TL* (20) k=1 KWk Wi Wi
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W,, k=1,...j—1 are the previously determined columns/éf

The transformation ends, when all columnAtas been consid-
ered. The columns iW are ordered now by decreasiag. Look-

ing at theerr values shows that only the first few values are
significantly greater than zero. This means that only the corre-
sponding columns oV provide a significant contribution to solve
the equation system. All the other columns are necessary to repro-
duce the noise and modelling error polluted right hand bithest

but they contribute nothing to the desired solution. Having this
background only those column &Y are used, whoserr values

are significantly greater than a predefined bound. The correction
parameters, which belong to the remaining columns, are set to
zero. This strategy reduces the solution space and the solution of
Eq. (22) becomes stable.

3 Example

The first example tests the damage identification by means of
condensed model matrices and expanded displacements from
asimulated beam structure. In the second example, the damage
identification and condensation method is applied to a real multi
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err

0.25

2 4 6 8 10 12 14 16

regularization parameter k

Fig. 5 Error reduction ratios of the first iteration

9
parameter j

Fig. 6 Localization result of the first iteration

story frame. Output signals in this case are measur
accelerations.
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Fig. 2 Dof of the beam structure

Table 1 Design parameter

length 1=0.08m
cross section aregA=1.26 104 m2
Moment of Inertia J=7.07710"° m*

Young'’s modulus g=1.95 1011ﬂ2
m

. k
density ;= 73505%

spring stiffness ¢, = 1062
m

modal damping D;=0.01

9102030:050:07050°50100110120130110150160

N

damage

Fig. 3 Beam structure with simulated damages

15. degree of freedom

i i i
400 500 600
frequency [ Hz ]

P I L L L H
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Fig. 4 Starting situation

694 / Vol. 123, DECEMBER 2001

Downloaded From: https://dynamicsystems.asmedigitalcollection.asme.org on 06/29/2019 Terms of

ed

15. degree of freedom

P H i 1 L i
400 500 600 700 800 900

frequency [Hz )

I i I
100 200 300

measured model

Fig. 7 Power spectral density of the first iteration

3.1 Beam Structure. The finite element model of the beam
structure consists of 16 beam elements with 34 dof as shown in
Fig. 2. Spring elements represent the elastic bearings at both ends.
The dof inx-direction are neglected. Table 1 contents the design
parameter for the beam elements of the reference model.

To generate a simulated damage the bending stiffiilsef
element five and element eight are reduced by 20%. This repre-
sents damages at two locations, as shown in Fig. 3.

The reference model and the “damaged structure” are excited
by zero mean white noise on each dof, because only unknown
forcesw should act on the systems. Knowing the modeshapes of
the structure the ddb, 7, 9, 11, 13, 15, 25, 27, 2are choosen as
master dof, to test the condensation technique. Figure 4 shows the
auto power spectral density of the 15. dof in the starting situation.
It demonstrates, the higher the frequency, the bigger the difference
between actual and reference state. The frequency ranges between
the peaks, has not much information. Therefore one should take
the highest eigenfrequencies one could get. To keep the equation
system Eq.(7) small, only frequencies around the eigenfrequen-
cies in the range between 140.5 Hz—896 Hz are (Bayl 4).

The first iteration provides the results shown in Figs. 5-7. In
Fig. 5 the error reduction ratios corresponding to the columns of
matrix W are listed. As described above tee decreases fast.
Only the first two values are significant greater than zero. Now the
regularisation starts. The parametegs- g;¢ are set to zero and
Eq. (22) is solved with the first two columns &% only. The result
for g, andg, back transformed to the corresponding parameters is
shown in Fig. 6. As expected, the parameters five and eight, re-
spectively,EJs and EJg are detected as wrongJs has to be
reduced by 0.14 respectivelyEJs= —14% andEJg by AEJg
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regularization parameter k

Fig. 8 Error reduction ratios of the first iteration

i i i i i I i i i i L
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
parameter j

Fig. 9 Localization result of the first iteration

15. degree of freedom
T T

10 T T T T

Fig. 11 Laboratory structure

Sms[mm2 /5]
s
&

10 o0 200 300 400 500 600 700 800 500 ® X 6
frequency [ Hz ]
Sxx | measured  -=----- model
Mmp
Fig. 10 Power spectral density of the first iteration \
. - XS

=—17%. The damage location is detected but the severity is not
correct. Figure 7 shows the auto power spectral density after the ® X
model is updated with the calculation result 35 andEJg. 4

The difference between the measurement and the model output
is now considerable smaller. After two further iteration the results
for EJ; and EJg are nearly excact. But with the decreasing dif- ® —-X
ference between real structure and the model the algorithm gets 3
susceptible for noise or model inaccuracies.

The same beam is now used to prove the expansion method, all
rotational dof of the damaged structure are unknown and have to k ®
be calculated. The result of the first iteration is shown in Figs. f
8-10. Unfortunately, alkerr-values are small. The first twerr F
values belong to the damaged elements, but @ith=0.131 and
err,=0.109 the regularization criteria is not very sharp. Solving — —_— Xl
Eq. (22) with the first two columns ofV and settingg;— g t0
zero provides the result fog, and g, resp. AEJ; and AEJg y
shown in Fig. 9.EJ5 have to be updated bEJ;=—15% and C
EJg by AEJg=—20%. In Fig. 10 this step is done.

Because of the smadlrr-values the model cannot be improved by X
additional iterations. This example demonstrates, that under the

same requirements the damage identification with condensed Fig. 12 Elastomechanical model
model matrices works better than the identification with expanded

measurement data.

3.2 Multi-Story Frame. The next example is the multi Table 2 Parameter of the reference model
story frame shown in Fig. 11. The whole frame has a height of
approximately 500 mm. The six aluminum plates have a size of StorY 1 2 3 4 5
310 mmx 280 mnmx15mm and a mass including screws otEJ[Nmz] 27.28 31.85 28.28 33.15 24.68
mp=3.6kg. The steel strips between the plates have a cragpN/m] 5.24 10°

sectional area ofA=8-10"°>m?, a Moment of Inertia ofJ
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Fig. 13 FRFs of the measurement and the initial model
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Fig. 14 FRFs of the measurement and the reference model
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Fig. 15 Removed steel strip as artificial damage
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frequency [Hz )

-------- model

measured

Fig. 16 Starting situation

=2.6610 'm?*, a Young’s modulus cE=2.1-10"* N/m? and a

density ofp=7850 kg/ni. Plates and steel strips are connected so
that the frame can only vibrate in horizontal and vertical direc-
tions. But vertical vibrations are small. Rotational dof are con-
strained. The structure is excited with a random signal by a shaker
at the bottom plate.

The corresponding elastomechanical model is shown in Fig. 12.
The steel strips are modeled as Timoshenko beam elements. Plate
masses are considered as lumped masses. The proportional damp-
ing approactC=aM+ BK, «,BeR is used as damping model.

The shaker is a good excitation source for an ergodic random
signal, but it is fixed on the structure and affects the dynamic
properties of the structure. To get the influence of the shaker a
detour in the updating process is done. The shaker is turned off
and the whole system, story frame and shaker are excited succes-
sively by a Dirac impulse at all floors and the output accelerations
at the third, fourth and fifth dof are measured. The linearity of the
whole system is checked by the reciprocity of the measured FRFs.
Comparing the measured and the modeled FRFs in Fig. 13 shows,
that the model represents the shape of the measured FRFs good.
But the position of the eigenfrequencies indicates that the model is
too stiff. With formula(26) presented by16], the reference model
is adapted in two steps.

1 Am—Ng,

T _ m;
121 )\—rnlﬁﬂai (Kaj=Nai Mg j) @ai ,Aaj—T, (26)

Am:Na, Measured and analytical eigenvalues,
©a, analytical eigenvector.

In the first step the correction parametérs; are the shaker stiff-
nessk; and a common bending stiffnegs]g for the beam ele-
ments. Based on the real structure, the bending stiffness of the
first, third, and fifth floor are four timegJg and in the second
and fourth floor five timesEJg. With a shaker stiffness;
=5.2410° N/m and a bending stiffness &Jy=6.30 N n?, the
model represents the first two peaks, which depends most of the
shaker and his mounting on the frame. In the next step the cor-
rection parameters are the bending stiffnesses of the five floors.
The result is shown in Table 2. Figure 14 compares the developed
reference model with the measurement.

A test for damage identification with the condensed model fol-
lows. Therefore, artificial damage is introduced by removing a
steel strip in the fourth floor, as shown in Fig. 15. The bending
stiffness of the fourth storfzJ, of the real system is now reduced
by 20%. The shaker excites the frame with random noise. The
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Ir— , " : : checking the selection sequence and back transformatignt@f

: ' : : : Aa provides the result shown in Fig. 18. As expected it is param-

eter four, which should be decreased b J,=—22%. If the

model is updated with this result and the damage identification

algorithm is started a second time, the value is adjusted and as a

final result a correction oAEJ,=—19% is made. The corre-

: : , , . sponding power spectral densities are shown in Fig. 19

oLl— I In both examples the excitation signals are unknown. But the
1 23 4 5 damages are localized and the serverity of the damages are well

regularization parameter k identified.

err

051 N\- it

Fig. 17 Error reduction ratios of the first iteration
4 Conclusion
A method for the identification of damages in structural models

03— ; 3 ; : has been presented, which is particularly used for the localization
02 S A T and quantification of structural faults. The main contribution is
O pessemas pEmig SRRk SRR that the identification is based on power spectral densities. These

3 o}— : : ' : offer the possibility of working with an ambient excitation and

700 || R S G - - - .y using output-only signals. The only assumption is that the input

—02b- s S L spectral density can be approximated by ergodic white noise. The
ozl : j : : advantage is that the damage identification can be done during

’ 1 73 3 4 5 normal operating conditions. Time consumptions to perform dy-

parameter j namical tests with artifical test signals are not necessary. Without

test signals, the required excitation equipment like shakers etc.

Fig. 18 Localization result of the first iteration could also be saved. The deficiency of measurement information

is treated by condensing the model matrices and by expanding the
measurement data. A further contribution is that the expansion
technique is able to deal with measured signals in the frequency
5. degree of freedom domain. The example shows that the condensation technique
107 — ' T T v ' works better and should be preferred in solving the sizing prob-

% lem. The ill-conditioned linear equation system is regularized and
P etesnrys S solved by an orthogonal parameter estimation algorithm, which
“ 10 e provides the error reduction ratios for the single columns of the
frequency [Hz ] coefficient matrix. With this important information it is possible to
5 4. degree of freedom reduce the solution space and stabilize the solution of the equation

system. Comparing the algorithm with the model based methods
using FRFs like if5], in this algorithm the equation syste) is

n,/2 times bigger. This results because the algorithm needs the
upper or lower triangle matrix of the hermitian power spectral
frequency [He ] density matriceS,y € C"*"m instead of one columHl; e C"m of

5 3. degree of freedom

a FRF matrixH. Therefore, the time consumption for the algo-
rithm is higher as for the methods using FRFs. But a lot more time
could be saved because the method dispense, with breaks for ar-
\ . . . . tifical test signals. Another aspect is that if the excitation cannot
S L G be measured, the FRF based methods cannot be applied.
[requeney [ 12 The algorithm has been applied to two examples. Both show
that the location and the size of the deviation between the mea-
sured structure and the finite element model could be obtained.
But the application to laboratory structures can only be a prelimi-
nary goal and the extension to industrial parts should be the next
step.

measured ~ ------- model

Fig. 19 Comparison of the power spectral densities after
updating

model is excited by white noise. Measured are the acceleration

signals inx direction at the third, fourth, and fifth dof, respectivelyRe‘cerences
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