
Consolidating Customized Product Copies to Software Product Lines∗

Benjamin Klatt, Klaus Krogmann
FZI Research Center for Information Technology

Haid-und-Neu-Str. 10-14,
76131 Karlsruhe, Germany
{klatt,krogmann}@fzi.de

Christian Wende
DevBoost GmbH

Erich-Ponto-Str. 19,
01097 Dresden, Germany

{christian.wende}@devboost.de

1 Introduction

Reusing existing software solutions as initial point
for new projects is a frequent approach in software
business. Copying existing code and adapting it to
customer-specific needs allows for flexible and efficient
software customization in the short term. But in the
long term, a Software Product Line (SPL) approach
with a single code base and explicitly managed vari-
ability reduces maintenance effort and eases instanti-
ation of new products.

However, consolidating custom copies into an SPL
afterwards, is not trivial and requires a lot of manual
effort. For example, identifying relevant differences
between customized copies requires to review a lot of
code. State-of-the-art software difference analysis nei-
ther considers characteristics specific for copy-based
customizations nor supports further interpretations of
the differences found (e.g. relating thousands of low-
level code changes). Furthermore, deriving a reason-
able variability design requires experience and is not
a software developer’s everyday task.

In this paper, we present our product copy con-
solidation approach for software developers. It con-
tributes i) a difference analysis adapted for code copy
differencing, ii) a variability analysis to identify re-
lated differences, and iii) the derivation of a reason-
able variability design.

2 Consolidation Process
As illustrated in Figure 1, consolidating customized
product copies into a single-code-base SPL encom-
passes three main steps: Difference Analysis, Vari-
ability Design and the Consolidation Refactoring of
the original implementations. These steps are related
to typical tasks involved in software maintenance, but
adapted to the specific needs of a consolidation.

As summarized by Pigoski [2](p. 6-4), developers
spend 40%–60% of their maintenance effort on pro-
gram comprehension, i.e. difference analysis in our
approach. This is a major part of a consolidation pro-
cess but it is also the least supported one.

In the following sections, we provide further details
on the different steps of the consolidation process.

∗Acknowledgment: This work was supported by the German
Federal Ministry of Education and Research (BMBF), grant No.
01IS13023 A-C.

Customized 
Copy 1

Customized 
Copy 2

Original 
Product

Software 
Product Line

Difference 
Analysis

Variability 
Design

Consolidation 
Refactoring

Figure 1: Consolidation Process

3 Difference Analysis
We have developed a customized difference analysis
approach that is adapted for the needs for product-
line consolidation in three directions: Respecting code
structures, providing strict (Boolean) change classi-
fication, and respecting coding guidelines for copy-
based customization if available.

Today’s code comparison solutions do not always
respect syntactic code structures. This leads to iden-
tified differences that might cut across two methods’
bodies. In our approach, we detect differences on ex-
tracted syntax models. This allows to precisely iden-
tify changed software elements and detect relations
between them later on.

Furthermore, we filter code elements not relevant
for the software’s behavior (e.g. code comments or
layout information). However, we strictly detect any
changes of elements in the scope and prefer false posi-
tively detected changes (i.e. they can be ignored later
on) to avoid the loss of behavioral differences.

Coding-guidelines can include specific rules for
code copying. For example, developers might be asked
to introduce customer-specific suffixes to code unit
names or introduce “extend”-relationships to the orig-
inal code. Since these customization guidelines are vi-
tal for aligning different product copies, we also feed
them into the difference analysis.

4 Variability Analysis
Having all differences detected, it is important to iden-
tify those related to each other. Related differences
tend to contribute to the same customization and thus
might need to be part of the same variant later on.

In our approach, we derive a Variation Point Model
(VPM) from the differences detected before. The
VPM contains variation points (VP), each referencing
to a code location containing one of the differences.



At each VP, the code alternatives of the difference are
referenced by variant elements.

Starting with this fine-grained model, we analyze
the VPs to identify related ones and recommend rea-
sonable aggregations. Recommending and applying
aggregations is an iterative approach until the person
responsible for the consolidation is satisfied with the
VPs (i.e. the variability design). With each itera-
tion, it is his decision to accept or decline the rec-
ommended aggregations. This allows him to consider
organization aspects such as decisions to not consoli-
date specific code copies.

The variation point relationship analysis itself com-
bines basic analyses, each able to identify a spe-
cific type of relationship (e.g. VP location, similar
terms used in the code, common modifications or pro-
gram dependencies). Based on the identified relation-
ships, reasonable aggregations are recommended. Ba-
sic analyses can be individually combined to match
project-specific needs (e.g. indicators for code belong-
ing together).
5 Consolidation Refactoring
As a final step, the code copies’ implementation must
be transformed to a single code base according to the
chosen variability design and selected variability real-
ization techniques. Opposed to traditional refactor-
ings (i.e. not changing the external behavior of soft-
ware), consolidation refactorings might extend (i.e.
change) the external behavior. The underlying goal
of consolidation refactoring is to keep each individual
variant/product copy functional. However, new func-
tional combinations enabled by introducing variability
are valid considered consolidation refactorings.

To implement consolidation refactorings, we are
working on i) a refactoring method that explicitly
distinguishes between introducing variability and
restructuring code, and ii) specific refactoring au-
tomation to introduce variability mechanisms. The
former focuses on guidelines and decision support.
The latter is about novel refactoring specifications
using well known formalization concepts, such as
refactoring patterns described by Fowler et al. [3]
or the refactoring role model defined by Reimann
et al. [6]. Based on this formalization, we will
automate the refactoring specifications to reduce the
probability of errors compared to manual refactoring.

6 Existing Consolidation Approaches
SPLs and variability are established research topics
nowadays. However, only a few existing approaches
target the consolidation of customized code copies into
an SPL with a single code base.

Rubin et al. [7] have developed a conceptual frame-
work of how to merge customized product variants in
general. They focus on a model level, but their general
high-level algorithm matches to our approach.

In [8] Schütz presents a consolidation process, de-
scribes state-of-the-art capabilities and argues for the
need of an automation as we target. In a similar way,

others like Alves et al. [1], focus on refactoring exist-
ing SPLs, but also identified the lack of support for
consolidating customized product copies and the ne-
cessity for automation.

Koschke et al. [5] presented an approach for con-
solidating customized product copies by assigning fea-
tures to module structures and thus identifying differ-
ences between the customized copies. Their approach
is complimentary to ours and could be used as an
additional variability analysis if according module de-
scriptions are available.

7 Prototype & Research Context
In our previous work [4], we presented the idea of tool
support for evolutionary SPL development. Mean-
while, we are working on the integration with state-
of-the-art development environments. Furthermore,
in the project KoPL 1, we refine and enhance the ap-
proach for industrial applicability. This encompasses
the adaptation of the analysis to be used by software
developers in terms of required input and result pre-
sentation. Furthermore, extension points are intro-
duced to support additional types of software arti-
facts, analyses and variability mechanisms.

Currently, a prototype of the analysis part is al-
ready available and evaluated with an open source
case study based on ArgoUML-SPL and an industrial
case study. The refactoring is in a design state and
will be focused later in the project.

As lessons learned: A strong input of how de-
sired SPL characteristics should look like (e.g. real-
ization techniques or quality attributes) improves the
approach. We call this an SPL Profile. Furthermore,
the first step of ”understanding” is the most crucial
one for a consolidation.

References

[1] V. Alves, R. Gehyi, T. Massoni, U. Kulesza, P. Borba,
and C. Lucena. Refactoring product lines. In Proceed-
ings of GPCE 2006. ACM.

[2] P. Bourque and R. Dupuis. Guide to the Software
Engineering Body of Knowledge. IEEE, 2004.

[3] M. Fowler, K. Beck, J. Brant, and W. Opdyke.
Refactoring: Improving the Design of Existing Code.
Addison-Wesley Professional, 1999.

[4] B. Klatt and K. Krogmann. Towards Tool-Support for
Evolutionary Software Product Line Development. In
Proceedings of WSR 2011.

[5] R. Koschke, P. Frenzel, A. P. J. Breu, and K. Angst-
mann. Extending the reflexion method for consoli-
dating software variants into product lines. Software
Quality Journal, 2009.

[6] J. Reimann, M. Seifert, and U. Aß mann. On the
reuse and recommendation of model refactoring spec-
ifications. Software & Systems Modeling, 12(3), 2012.

[7] J. Rubin and M. Chechik. A Framework for Manag-
ing Cloned Product Variants. In Proceedings of ICSE
2013. IEEE.

[8] D. Schütz. Variability Reverse Engineering. In Pro-
ceedings of EuroPLoP 2009.

1http://www.kopl-project.org


