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ABSTRACT

Image search engines have achieved good performance for head
(popular) queries by leveraging text information and user click da-
ta. However, there still remain a large number of tail (rare) queries
with relatively unsatisfying search results, which are often over-
looked in existing research. Image search for these tail queries
therefore provides a grand challenge for research communities. Most
existing re-ranking approaches, though effective for head queries,
cannot be extended to tail. The assumption of these approaches that
the re-ranked list should not go far away from the initial ranked list

is not applicable to the tail queries. The challenge, thus, relies on
how to leverage the possibly unsatisfying initial ranked results and
the very limited click data to solve the search intent gap of tail
queries.

To deal with this challenge, we propose to mine relevant infor-
mation from the very few click data by leveraging click-wise-based
image pairs and query-dependent multimodal fusion. Specifical-
ly, we hypothesize that images with more clicks are more relevant

to the given query than the ones with no or relatively less clicks

and the effects of different visual modalities to re-rank images are

query-dependent. We therefore propose a novel query-dependent
learning to re-rank approach for tail queries, called “click-wise
multimodal fusion.” The approach can not only effectively ex-
pand training data by learning relevant information from the con-
structed click-wise-based image pairs, but also fully explore the
effects of multiple visual modalities by adaptively predicting the
query-dependent fusion weights. The experiments conducted on a
real-world dataset with 100 tail queries show that our proposed ap-
proach can significantly improve initial search results by 10.88%
and 9.12% in terms of NDCG@5 and NDCG@10, respectively,
and outperform several existing re-ranking approaches.
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(a) “kim kardashian” (b) “kim and kanye’s baby”

Figure 1: Examples of the initial image search results of a

head query (“kim kardashian”) and a tail query (“kim and

kanye’s baby”). The red rectangles mark irrelevant images

[best viewed in color]. Existing commercial search engines

achieve very limited image search performance for tail queries.
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1. INTRODUCTION
As Web 2.0 and social networks developed, billions of images

have been contributed and shared in the media-centered communi-
ties. The increasing number of images has posed a grand challenge
to image search. Most existing commercial search engines adopt
keyword-based technique for image search. However, the textu-
al information of web images is often noisy and even unavailable.
In order to boost the performance of web image search and over-
come the “semantic gap” (the gap between the low-level features
and high-level semantics) and “intent gap” (the gap between the
representation of users’ query/demand and the real intent of the
users), many image search re-ranking approaches have been pro-
posed in recent years [17].

However, most re-ranking methods target at improving search
performance of head (popular) queries, while the tail (rare) queries
have often been overlooked. In this paper, we focus on image
search re-ranking for tail queries for the following reasons. First,
head queries are frequently issued, which are mostly about celebri-
ties, movies and so on. The corresponding image source material,
textual information, and user clicks are generally substantial. By
applying existing effective re-ranking methods, consequently, the
search performance of head queries is usually satisfying. In con-
trast, the search performance of tail queries is poor due to the lack
of enough source information and user clicks. As a result, most
existing re-ranking approaches, with the assumption that the re-

ranked list should be close to the initial ranked list or the top ranked

images from the initial ranked list suppose relevant to the given

query, cannot be extended to solve the problems of tail queries.
Second, since query frequencies follow such a power-law distri-
bution that there are large numbers of tail queries in query logs



[1], search performance of those queries would potentially affec-
t the popularity and relevance of search engines significantly in
fierce market competition. For example, Fig. 1 shows the initial
search results of head query “kim kardashian” and tail query “kim
and kanye’s baby,” respectively. We can see that the top 10 search
results of head query “kim kardashian” are absolutely satisfying,
while, for tail query “kim and kanye’s baby,” there are only two
relevant images that satisfy user search intent. To summarize, we
believe that appropriately handling tail queries is a newly emerging
direction in image search.

To address these challenges for tail queries, we seek to leverage
multiple visual features and pair-wise click-through data simulta-
neously. In general, most image search re-ranking approaches treat
different modalities (features), such as shape, color and texture, in-
dependently. However, for different queries, discriminative modal-
ities may have distinct effects. For instance, for the queries like
“heart” and “sun,” color feature may be more useful, while for the
queries such as “buildings,” texture feature will be more effective.
The same situation happens to tail queries, for example, shape fea-
ture may be more helpful for “kim and kanye’s baby” shown in
Fig. 1(b) to detect the “baby.” Although several approaches, which
learn and predict fusion weights in a linear or non-linear way to
combine multiple modalities, have proved effective [22][27], the
problem of how to fuse multiple modalities adaptively and in a
query-dependent way still remains. Conversely, since users browse
image thumbnails before selecting the images to click, we believe
that the click data can reflect users’ search intent as “implicit” rel-
evance feedback [9][26]. Intuitively, images with more clicks are
more relevant to the given query than the ones with no or less click-
s. However, clicked images always hold a low percentage in the
search results to a given tail query, even less than 10%. It is diffi-
cult to learn the similarity among them to facilitate re-ranking for
all the images. How to mine useful information from such limited
click-through data is a problem that most existing re-ranking work
does not take into consideration.

To address the above issues, we propose a novel query-dependent
learning to re-rank approach, called “click-wise multimodal fu-
sion,” to improve the search performance for tail queries. In our
paper, we define “click-wise” as the difference value of clicks for
pair-wise images. Our key assumptions are based on two aspects:
1) the effects of different visual modalities to re-rank images are
query-dependent, and 2) images with more clicks are more rele-
vant than the ones with no or relatively less clicks in response to a
given query. In click-wise multimodal fusion, we extract multiple
visual features from all the images, and select image pairs contain-
ing click-wise information, no matter clicked-clicked image pairs
or clicked-unclicked ones. On the one hand, click-wise multimodal
fusion can learn and predict the fusion weights of multiple modal-
ities adaptively and query-dependently. On the other hand, it can
make full use of click-wise-based image pairs to correctly re-rank
the clicked images with larger clicks higher through penalizing the
misclassified pairs with different click-wise information.

Note that our re-ranking approach is general, yet, it is applicable
to tail queries owing to the use of click-wise information. Specif-
ically, as click-through data can be viewed as the footprints of us-
er search behavior, we mine click-wise information adequately to
guide image search re-ranking regardless of the initial ranked list.
For a given tail query, even the number of clicked images is rel-
atively small, such as 10 or less, we can still get enough training
data by detecting the click-wise-based pairs. Moreover, the clicked
images of tail queries are usually uncertain and diverse resulting
in the difficulty to learn from the “similarity” among them, while

using our approach, we can learn from the “dissimilarity” via click-
wise information to re-rank images.

The contributions of this paper can be summarized as follows.

• We have investigated the image search re-ranking for tail
queries which is often overlooked by most previous research.
To the best of our knowledge, this represents one of the first
attempts for formally studying the problem of image search
re-ranking for tail queries.

• We propose a novel learning to re-rank approach, called “click-
wise multimodal fusion,” which can not only adaptively learn
the fusion weights of multiple modalities in a query-dependent
way, but also leverage image pairs with click-wise informa-
tion to facilitate image search re-ranking.

• We conduct experiments on a one-week real-world dataset
consisting of 2,682,666 queries and 20,165,208 image URLs
collected from a commercial search engine. The evaluation
validates that our approach is able to significantly improve
search performance for tail queries, while maintaining slight-
ly better performance for head queries.

The rest of this paper is organized as follows. Section 2 presents
related work. Section 3 analyzes a one-week query log and detail-
s the definition of tail queries. Section 4 introduces our proposed
query-dependent re-ranking approach, called “click-wise multimodal
fusion.” Section 5 reports the experimental results on the perfor-
mance of our re-ranking approach. Section 6 draws the conclusion.

2. RELATED WORK
Our work is mainly related to image search re-ranking and search

with click-through data. In this section, we first present image
search re-ranking along two directions, i.e., recurrent pattern min-
ing and multimodal visual feature fusion. Then, we introduce the
work on search with click-through data, especially for image search.

2.1 Image Search Re-ranking
According to how many visual features are leveraged and ex-

plored, we categorize visual search re-ranking into two major direc-
tions, i.e., recurrent pattern mining and multimodal visual feature
fusion. Most of them are developed based on the hypotheses that
1) the re-ranked results should not change too much from the initial
ranked results or the top ranked images from the initial ranked list
suppose relevant to the given query, and 2) visually similar images
should be close in the re-ranked list.

Recurrent pattern mining seeks to mine recurrent patterns from
relevant images to improve the re-ranking performance. For in-
stance, Hsu et al. formulate re-ranking as a random walk prob-
lem along the context graph, where video stories are represented
as nodes and the edges between them are weighted by contextual
similarities [7]. Yan et al. propose to re-rank using a binary classi-
fier where the top-ranked (bottom-ranked) documents from the ini-
tial ranked results are chosen as pseudo-positive (pseudo-negative)
samples, which is the so-called pseudo-relevance feedback (PRF)
[23]. Compared with exploiting the initial search results without
any external knowledge, Yang and Hanjalic leverage query exam-
ples and formulate learning to re-rank as an optimization function
by minimizing the distance between the re-ranked list and the initial
one, while maximizing the coherence of similar ranked images in
terms of the visual features [24]. Similarly, crowd-sourced knowl-
edge, e.g., multiple initial ranked results from various search en-
gines [15] and the suggested queries augmented from the image
collection on the Web [28], is mined to find relevant visual pattern-
s. In order to further satisfy users’ search intent, many researchers



Table 1: Query frequency distribution for one-week query log.

query frequency number of queries region in Fig. 2

(100, 3251] 767 HEAD

(1, 100] 310,274 TAIL-A

1 2,371,625 TAIL-B

involve user interaction, such as human labeling and feedback, to
guide the re-ranking process. Hauptmann et al. propose to employ
active learning technique to exploit both the human bandwidth and
machine capability for video search re-ranking [6]. For reducing
the efforts of users’ labeling, Tian et al. propose a sample selec-
tion strategy based on images’ structural information, and then use
a discriminative dimension reduction algorithm to capture user in-
tent in the visual feature space [21].

Multimodal visual feature fusion aims to fuse different modali-
ties in a unified way and make them function well accordingly. To
deal with this problem, one natural way is to concentrate multiple
features into a long feature vector and then use this joint modality
to perform specific task. Alternatively, we can fuse the re-ranking
results produced by applying modalities separately in a re-ranking
algorithm. These two methods are the so-called “early fusion” and
“late fusion” separately [20]. Even though the early and late fu-
sion approaches are advantageous compared with ones using an
individual modality, yet, they still suffer from “curse of dimen-
sionality” and incapability of determining proper fusion weights
for different modalities, respectively. Thus, in order to learn appro-
priate fusion weights of multiple modalities, Snoek et al. propose
to assign weights heuristically and manually based on the type of
query, such as text-, concept- and visual-oriented queries [19]. This
“rule-based fusion,” though easy to implement, may degrade the re-
trieval performance due to the wrong weights assigned by users. To
address this issue, Kennedy et al. recommend to use “query-class-
dependent fusion” [13]. They first classify each user query into cat-
egories learnt by cluster algorithms, and then aggregate retrieval re-
sults with the help of query-class associated weights. Nevertheless,
it is difficult to categorize a user query into a specific class accurate-
ly due to its complicated semantic meanings. Therefore, “adaptive
fusion” is introduced to learn query-dependent fusion weights for
multiple modalities [22][25].

Overall, though proved effective for head queries, the above men-
tioned approaches cannot be extended to tail queries, mainly be-
cause the initial ranked results of tail queries are always so unsat-
isfying that they cannot support the assumptions. Moreover, click-
through data, which can be viewed as an indicator of image rele-
vance, are mostly not taken into consideration in those methods.

2.2 Search with Click-through Data
Click-through data have been studied in web search for a few

years [3][4][5][12]. Compared with web document search, where
users can only browse a two-line snippet in response to a given
query, in image search, users browse image thumbnails before se-
lecting the images to click. Thus, it is much more convincing that
the decision to click is likely dependent on the relevance of an im-
age. In recent years, mining click-through data from query logs
to facilitate image search has attracted some researchers’ attention
[8][9][26]. For instance, Jain et al. employ Gaussian Process re-
gression to predict the normalized click count for each image, and
combine it with the original ranking score for re-ranking [9]. In
[26], Yang et al. leverage click-through data and detect recurrent
visual patterns of images simultaneously to boost the performance
of image retrieval. Based on the assumption that clicked images
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Figure 2: The power-law distribution for the query frequencies

of 2,682,666 queries. Note that regions are divided by dotted

lines [best viewed in color].

are highly correlated with relevant ones to the given query, it is in-
spiring to use click-through data, which are readily available and
freely accessible from query logs, to guide image search instead of
human intervention. As the above work presents, the click counts
of images have been fully explored, yet, for tail queries, there are
not enough clicked images, let alone the images’ click counts. In
order to increase data volume containing click information, we at-
tempt to use click-wise-based image pairs, i.e., image pairs with the
difference value of clicks. Then, our concerns are: 1) what is the
influence of the difference value of clicks? 2) can the difference val-

ue of clicks be leveraged to improve search performance of images,
especially for tail queries?

3. QUERY LOGS AND TAIL QUERIES
Since we focus on improving search performance of tail queries,

we first analyze query logs, and then give the general definition
of tail queries. We have collected query logs from a commercial
image search engine for one week in Oct. 2013. The query logs
are represented as plain text files that contain a line for each HTTP
request satisfied by the Web server. For each record, the following
fields are used in our data collection:

<Query, ClickedURL, ClickCount, Thumbnail>

where the ClickedURL and ClickCount represent the URL and the
number of clicks on this URL when users submit the Query, respec-
tively. Thumbnail denotes the corresponding image information on
the ClickedURL.

In order to study the effect of click-through data, we use all the
queries in the log with at least one click. There are 2,682,666
queries and 20,165,208 image URLs in total. Generally, a tail query
is identified based on its query frequency. As Table 1 shows, there
are over 88% queries with one query frequency, indicating they are
issued only once by users during one week. In contrast, the number
of queries with frequency larger than 100 is 767, accounting for less
than 0.03% of all queries. We sort all the queries according to their
frequencies in a descending order and draw Fig. 2 which shows
that the query frequency distribution follows the power laws. Em-
pirically, we believe that queries issued more than 100 times during
a week can be viewed as popular (head) queries. Thus, based on the
query frequency of 100, we divide the entire query frequency dis-
tribution into “HEAD” region and “TAIL” region shown in Fig. 2.
Moreover, since the number of queries issued only once is extreme-
ly large, we further divide “TAIL” region into “TAIL-A” (including
queries issued between 1 and 100 times) and “TAIL-B” (including
queries issued only once). In our work, we mainly focus on region
“TAIL-A” and “TAIL-B” consisting of tail queries.

Following the general concept based on query frequencies, we
give the definition of tail queries below.



DEFINITION 1. A Query is represented as a record:

<QueryText, QueryFrequency>

where QueryText stands for the textual information of Query,
QueryFrequency indicates the query frequency during a certain
time period. A tail query is a query with QueryFrequency no
more than Tq , where Tq is the threshold which equals to a certain
query frequency for identifying tail queries.

Since the time period of query logs varies, the threshold Tq can
be defined accordingly. In our work, we set Tq to 100 for a one-
week query log. Taking query “kim and kanye’s baby” shown in
Fig. 1(b) as an example, its query frequency equals to 29 which is
less than Tq = 100 , then we can define it as a typical tail query.
Concerning queries with clicks, i.e. the queries in the log with at
least one click, the definition of tail queries is different from the
general one as follows.

DEFINITION 2. A Query with clicks is represented as a record:

<QueryText, QueryFrequency, ClickedImages>

where ClickedImages indicates the number of clicked images
in response to Query. A tail query with clicks is a query with
QueryFrequency no more than Tq , and ClickedImages no more than
Tc, where Tq and Tc are the thresholds of QueryFrequency and
ClickedImages, respectively.

Similarly, the thresholds of Tq and Tc can be set depending on
the time period of query logs and the requirement of click informa-
tion. Compared with general definition of tail queries given in Def.
1, we add ClickedImages for tail queries with clicks mainly for
the following reason. A dispersive distribution of clicked images
equals with diverse search intent of users. By narrowing down the
range of the number of clicked images, we can get more centralized
user intent via a certain number of clicked images. In our work, we
set Tq and Tc all to 100 for a one-week query log. For example,
as the query frequency and the number of clicked images of query
“kim and kanye’s baby” is 29 and 22 respectively, we can use it as
a representative tail query with clicks.

4. LEARNING TO RE-RANK: CLICK-WISE

MULTIMODAL FUSION
In this section, we introduce our proposed novel re-ranking ap-

proach, called click-wise multimodal fusion (CWMF). First, we
present traditional ranking SVM (Supported Vector Machine), which
is a commonly used “pair-wise” learning to rank algorithm. We
do not introduce other learning to rank algorithms, such as “point-
wise” and “list-wise,” because in our work we try to use click-wise
information between two images, which more matches the form of
“pair-wise.” Then, we extend ranking SVM to a learning to re-rank
paradigm and detail our re-ranking approach.

In the following sections, we use q to denote the issued query,
x to denote an image returned by a search engine, y to denote the
relevance of image x, and c to denote the click count of image x.

4.1 Ranking SVM
Ranking SVM, in which the preference relations between in-

stances are used, can be viewed as a special case of SVM [11].
Suppose we are given a set of training query-image-label triples
(qi, xi, yi), where qi ∈ Q (Q is the set of queries), xi ∈ R

n (n
is the dimension of image’s feature), yi ∈ R, i = 1, 2, ...,N (N
is the number of triples). Label yi annotates the relevance of xi in

response to qi, then we can define the set of image preference pairs
as

P̄
∆
= {(i, j)|qi = qj , yi > yj}, (1)

where i, j = 1, 2, ...,N . We use P̄ to denote the size of set P̄ , i.e.,

P̄
∆
=

∣

∣P̄
∣

∣.
Then, ranking SVM can be formulated as learning for classifica-

tion on the preference pairs shown as Eqn. (2).

min
ω,ξ

F (ω, ξ) = 1
2
ωTω + C

∑

(i,j)∈P̄ ξij

s.t. ωT
(

Φ(xi)− Φ(xj)
)

≥ 1− ξij

ξij ≥ 0, ∀(i, j) ∈ P̄,

(2)

where ω is a weight vector that is adjusted by learning, C is the
regularization parameter and C > 0, Φ is a mapping onto instance
feature that describes the match between qi and xi, ξij is a L1 loss
term. Overall, the first term of Eqn. (2) is called regularization
term, and the second one is the Hinge Loss term.

Note that the optimization is equivalent to that of SVM as a
quadratic optimization problem. Assume that ω∗ is the optimal
solution of Eqn. (2) and f(x) is a ranking function, then we can
leverage ω∗ to calculate the ranking score of image x as follows

f(x) = ω
∗TΦ(x). (3)

4.2 Click-wise Multimodal Fusion

4.2.1 Overview

Since the initial search results of tail queries are usually unsatis-
fying and the corresponding click data are very limited, most exist-
ing re-ranking approaches cannot be extended to tail queries. The
reason lies on the basic assumption of re-ranking, i.e., the re-ranked

list should not go far away from the initial ranked list. To address
these issues, we propose to mine relevant information from the
very few click data by leveraging click-wise-based image pairs (im-
age pairs with click-wise information) and query-dependent multi-
modal fusion. Note that in our paper we define “click-wise infor-
mation” as the difference value of clicks. Then, we develop our
re-ranking approach based on the following two assumptions:

• images with more clicks are more relevant to the given query
than the ones with no or relatively less clicks, and

• the effects of different visual modalities to re-rank images
are query-dependent.

In order to leverage the click-wise information from click-through
data, we formulate image search re-ranking as a “pair-wise” learn-
ing to re-rank problem based on ranking SVM. However, on one
hand, traditional ranking SVM cannot deal with the problem of
multimodal fusion resulting in the impossibility to leverage query-
dependent effects of different modalities. On the other hand, with-
out considering the difference value of clicks, ranking SVM treats
the image pairs with different click-wise information equally [2].
Nevertheless, it is not desirable that the ranking model tends to
be close to the clicked-clicked instance pairs, especially of which
the click-wise information is relatively small. On the opposite, the
ranking model should be in proximity to the clicked-unclicked in-
stance pairs containing large click-wise information. To summa-
rize, in order to adequately learn the multi-modality influence and
adjust the ranking SVM training bias, we extend ranking SVM to
make it capable of learning query-dependent multi-modality fusion
weights and penalizing the misclassified click-wise-based instance
pairs.
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The overview of the proposed query-dependent image search re-
ranking approach, called “click-wise multimodal fusion,” is shown
in Fig. 3. Given a tail query, such as “kim and kanye’s baby,”
to mine relevant information from click data, we first identify the
set of clicked images and the set of unclicked ones from the ini-
tial ranked list based on the click counts of images (♯clicks). Since
clicked images of tail queries are very limited, we select two im-
ages with different click counts as a pair to expend training data. In
other words, we choose click-wise-based image pairs not only be-
tween the set of clicked images and the set of unclicked ones, but
also from the interior of the set of clicked images. Then, in order
to facilitate re-ranking by exploring the query-dependent effects of
multiple visual features, we transform multiple visual modalities
into the same dimension by mapping them to their corresponding
kernel space. Finally, in our proposed query-dependent learning
to re-rank approach, click-wise multimodal fusion can not only
adaptively learn the linear fusion weight dm for each modality by
leveraging multiple kernel learning algorithm, but also directly out-
put the re-ranks of images based on a click-based adapting ranking
SVM.

Compared with ranking SVM, the advantages of click-wise mul-
timodal fusion are twofold. First, we revise the Hinge Loss function
by setting various losses for misclassification of image pairs be-
tween different click-wise-based pairs (pairs with discriminative d-
ifference value of clicks). To reduce errors on determining ranks of
images with more clicks, the loss function heavily penalizes errors
with regard to click-wise-based pairs with large difference value
of clicks. This modification can be viewed as a click-based adapt-
ing ranking SVM. Second, we integrate a multiple kernel learn-
ing algorithm with the click-based adapting ranking SVM into a

uniform framework. By automatically learning and predicting the
query-dependent fusion weights for multiple features, we can ex-
plore how consistent (contradictory) modalities could incorporate
(compromise) with each other.

4.2.2 Formulation

For a given query q, we represent the image instances as a set
of query-instance-clicks triples (q, xi, ci), where q ∈ Q, xi ∈
Rn, ci ∈ R, i = 1, 2, ..., l (l is the number of images to be
re-ranked). Suppose there are M modalities of images in total.
Based on modality m, image xi can be expressed as xm,i (m =
1, 2, ...,M ). For lightening notations, we specify

∑

m to represen-

t the summation from the 1st modality to the M th one, and use
φm(xi) to represent the mapping onto feature m that describes the
match between query qi and image xm,i. Based on the click-wise
information, we define the set of click-wise-based instance pairs as

P
∆
= {(i, j)|(ci − cj) ≥ δ}, (4)

where δ is the threshold controlling the selection of click-wise-
based pairs and δ > 0. Accordingly, the difference value of clicks
between xi and xj is expressed as cij , which equals to |ci − cj |.

We also use P to denote the size of set P , i.e., P
∆
= |P|.

We define a new loss function which integrates multiple kernel
learning with a click-based adapting ranking SVM as follows.

min
d,ω,ξ

L(d, ω, ξ) = 1
2

∑

m
1

dm
ωT
mωm + C

∑

(i,j)∈P ξijλij

s.t.
∑

m ωT
m

(

φm(xi)− φm(xj)
)

≥ 1− ξij

ξij ≥ 0, ∀(i, j) ∈ P

λij = exp
{

cij

2γ2

}

∑

m dm = 1, dm ≥ 0, ∀m,
(5)

where d denotes the fusion weight vector for M modalities, λ de-
notes the adapting penalty parameter, γ denotes the average differ-
ence value of clicks among all click-wise-based pairs for query q,

i.e., γ =
∑

(i,j)∈P
cij

P
, where i 6= j and i, j = 1, 2, ..., l. Note

that in Eqn. (5) we define that when dm = 0, ωm has to be a zero
vector so as to yield a finite objective value [18].

4.2.3 Optimization

Due to the introduction of the last constraint, it is difficult to
directly solve Eqn. (5) by its corresponding dual problem. Thus,
we deform Eqn. (5) as a constrained optimization problem with
regard to d as follows.

min
d

J(d), such that
∑

m
dm = 1, dm ≥ 0, (6)

where

J(d) =































min
ω,ξ

{

1
2

∑

m
1

dm
ωT
mωm + C

∑

(i,j)∈P ξijλij

}

s.t.
∑

m ωT
m

(

φm(xi)− φm(xj)
)

≥ 1− ξij

ξij ≥ 0, ∀(i, j) ∈ P

λij = exp
{

cij

2γ2

}

.

(7)
To solve the above problem, we first write the Lagrange function

of J(d) as

Lp =
1

2

∑

m

1

dm
ω

T
mωm+C

∑

P
ξijλij−

∑

P
αijW−

∑

P
uijξij ,

(8)
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dataset.

where αij and uij are the Lagrange multipliers,
∑

P is the abbre-
viation for

∑

(i,j)∈P and

W =
∑

m
ω

T
m

(

φm(xi)− φm(xj)
)

− (1− ξij). (9)

After setting the respective derivatives with respect to ωm and
ξij to zero, we can obtain the Lagrange dual function below.

max
α

LD(α) = − 1
2
αTGα+ eTα

s.t. 0 ≤ αij ≤ Cλij , ∀(i, j) ∈ P,
(10)

where α ∈ RP is indexed by click-wise-based pairs in set P , e ∈
RP is a vector of ones, and G is a P by P symmetric matrix.
Specifically,

G(i,j),(u,v) =
∑

m
dmΦT

m,ijΦm,uv, ∀(i, j), (u, v) ∈ P, (11)

where Φm,ij
∆
= Φm(xi)− Φm(xj).

Clearly, the dual problem of (7) is similar to that of ranking
SVM. There are two differences lying on: 1) G in (10) is a weight-
ed mapping from M modality, while G in ranking SVM is based
on a single modality; 2) the upper bounds of α vary according to
various click-wise information from pairs, i.e., pairs with larger d-
ifference value of clicks get a larger upper bounds, in contrast, the
upper bounds of α in ranking SVM are the same.

In order to facilitate the calculation of fusion weight vector d and
also avoid the situation that mapping Φ is infinite dimensional, we
assign a kernel function K(·, ·), such as linear kernel, RBF kernel,
etc., to each modality accordingly. Then, G can be indicated as

G =
∑

m
dmAG̃mAT (12)

where G̃m ∈ R
l×l, with G̃m(i, j) = Km(xi, xj) = Φm(xi)

TΦm(xj)
and A ∈ RP×l is a particular matrix with the following format

. . . i . . . j . . .

A =

...
(i, j)

...



 0...0 +1 0...0 −1 0...0





(13)

meaning that if (i, j) ∈ P , the ith entry of the corresponding row
in A is 1, the jth entry is -1, and other entries are all zeros. The
reason of introducing matrix A is to save the computation cost of
G from O(l4) to O(l2).

Then, by treating the weighted mapping G as a unified single
one, the standard ranking SVM algorithms [11][14] can be lever-
aged to directly solve this problem. Once the J(d) is solved, we
compute the gradient of J(d) with respect to dm, and then use

Table 2: Statistic property values of 100 tail queries.

QueryFrequency ClickedImages MaxClicks

Max. value 99 69 31

Min. value 1 1 1

Avg. value 27 23.21 9.98

a reduced gradient algorithm proposed in [18] to update the fu-
sion weight vector d for M modalities. The updating scheme is
d← d+ θD, where θ is the step size which can be determined by
line search and D is the descent direction

Dm =



















0 if dm = 0 and ∂J
∂dm
− ∂J

∂dµ
> 0

∂J
∂dµ
− ∂J

∂dm
if dm > 0 and m 6= µ

∑

v 6=µ,dv>0

( ∂J
∂dv
− ∂J

∂dµ
) form = µ,

(14)
where µ is the index of the largest component of vector d.

Finally, when the terminated criterion is met, such as the duality
gap, the KKT condition, the variation of d between two consecu-
tive steps or simply a maximal number of iterations, the re-ranking
score of image x can be represented as

f(x) =
∑

m ω∗
m

TΦm(x)

=
∑

m d∗m
∑

(i,j)∈P α∗
ijKm(xi − xj , x),

(15)

where ω∗
m, d∗m and α∗

ij are the optimal values.

5. EXPERIMENTS
In this section, we describe our experimental settings and present

the experimental results. To adequately validate the effectiveness of
our approach, we first compare our approach with those methods
lacking of multimodal fusion and several existing re-ranking meth-
ods, respectively. Then, we analyze the sensitivity of parameters
used in our approach and the complexity of our approach. Finally,
we give some detailed re-ranking examples of tail queries.

5.1 Experimental Settings
To facilitate evaluation and compare our proposed approach with

other ones, we randomly select 100 tail queries from the one-week
query log mentioned in Sect. 3 according to the settings Tq = 100
and Tc = 100, in other words, these queries belong to region
“TAIL” defined in Fig. 2. Figure 4 shows the query frequency
distribution of these 100 tail queries with clicks. We can find that
query frequencies of these 100 tail queries follow a nearly power-
law distribution as Fig. 2, indicating that these queries have certain
representativeness. Among the 100 tail queries, there are 73 and
27 queries belonging to region “TAIL-A” and “TAIL-B” as shown
in Fig. 2, respectively. Note that there are almost triple queries
in “TAIL-A” than the ones in “TAIL-B,” since we assign a larg-
er selection weight for queries in “TAIL-A.” The reason originates
from the fact that the click data of queries in “TAIL-B” are provid-
ed by an individual user, which are possibly biased compared with
click data aggregated by users. Moreover, there are various type-
s of queries, such as people (“pewdiepie,” and “josh freeman girl-
friend”), object (“first computer,” and “corner wall waterfall”), con-
cept (“internet safety,” and “small caribbean house plans”), scenery
(“sea sparkle,” and “east coast of the united states from space”) and
event (“jodie foster dating,” and “elizabeth smart wedding”). Note
that some typical tail queries belonging to these semantic categories
are shown in the bracket next to their name severally.

Since source materials of tail queries are usually limited and
the images after the top 100 results are typically irrelevant, we
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Figure 5: Comparison of re-ranking approaches using different modalities in terms of NDCG

use the top 100 images from the initial search results to perform
re-ranking, which means that the number of images l = 100. A-
mong the 10,000 query-image-clicks triples, the property values
defined in Def. 2 are demonstrated in Table 2. The last column
MaxClicks recorded in Table 2 denotes the maximum click count
among all the ClickCount for a given query.

For these images, we extract seven features, i.e., M = 7, includ-
ing: 225-dimensional block-wise color moments, 64-dimensional
HSV color histogram, 144-dimensional color autocorrelogram, 128-
dimensional wavelet texture, 75-dimensional edge distribution his-
togram, 7-dimensional face features, and 2000-dimensional scale-
invariant feature transform (SIFT) descriptor. It is noteworthy that
in our experiments SIFT descriptor [16] with a Difference of Gaus-
sian (DoG) interest point detector is employed to extract visual pat-
terns of images. Then, K-means is further used to cluster the simi-
lar patches into “visual words,” and Bag-of-Word (BoW) is used to
represent each image. Empirically, the number of visual words is
set to 2,000.

In the following parts, we use CARSVM-CM, CARSVM-HSV,
CARSVM-AC, CARSVM-WT, CARSVM-EDH, CARSVM-FACE,
and CARSVM-SIFT to denote the methods that only use the seven
modalities based on the click-based adapting ranking SVM (CARSVM),
respectively. Note that CARSVM is also proposed in this paper.

In our experiments, each query-image pair is labeled carefully
by annotators on a scale of 0 to 2: 0–“irrelevant,” 1–“fair,” and
2–“relevant.” Before labeling, we first let annotators figure out
the meaning of the issued tail query and check some related web
documents to determine user search intent. By understanding us-
er intent as much as possible, the relevance scores of images are
more convincing relatively. We adopt the Normalized Discounted
Cumulative Gain (NDCG) [10] to measure performance, which is
widely used in information retrieval when there are more than two
relevance levels. Given a ranked list, the NDCG at the depth p is
defined as

NDCG@p = Zp

∑p

i=1

2r
i

− 1

log(1 + i)
, (16)

where ri is relevance score of the ith image, and Zp is a normal-
ization constant to guarantee that a perfect ranking’s NDCG@p is
equal to 1.

5.2 Evaluations of Re-ranking
We first compare our proposed approach, called click-wise mul-

timodal fusion (CWMF), with methods that use only an individual
modality, method “early fusion” and method “late fusion” to verify
the effectiveness of multimodal fusion in our approach. Method-
s that use only an individual modality are all based on the click-
based adapting ranking SVM (CARSVM), which means the click-
wise-based pairs selection parameter δ and the Hinge Loss adapt-
ing parameter λ are all concerned. The “early fusion” refers to the
method that concentrates all the seven modalities into a long vec-
tor and leverages it to perform click-wise learning to re-rank. In

the “late fusion,” we leverage seven click-based adapting ranking
SVM classifiers, each of which uses the data of one of the seven
features respectively, and we linearly fuse the re-ranking results of
these classifiers, in which the fusion weights are tuned for maxi-
mum performance. For simplifying notations, we represent “early
fusion” and “late fusion” based on the click-based adapting ranking
SVM as EarlyCARSVM and LateCARSVM severally.

For our proposed method CWMF, we first assign a kernel func-
tion to each modality accordingly. In our experiments, linear kernel
is designated to each modality for its efficiency, i.e., Km(xi, xj) =
xT
m,ixm,j , where m = 1, 2, ...,M . Then, after tuning the parame-

ters C and δ to obtain the optimal performance, we set C = 0.5 and
δ = 5 for our dataset. Detailed analysis about parameter C and δ

will be introduced in Sect. 5.3. Moreover, we take the duality gap,
which is equal to 0.01, as the stopping criterion.

Figure 5 illustrates the average measurements from NDCG@5 to
NDCG@100 using the above methods. Here we also illustrate the
NDCG measurements of the initial ranked lists and regard them as
BASELINE results. From Fig. 5, we can find that using only an
individual modality can hardly obtain the maximum improvement
compared with the baseline. The performance of different single
modalities, some of which even degrades to a certain extent, varies
at different depths of NDCG. This phenomenon is understandable,
because the effect of an individual modality depends on different
queries and it is hard to determine its usefulness to a given query.
But the “uncertain” single modality is still useful by integrating it
with other features to work together. Combining multiple modal-
ities, the NDCG values of EarlyCARSVM and LateCARSVM are
relatively larger than those of methods using an individual modali-
ty, which demonstrate the effectiveness of the introduction of mul-
tiple modalities. Nevertheless, our proposed approach click-wise
multimodal fusion achieves the maximum improvements and ob-
viously outperforms other methods at different depths of NDCG.
Thus, we can draw a conclusion that the multimodal fusion scheme
of our approach can help determine the modality importance and
fuse multiple modalities adaptively to obtain ideal performance.

Then, we compare our proposed re-ranking approach with sever-
al existing ones, where the parameters are optimized to achieve the
best possible performance, including:

• Random walk (RW) [7]. A representative self-re-ranking
method which conducts random walk on an image graph
where nodes are images and edges are weighted by image
visual similarities.

• Pseudo-relevance feedback (PRF) [23]. PRF performs re-
ranking as a classification problem assuming that top-ranked
results are more relevant than the bottom-ranked results.

• Multimodal graph-based re-ranking (MGR) [22]. An effec-
tive re-ranking method which leverages the initial ranked list
and explores the effects of multiple modalities in a multi-
graph-based learning scheme.
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Figure 6: Comparison of re-ranking approaches in terms of NDCG.

• Click-boosting (CB). CB performs re-ranking by leveraging
click-through data only, namely, CB re-ranks images accord-
ing to their click counts in a descending order.

• Gaussian process regression (GPR) [9]. GPR first detects
clicked images and performs dimensionality reduction on all
the visual features. Then, a Gaussian process regressor is
trained on the clicked images to predict the click counts of
all images. The final re-ranking scores are calculated based
on the predicted click counts and the initial ranking scores.

• Click-boosting random walk (CBRW) [26]. A two-step re-
ranking method which is a combination of using click-through
data and detecting visual recurrent patterns for image search
re-ranking.

• Pair-wise multimodal fusion (PWMF). PWMF is the same as
CWMF in dealing with multiple modalities and the selection
of click-wise-based image pairs. The only difference is that
the Hinge Loss adapting parameter λ is not concerned in P-
WMF, indicating that PWMF is based on the original ranking
SVM with multimodal fusion. Note that PWMF is a defor-
mation of CWMF and also proposed in this paper.

Figure 6 shows the overall performance of different re-ranking
approaches in our tail queries dataset. On the whole, our proposed
click-wise multimodal fusion (CWMF) outperforms other methods,
and the improvements are consistent and stable at different depths
of NDCG. Using our re-ranking approach the NDCG values are
improved significantly. For example, the NDCG@5 is improved
by 10.88% from the baseline of 0.6775 to 0.7512, and NDCG@10
is boosted by 9.12% from 0.6658 to 0.7265 on the entire dataset.

It is noted that the performance of PRF has a serious degrada-
tion from NDCG@5 and NDCG@10, respectively. This is mainly
because the assumption behind PRF, i.e., top ranked images are
typically relevant in response to a given query, is not suitable for
tail queries whose baseline results are often much lower than head
queries’. Similarly, the re-ranking scores of images by RW and
MGR are partially related to the initial ranked lists. Even by tun-
ing the tradeoff parameters, they still obtain weak improvements
over the baseline results, which demonstrates the difficulty for tail
queries to detect recurrent patterns via “similarity” mining. Com-
pared with RW, PRF and MGR, we can see that CB performs bet-
ter than BASELINE at all NDCG levels, indicating that the click-
through data of tail queries can provide helpful information on user
feedback for image re-ranking. Leveraging click counts of images,
GPR and CBRW obtain better performance than CB’s, however,
the improvements are inconspicuous. The reasons, for GPR, possi-
bly originate from the lack of training clicked images for Gaussian
process regression and the reliance on the initial ranking scores.
CBRW is due to the same reason as RW’s. The fact that PWMF and
CWMF achieve significant improvements proves the highly useful-
ness of click-wise information from image pairs. Compared with
CWMF, PWMF does not take the problem of punishing the mis-
classified image pairs into consideration, i.e., there is no Hinge loss
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Figure 7: Improvements using click-wise multimodal fusion

compared with the baseline in terms of NDCG for 50 head

queries.

adapting parameter λ in PWMF. As we can see from Fig. 6, PWM-
F gets a comparatively poor performance, which exactly demon-
strates the availability and superiority of the click-based adapting
ranking SVM used in CWMF.

Overall, by simultaneously leveraging multimodal fusion and
click-based adaption, our proposed approach CWMF can signifi-
cantly improve the performance of image search for tail queries. To
the best of our knowledge, this is the first attempt to use the differ-
ence values of clicks (click-wise information) and multiple modal-
ities at the same time for image search re-ranking of tail queries.

As click-wise multimodal fusion re-ranking proved significantly
effective for tail queries, it is worth noting that CWMF is general
and can be applied to head queries. We randomly select 50 queries
with more than 100 query frequency in the one-week query log,
which means that these queries belong to the “HEAD” region in
Fig. 2. Due to the space limitation, for the 50 head queries, we only
demonstrate the improvements using our proposed approach com-
pared with the baseline results from NDCG@5 to NDCG@100 in
Fig. 7. The improvements can be observed at all levels of NDCG,
though the improvements are comparatively small because of the
good initial search performance of head queries already obtained
by search engines.

5.3 Parameter Analysis
We adopt five-fold cross validation to test the sensitivity of pa-

rameters δ and C in our proposed approach. We first set C to
0.5 and vary δ from 1 to 30 with an interval of 5. Figure 8(a)
demonstrates the performance curve with various δ. We can find
that though higher than the baseline’s, the NDCG degrades when
δ = 1 or as δ gets larger compared with δ = 5. It is understandable
that when δ = 1 our approach cannot obtain the best performance,
because it is hard to tell the relevance relation between two images
from a pair with only one click difference. For the larger δ, since
the click counts of images are comparatively small for tail queries,
δ should not go too far to select the possible click-wise-based pairs.
If there is no pair matching the filter criterion, in our experiments,
we relax the filter criterion and define the set of click-wise-based
pairs as P

∆
= {(i, j)|(ci − cj) > 0}. However, the Hinge Loss

adapting parameter λ is not concerned for pairs in this P . Thus,
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the NDCG drops relatively due to the lack of click-wise-based pairs
or the influence of λ. We then set δ to 5 and vary C from 0.0625
(2−3) to 32 (25). Figure 8(b) demonstrates the performance curve
with various C . We can see that the performance of our approach
will not significantly degrade when C varies in a certain range.

5.4 Complexity Analysis
Since our proposed CWMF is query-dependent and computed

by an approximate optimal solution through an iterative strategy,
its complexity is mainly determined by the number of click-wise-
based pairs, the ranking SVM solver, the reduced gradient algorith-
m and the iterations controlled by the terminated criterion. Take
the 100 tail queries used in our experiments for example, i.e., each
query corresponds to 100 images to be re-ranked by seven modali-
ties, our approach takes 1.20 seconds on average for a given query
on a regular PC (Intel quad-core 3.30GHz CPU and 8GB RAM) to
complete the entire re-ranking process. To obtain satisfying results
for tail queries, there is a tradeoff between the performance and the
computation time using our approach. We will seek to reduce the
time complexity in our consequent work.

5.5 Examples of Tail Query Re-ranking
To further verify the effectiveness of our proposed approach, in

this section, we show some specific examples of tail queries. As
mentioned in Sect. 5.2, most existing re-ranking approaches can-
not be scaled well to tail queries, thus, in Fig. 9 we show the ini-
tial ranked list and the re-ranked list using our proposed click-wise
multimodal fusion re-ranking of three typical tail queries severally.

For instance, “pewdiepie” is an online alias of a Swedish video
game commentator on YouTube. Game fans may issue this query
for checking on what “pewdiepie” looks like, however, we can find
that there are only three “real” faces from the top 10 images re-
turned by a search engine. Through mining the click-wise infor-
mation and multiple modalities, our re-ranking approach achieves
excellently satisfying results. It is worth mentioning that all the
top 10 images in the re-ranked list of “pewdiepie” are portraits of
himself and comply with user search intent.

6. CONCLUSIONS
In the paper, we have studied the problem of image search re-

ranking for tail queries, which is often overlooked in the research
communities. We have proposed a novel re-ranking approach based
on the assumptions that images with more clicks are more rele-

vant to the given query than the ones with no or relatively less

clicks and the effects of different visual modalities to re-rank im-

ages are query-dependent. Our proposed approach can not only
fully explore the effects of multiple visual modalities by adaptive-
ly predicting the query-dependent fusion weights, but also effec-
tively expand training data by learning relevant information from
click-wise-based image pairs. The experiments conducted on a
real-world dataset demonstrate that different modalities, though the
local feature SIFT is always assigned a high fusion weight, can
incorporate with each other to improve search performance in a
query-dependent way. For instance, a proper linear fusion of face
feature and SIFT learnt by our approach is proved effective for im-
proving the search performance of queries about characters, such
as “pewdiepie” (dFACE = 0.1849, dSIFT = 0.8151). As men-
tioned in Sect. 5.1, there are two types of tail queries: one is from
region “TAIL-A” in Fig. 2 and the other is from “TAIL-B.” Using
our proposed approach, the NDCG@5 of queries from “TAIL-A”
is improved by 10.96% compared with the initial search results,
and the corresponding improvement of queries from “TAIL-B” is
10.64%. This further shows the superiority of relevant information
mined from click-wise-based image pairs used in our approach.

Intuitively, the click data provided by an individual user are be-
lieved to be possibly biased, yet from the experimental results of
queries in “TAIL-B,” they can be used as a useful indicator of rele-
vance feedback. Thus, we believe that using click-through data for
personal search is an interesting research topic in the future.
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