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Robots Looking for Interesting Things: Extremum Seeking Caotrol on
Saliency Maps

Yinghua Zhang, Jinglin Shen, Mario Rotea and Nicholas Gans

Abstract— This paper presents a novel approach to increase  Saliency describes the level of attractiveness of visual
the amount of visual stimuli in sensor measurements using stimuli, often modeled on human visual response. Many
saliency maps. A saliency map is a combination of normalized gyjiancy-hased attention models and computational visual

feature maps in different channels (i.e. color, intensity)to . .
represent the relative strength of visual stimuli in an imag. attention systems has been developed. Koch and Ullman first

The total saliency is higher when the camera is looking at a [] proposed to integrate a number of different visual featu

scene with more interesting things in the field of view and vis maps such as color, orientation and direction of movement
versa. We employ methods of extremum seeking control to find into a global measurement of conspicuity, known as saliency
a camera position that corresponds to local maximum salienc map. A saliency map based visual attention model was pro-

value. We combine the global properties of simplex optimizéon - .
methods with the local search properties and dynamic respase posed by Itti et al. [6]. Other top-down modulation methods

of extremum seeking control to create a novel algorithm that Were proposed [7], [8] in cases when some knowledge of
is more likely to find a global maximum than conventional the appearance is known in advance or according to specific
extremum seeking control. Simulations and experiments are task demands.
presented to show the strength of this approach. In this work, we use saliency map in a extremum seeking
|. INTRODUCTION control problem. The saliency map is computed according
Given limited sensors covering a wide area, a sens®? in.tensity, color and orientatiqn channels. Inste_ad dxﬁgJ§
needs to isolate targets of interest to maximize the value 8 Winner-take-all scheme to find the most salient region,
its measurements. Alternately, given abundant sensoes, i€ sum of saliency values of every pixel in the image is
amount of data may overwhelm communication channel§alculated and used as the cost function. Using ESC to guide
processor bandwidth, or human observers, necessitating th €a@mera to the location of maximum saliency is an ideal
ability to transmit only the most useful data. This papefPProach, as knowledge of the saliency as a function of the
presents an initial investigation to control the positioh oSENSOr workspace is not needed. Saliency as an objective
a sensor to collect the most valuable measurements JHICtion map often has multiple local maxima, and ESC
extremum seeking control (ESC) of sensor configuration. |algorithms can easHy_attract to a Io_cal maximum rather than
particular, we seek to maximize the visual stimuli in image& 9lobal solution. Motivated by this issue, we present a hove
or video data to provide the most relevant images. approach that combines the global properties of simplex
ESC seeks optimize the value of a measurable cost fun@Ptimization methods and dynamic properties of extremum
tion [1]. The strength of these methods is that no priop€€King control. We call this combined method Simplex
knowledge of the cost function is necessary. A stabilitygpro Guided Extremum Seeking. B _ _
of ESC was first provided by Krstic and Wang for a general Saliency has been extensively utilized in the field of
nonlinear SISO system [2]. Multivariable ESC was lateFOMPUter vision and robotics in recent years, such as de-
studied by Rotea, and a set of detailed design guidelin£&Cting regions of interest [6], video compression [9],abb
for ESC were provided [3]. Recently, Global ESC method!Pc@lization and SLAM [10], [11], as well as robot motion
were studied by Tan and Nesic [4]. plan_nlng and humar_1-r0bot interaction. Vljay_akumar et al_.
The above methods share a common framework. THé2l implemented a visual attention system using a humanoid
control input is the current estimate of the optimal input. AOPOt, whose peripheral camera followed a moving object
periodic disturbance or dither signal (commonly a sinusoid©cognized in the saliency map. Other systems use visual
is added to the control input. Via a series of filters and modi@ttention to guild robot in object manipulation problems]1
lating signals, an estimate of the gradient is generatets. TH14]- In [15], a attention model is built for humanoid robots
gradient is integrated to produce the control input. Undé#Sing both visual and acoustic saliency maps.
certain conditions of the system, output function, dithgri ~ Visual attention system has also been used in visual
functions and filters, the ESC methods can be proven g§rvoing problems, like the visual attention guided rotzotn
converge to the extremum. Variation of the ESC method§ation in [16]. Also, Scheier et al. [17] built a mobile rabo
have been developed to remain stable despite nonlindhAt approaches large object using saliency map. Recently,
dynamics of the system. visual servoing methods that are based on image intensities
have been developed, such as [18], [19]. These methods do
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good robustness to environment changes. Ly = 1£(6,1) B HP
Alternative approaches to sensor placement, and camera (1)
placement in particular, have been investigated. Several —D §|
groups (e.g. Howard et al. [21], Murray et al [22], and Zou 0 . <£ LP
and Chakrabarty [23]) focused on coverage, i.e. maximizing
the amount of area that is covered by at least one sensor. dy(?)
Mittal and Davis place sensors to avoid occlusions [24]. Fig. 1. Block Diagram of the Extremum Seeking Loop
Research by Zhao et al. focused on arranging multiple _
sensors to simultaneously measure areas or track targgts [2 _’A_’ I~ q N
Abidi suggested using maximum expected entropy to choose L ey e

what new camera view of an object would add the most new
information [26]. Papanikolopoulos has investigated eens
placement to reduce the amount of processing that must be
performed [27] or reducing the expected error in the final
estimation [28]. Similar work was done by Ercan et al. [29]. A ﬁ
Previous methods differ from the approach proposed in this L -
paper in that they utilized off line optimization methods

and knowledge of the scene and environment. The method Fig. 2. Saliency model
proposed in this paper runs in real.time, can adapt to dynarr“glze dynamics of the ESC loop. Using this linear approxi-
environments, and does not require knowledge of the scene... . - . .
or environment. mation, reference [3] provides guidelines for selectireti

The ability to focus on areas of high visual S,[imu"agnals and filters to ensure closed loop stability of the ESC

- : ; loop. In Section 11I-B we use these guidelines to design an

may help to reduce transmission bandwidth, and improve : N
o o ; : SC system for saliency maximization.

accuracy of estimation or recognition algorithms. Thisqrap
investigates what environmental conditions allow for kab
ESC of image saliency. We also investigate what ESC design _ _ _ _ _ o
parameters, such as frequency of the differ signal, aresnece A saliency map is a presentation of visual stimulation in
sary for stability and performance given the slow samplingn image. It is typically the combination of different fegu
rate of most cameras (approximately 30Hz). Experiments af@aps. The use of different channels and the weight of each

performed to show the strength of proposed method. feature are decided according to applications and desired
tasks. In this work, the computation of saliency map follows

the bottom-up procedure described in [6].

A. Extremum Seeking Control Fig. 2 shows the saliency model in [6]. Three features are
ESC is designed to optimize a cost function in real timeysed for generating the saliency map: intensity, color aid o
without any prior knowledge of the input-to-cost mappingentation. The color image is first converted to monochrome

References [2]-[4] concentrated on developing ESC metimages in each of the channels. An intensity imdges
ods. Fig. 1 shows a common scheme of ESC. The curretiteated as = (r +g+b)/3. Four color channels are used
estimate of the optimal state of the systendig) € R". A

dither signald (t) € R" is added tod(t) to give(t)he current R=r—(g+b)/2 C=g-(r+b)/2
state8(t). The signald,(t) is typically given by a vector of B=b-(r+9)/2, Y=(r+9)/2—|r—g|/2-h.
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Il. BACKGROUND

sinusoidsa; sin(at), i =1....n. . Gaussian pyramids are then built for all channel$(as,
The outputy(t) € R can be expressed by the Taylor Serlesh(a)’ G(0), B(0) andY(a), whereo € [1..9]. For the ori-
23 of(t,0) entation channels, four Gaussian pyran@(e, 6) are built
t)=f(t,0)+di(t)" —2—~ +H.OT. 1 ’ Py )
0 (t,6) +ca(t) 00 * @ by convolving the intensity pyramid with an oriented Gabor

Neglecting higher order terms, passip@) through a high filter [32], whereo € [1..9] and 8 € {0°,45°,90°,135}.

pass filter block gives a signal correlated to the gradient after the feature pyramids are created for all channels, fea
vectordf(t.0)/s6. The gradient is extracted via a demodulatioyre maps are obtained by calculating the center surrounded
scheme that multiplies the output of the high-pass filter byjitference between different levels in the pyramids, wtigch

the dither signatl;(t) € R", followed by application of a low- denoted as>. Specifically, the center surrounded difference
pass filter. The resulting signélt) € R" is an estimate of the of g finer scalec and a coarser scalg= c+ J is given
gradient. A signed scalar gain teknaletermines the direction py interpolation ofs to the finer scale, followed by point-
and speed of motion (i.e. whether we seek maximum g§y-point subtraction. If multiple scales in the pyramid are
minimum and the rate of convergence). Integrakjggives  ysed, multiple feature maps are generated. Feature maps for

the current estimate of the optimal st#té&) € R". Intensity and Orientation are given by:
ESC systems are generally nonlinear. However, when the
dither signal frequencies are large enough, averaging the- J(c,s)=|l(c)al(s)|

ory [30], [31] can provide a linear system that approximates 0(c,s,0) =10(c,0)©0(s,0)).



For color channels, two color maps (i.e. red/green and
blue/yellow) are generated out of the four color pyramids.

#9(c,s) =|(R(c) - G(c)) & (G(s) — R(s))|
#Y (c,s) =|(B(c) - Y(c)) & (B(s) — Y(9))]-
Finally, linear combinations of the feature maps give the
saliency maps as shown in Fig. 2.

S =% ICs)+Y #Y(cs)+Hy BY(c,9+) 0(Cs0).
In most previous applications,a normalization step is ap-
plied on feature maps when linear combination is performed

in order to convert all maps to the same scale, and eliminate
modality-dependency.

Saliency: 403.56
[1l. ESC DESIGN FORSALIENCY MAXIMIZATION © )
In this Section, we provide the design parameters of th@g. 3. (a) shows a lab environment where no single objectallis stands
ESC |00p to steer a camera to maximize the saliency @f't. (b) is the saliency map of (a) with all normalizationpsteproposed in
. L . . [6]. (c) and (d) are generated in the same way, but with a nmnadded
captured images. In this initial Investigation, robot/eaen salient object in the field of view. It can be seen that sevezglons are
motion is limited to a 2D vertical plane. Saliency is maxi-bright in (b) since they have similar amount of visual atit However,
mized by adjusting the horizontal and vertical positionmft the e_xistence of the yellow folde( in (c) makes the all thcglh_xriregions in
camera. That is. the optimization variables #&re- [X y]T (b) dimmer because the folder visually stands out from theremment.
. ) )
wherex andy are the coordinates of the camera in a plane

perpendicular to the ground.

A. Saliency mappings

As mentioned in section II-B, feature maps are normal-
ized when they are combined for building a saliency map.
However, normalization is not done in this work due to a
different use of the saliency map. A saliency vatbef an
image is defined as the sum of the entire saliency map.

widthheight
S= Zl Z (i, ])- 2
i=1 j=1 -200
S in (2) is used as the cost function for the extremum Y(mm) ~400 300 Xt

seeking algorithm, and the goal is to find the camera po-
sition that maximize the amount of visual stimulation in

the environment. Therefore, information from all channelgocation are generated to verify this condition in two seena
directly contributes to the final saliency map without beingos. A camera is mounted on the end effector of a Staubli
normalized. How much effect a feature has on the saliencyx90 robot arm. The camera is moved to uniformly sample
map is controlled by the assigned weight to each feature mamages in the environment.
For example, there are more orientation maps than intensity|n the first scenario, a monochrome poster board was
maps, so a smaller weight for orientation is used to balanggaced in front of the robot with a picture taped in the
the effect of orientation channels. center. This represents a single area of interest in a largel
Fig. 3 further illustrates this idea. Comparing the twauninteresting field. The saliency value, as a function of the
scenes in Fig. 3(a) and (c), a higher saliency value for Figamera positior{x,y]™ is shown in Fig. 4. A clear global
3(c) is expected according to our definition &f However, maximum can be seen in the interior of the workspace.
the saliency value in (c) is smaller as can be seen at the|n the second scenario, the camera looks at normal lab en-
bottom of Fig. 3(a) and (c). This is because the normalizegronment. The saliency mapping is given in Fig. 5. Multiple
saliency map reflects only relative strength of visual stimu|ocal maxima can be observed. The global maximum is close
in a single image, and thus provides little information whero the edge but still in interior of the workspace. Simulatio
comparing with saliency maps of other images. Thereforgnd experiment results for these two scenarios are given in
absolute magnitude of each feature map is used for gengection V and VI.
ating the saliency map in order to search for the maximum )
saliency valueS among all possible camera poses. B. ESC Design
ESC is an approach for unconstrained optimization, thus As shown in [3], there are design variables that affect
a condition for stability or convergence is that the saljencthe stability and performance of ESC systems. These vari-
value has local maximum in the interior of the camerables include the two dither signals, the high-pass filter,
workspace. Maps of saliency value as a function of camethe low-pass filters, and the gala The sensor modality

Fig. 4. Saliency Mapping with a few maxima



IV. SIMPLEX GUIDED EXTREMUM SEEKING

As shown in Fig. 5, the saliency function can have multiple
local extrema. ESC is very likely to be trapped at a local
maximum and can never reach the global maximum. There-
fore, the final result can be heavily affected by the initial
position. It has been shown that increasing the amplitude
of dither signal can improve the chance to reach the global

400 extremum [33]. However, high amplitude signals can saturat
the actuators and make it difficult to demodulate the signal
to gather the gradient information.

Alternately, a multi-directional algorithm that searclies

A i
5000 [ ";ll:""'l':.:\;'z’;',
W

Saliency

-200
-400

Vinm) ~600 -600 Xm) extrema through the whole workspace, is more likely to find
_ _ o _ _ a global maximum [34]—-[36]. Multi-directional search algo
Fig. 5. Saliency Mapping with multiple local maxima rithms are approaches to linear programming that consaruct

OIpoint simplex and iteratively optimize the points to comer
t& the extremum, therefore they are referred to as simplex

; : ) . ; L thods. Th i int in the simplex is al kept,
design variables. In this section we briefly recap the stgbil Metnoas. The maximum point In e SImpiex 1S always xep

; s ai in 131 and i determinati cgnd a group of linear combinations (reflection, extensiod, a
requirements given in [3] and present our determination ontraction) are used to predict points with a better value.
best practices for the ESC task at hand.

L L This continues until the best point is located or a termaorati
In this initial investigation only two degrees of free-

condition is met. The downside to simplex methods is poor

dom are used, translation In a plt_’;\ne perpendicular to tr?J‘?/namic response, in that they are not well suited to changin
ground. Hence we need a dither signal of the falift) = maps, such as the saliency of a changing scene.

. . T . .
([qusln(wlt),azan(wzt)]_ Thre] CP?;CE ,Of frequenqes f;)r. the Therefore, we propose a combined ES algorithm that
ither vector must satisfy the following constraints [3]: can employ simplex methods to make extremum seeking

and system plant, i.e. images from a video camera an
robot manipulator, place further restrictions on the ch@€

1) w#w more global while preserving the dynamic tracking abitie
2) w; andw; are in the pass band of the high-pass filteof ESC. We call this method Simplex Guided Extremum
and stop band of the low-pass filter. Seeking (SGES), which uses a simplex method for large scale

3) w andw, are smaller than one half the sampling ratesearching, and ESC for small-scale local searching. SGES

Video systems generally have frame rate around 30HghOWs strong promise for optimizing the cost functions that
After the time required for image processing and contrdlave many local extrema along with the global one.
calculation, the sampling rate is approximately 20Hz. We For an dimensional search space, SGES executes ESC

employ dither frequencies in the range 5Hz - 9Hz, whiclt N+ 1 initial trial points to obtainn+ 1 local maxima.

can be tuned for performance using trial and error. The maxima are taken as simplex vertices and denoted as

: ) : : 0 40 O ,0 ; aration t
The dither signal amplitudes; anda; affect the seeking Xo» X1, X2--Xn. The superscript represents iteration time, and

accuracy and convergence speed of the ESC loop. A largbey are ordered after every vertex update, such ftbef) >
dither amplitude lowers the time for convergence but def(x{) for i =1,2..nin anykth iteration.
creases the accuracy of the final estimate @oDesigners ~ AS X§ is the current best maximum, it is reasonable to
must also consider the forces necessary to generate dit@@sume this vertex lies in a more optimal region of the
signals with large amplitudes. For the plant employed is thivorkspace. So we perform reflection to generatenitial
paper, we must considering the speed limit of robot actsatotrial pointsr¥ = x5 — a (x— x§) for i = 1,2...n, wherea >0
We chosea; = a, = 5cm to provide good performance in is a constant. ESC is performed from each trial point, legqdin
speed and accuracy while not stressing the robot. to a new group of local maxima, denoted s

The cutoff frequency of the high-pass filter should be !f there is a local maximuni¥ , such thatf (F¥ ) > f (xg)
lower thanw; andaw,. We employ a second order Chebyshe@nd 0< jr <n, itis possible that better points could be found

type | filter with a cutoff frequency of 3Hz, given by further along this direction. So we perform on extensiop ste
generatingn initial trial points e = x§ — A (xk — x§) for i =
Gi(2) = 0'5726&2_1'153&+0-5763 1,2...n, whereA > a is a constant. ESC is ran from each
z2—1.090(+0.4735 trial point, producing one more group of maxirga

The cutoff frequency of low-pass filter should also be lower If there is a local maximurér‘fe, such thaff (é’j(e) > f(f'j‘r) >
thanw; andawy. We use an FIR filter with a cutoff frequency f(xg), and 0< je<n, we accepéf to update the vertices,
of 1Hz, given by i.e. xktl =& for i = 1,2...n, else we acceptt, i.e. x(M1 =

/\k .
_ 1 5 3 rffori=12.n.
Gz(z) = 0.0100+0.024% +0.066& “+0.124% If there is nof , such thatf (¥ ) > f(xf), we accept the

6 -7 -4 i
+0.17567°+0.124% +0.1756& x& as the current global optimal and contractlfor i =

+0.19572 °+0.066& ©+0.024% °. 1,2...n towardsx. In this case, generateinitial trial points
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Fig. 6. Simulation result using ESC for the first scenario Fig. 7. Simulation result using ESC for the second scenahieramultiple

local maxima exists

¢ = x5+ B(xK —xk), for i = 1,2..n, where 0< 8 < 1.
Again performing ESC from each trial point leads to one
more group of local maximat. If there is somet,
such thatf(é‘l-(c) > f(xK), we accept contraction step and

400

300

200

update vertices agt"! =&, for i = 1,2...n. Otherwise, we oo
update vertices ag! = ¢, for i = 1,2...n to guarantee of
convergence. 100}

We will show in our future works that, under specific
conditions, all the simplex vertices of SGES will converge t S
n . =300
some optimal local maximum. For better search performance, 3 on
thF n+1 |r(1j|t|al tréal pmgts should construct a simplex with T T T R i

n linear independent edges.

—200 1 —
trajectory

Fig. 8.  Simulation result using SGES for the second scenatiere
V. SIMULATION RESULTS multiple local maxima exists

In this section, simulations are conducted to demonstraigmpex set respectively. The solid line is the maximum galu
the performance of both basic ESC and SGES, using thgjnt in the simplex set, which increases monotonically. At
saliency mappings shown in Figs. 4 and 5. ESC is tested fjfe same time, the area of the triangle constructed by the
the first map, and simulations of both ESC and SGES afyee simplex points monotonically decreases, meaning tha
presented for the second map. the SGES algorithm converges in both space and the value

The simulation result using ESC on the saliency valugs g
map with few local maxima very near the global maximum The saliency extrema found for each initial condition in
(shown in Fig. 4), is given by Fig. 6. The background of thgne three simulations is given in Table I. The results show
figure is a contour plot of the saliency value mapping. Thgat the proposed SGES method can improve the ability of

initial point is denoted as a red triangle, and the end poidyiremum seeking to find the global maximum.
is denoted as a green circle. It can be seen that the camera

trajectory converges to the global maximum, which is shown V1. EXPERIMENTAL RESULTS

as a star on the map. The "curly” nature of the trajectory is Experiments are performed to demonstrate the perfor-

due to the dither S|gnals_ necessary for_ ESC. . ._mance of the proposed ESC and SGES methods. A Staubli
In cases where multiple local maxima are widely dis-

tributed on the map, such as shown in Fig. 5, ESC does not 5000
guarantee to converge to the global maximum. Three trials as00l
are done for ESC on the multiple local maxima map with
different starting points{x, y]" = [~100, —100], [100, 10 ool |
and|0, 100. The simulation result is given in Fig. 7. For all ol ©F T e |
three trials, the camera settles at a local maximum instead ol_d ‘ e
of going to the global maximum. 0
Fig. 8 represents the simulation result of SGES for the
multiple maxima case. The same three initial conditions are
used to construct the initial simplex. The final position of
the camera converges very close to the global maxima. Each % et % %
dashed line represgnts one simplex update step motion. Fi .9, Simplex update for SGES. The simplex points convérgehe
9 shows how the simplex is updated. The red and the gregfasure of saliency. At the same time, the area of the poljigesimplex
dashed lines are minimum point and medium point in theoints define gets smaller, indicating they converge in epac
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Fig. 10. ESC Experiment results for single and multiple mexiscenario
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TX90 robot arm with 6 degrees of freedom is used. A camera

is mounted on the end effector of the robot. In this initial

investigation, only 2 degrees of freedom are used, that is
translation in thex—y plane. _ (a) _ - (b) _

In the first experiment, ESC is used for the first scenario Fig. 12. Starting and end position for SGES experiment

described in Section llI-A, featuring a monochrome poster. . N . .

. . ) simplex update is shown in Fig. 14. The simplex area is

board with a picture fixed at the center. The camera was . - .

L o : very small at the end, showing that the position of simplex

placed at an initial position away from the global maximum__ . . - .

. S AR points converges. However, the final minimum and medium

The experiment result is given in Fig. 10(a). It can be seen

- .~ =7in simplex are not as close to the maximum as in previous
that the camera converges to the position that the maximizes P P

. o . eXperiments. This could be due to the large gradient around
the saliency value. By maximizing the saliency value, th . .
; . . . A e global maximum point. The result shows that SGES
camera bring the picture into full view, which is visually

. . A . o works for image scenes that change dynamically.
the most interesting thing in the environment. Bhgosition 9 ge dy Y
is not completely steady after the saliency value converges

since the saliency value does not change much as long as i
the picture stays entirely in the field of view. We propose a extremum seeking control method to max-

Next, SGES is tested using the second scene describedZ€ the amount of visual stimuli in an image scene. This
Section I11-A, with three salient objects in front of the cam Method is used to guide the camera to look at interesting
era. Unlike in the first experiment, the saliency mapping hd4ings in the environment. Since the saliency distribution
multiple local maxima distributed widely in the camera work?ftén has multiple local maxima, a novel Simplex Guided
space. We start SGES with three random simplex pointSXtrémum Seeking approach is employed that combines
At each point, ESC is employed to find the local maximatne glo_bal prope_rtles of simplex 0pt|m|_zat|on method_s and
When the system detects a gradient less than 1 for 2 seconié1amic properties of extremum seeking control. Simula-
the system moves to the next predicted simplex point, Thiion and experiment results shows strong potential of the
switch condition can be tuned for desired performance. THYOPosed method. SGES efficiently converges to the global

position of the camera and saliency measure over time and
the simplex update plot are shown in Fig. 10(b) and Fig. 11,
respectively. The simplex points both converge in terms of
saliency value, and the area of the polygon defined by the
points becomes smaller, meaning the location of the points
converges. Fig. 12 gives the scenes taken at the starting and
finishing camera locations. At the beginning, the camerg onl
sees two of the three salient objects on the table. The third
one is brought into full view at the end.

The third experiment explores the dynamic property of
SGES. The camera looks at the lab environment with several
books and a cup placed on a table, as shown in Fig. 13(a).
Fig. 13(b) shows that SGES first converges to a place that
includes the door in the field of view. In Fig. 13(c) another
book is placed on the table, and SGES finally converges to
include the added book into full view in Fig. 13(d). The

VII. CONCLUSION AND FUTURE WORK

Saliency: 6725.888

I Saliency: 6555088

(c) Add new Object (d) second convergece

Fig. 13. Critical Scenes for dynamic SGES Experiment
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maxima. SGES may have application in many other real time
optimization problems that experience local maxima.

This work is an early investigation, and there are severgl'o]
avenues open for future work. A formal analysis musfi]
be done to prove the stability and convergence of SGES
approach. Only a subset of the 6 degrees of freedom of
the robot is used in this work. Extensive experiments arg2]
needed to explore the performance of proposed method

adding more degrees of freedom. Finally, more chann

entropy and visual surprise. Other sensors and informati02n4
measures like uniformity can be explored, and may offer

better performance in some circumstances.
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