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Abstract— This paper presents a novel approach to increase
the amount of visual stimuli in sensor measurements using
saliency maps. A saliency map is a combination of normalized
feature maps in different channels (i.e. color, intensity) to
represent the relative strength of visual stimuli in an image.
The total saliency is higher when the camera is looking at a
scene with more interesting things in the field of view and vise
versa. We employ methods of extremum seeking control to find
a camera position that corresponds to local maximum saliency
value. We combine the global properties of simplex optimization
methods with the local search properties and dynamic response
of extremum seeking control to create a novel algorithm that
is more likely to find a global maximum than conventional
extremum seeking control. Simulations and experiments are
presented to show the strength of this approach.

I. I NTRODUCTION

Given limited sensors covering a wide area, a sensor
needs to isolate targets of interest to maximize the value of
its measurements. Alternately, given abundant sensors, the
amount of data may overwhelm communication channels,
processor bandwidth, or human observers, necessitating the
ability to transmit only the most useful data. This paper
presents an initial investigation to control the position of
a sensor to collect the most valuable measurements via
extremum seeking control (ESC) of sensor configuration. In
particular, we seek to maximize the visual stimuli in images
or video data to provide the most relevant images.

ESC seeks optimize the value of a measurable cost func-
tion [1]. The strength of these methods is that no prior
knowledge of the cost function is necessary. A stability proof
of ESC was first provided by Krstic and Wang for a general
nonlinear SISO system [2]. Multivariable ESC was later
studied by Rotea, and a set of detailed design guidelines
for ESC were provided [3]. Recently, Global ESC methods
were studied by Tan and Nesic [4].

The above methods share a common framework. The
control input is the current estimate of the optimal input. A
periodic disturbance or dither signal (commonly a sinusoid)
is added to the control input. Via a series of filters and modu-
lating signals, an estimate of the gradient is generated. This
gradient is integrated to produce the control input. Under
certain conditions of the system, output function, dithering
functions and filters, the ESC methods can be proven to
converge to the extremum. Variation of the ESC methods
have been developed to remain stable despite nonlinear
dynamics of the system.
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Saliency describes the level of attractiveness of visual
stimuli, often modeled on human visual response. Many
saliency-based attention models and computational visual
attention systems has been developed. Koch and Ullman first
[5] proposed to integrate a number of different visual feature
maps such as color, orientation and direction of movement
into a global measurement of conspicuity, known as saliency
map. A saliency map based visual attention model was pro-
posed by Itti et al. [6]. Other top-down modulation methods
were proposed [7], [8] in cases when some knowledge of
the appearance is known in advance or according to specific
task demands.

In this work, we use saliency map in a extremum seeking
control problem. The saliency map is computed according
to intensity, color and orientation channels. Instead of using
a winner-take-all scheme to find the most salient region,
the sum of saliency values of every pixel in the image is
calculated and used as the cost function. Using ESC to guide
a camera to the location of maximum saliency is an ideal
approach, as knowledge of the saliency as a function of the
sensor workspace is not needed. Saliency as an objective
function map often has multiple local maxima, and ESC
algorithms can easily attract to a local maximum rather than
a global solution. Motivated by this issue, we present a novel
approach that combines the global properties of simplex
optimization methods and dynamic properties of extremum
seeking control. We call this combined method Simplex
Guided Extremum Seeking.

Saliency has been extensively utilized in the field of
computer vision and robotics in recent years, such as de-
tecting regions of interest [6], video compression [9], robot
localization and SLAM [10], [11], as well as robot motion
planning and human-robot interaction. Vijayakumar et al.
[12] implemented a visual attention system using a humanoid
robot, whose peripheral camera followed a moving object
recognized in the saliency map. Other systems use visual
attention to guild robot in object manipulation problems [13],
[14]. In [15], a attention model is built for humanoid robots
using both visual and acoustic saliency maps.

Visual attention system has also been used in visual
servoing problems, like the visual attention guided robot nav-
igation in [16]. Also, Scheier et al. [17] built a mobile robot
that approaches large object using saliency map. Recently,
visual servoing methods that are based on image intensities
have been developed, such as [18], [19]. These methods do
not require any tracking or matching process, but suffer from
the sensitivity to illumination variations. Dame et al. [20]
proposed a Mutual information-based method, which shows
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good robustness to environment changes.
Alternative approaches to sensor placement, and camera

placement in particular, have been investigated. Several
groups (e.g. Howard et al. [21], Murray et al [22], and Zou
and Chakrabarty [23]) focused on coverage, i.e. maximizing
the amount of area that is covered by at least one sensor.
Mittal and Davis place sensors to avoid occlusions [24].
Research by Zhao et al. focused on arranging multiple
sensors to simultaneously measure areas or track targets [25].
Abidi suggested using maximum expected entropy to choose
what new camera view of an object would add the most new
information [26]. Papanikolopoulos has investigated sensor
placement to reduce the amount of processing that must be
performed [27] or reducing the expected error in the final
estimation [28]. Similar work was done by Ercan et al. [29].
Previous methods differ from the approach proposed in this
paper in that they utilized off line optimization methods
and knowledge of the scene and environment. The method
proposed in this paper runs in real time, can adapt to dynamic
environments, and does not require knowledge of the scene
or environment.

The ability to focus on areas of high visual stimuli
may help to reduce transmission bandwidth, and improve
accuracy of estimation or recognition algorithms. This paper
investigates what environmental conditions allow for stable
ESC of image saliency. We also investigate what ESC design
parameters, such as frequency of the differ signal, are neces-
sary for stability and performance given the slow sampling
rate of most cameras (approximately 30Hz). Experiments are
performed to show the strength of proposed method.

II. BACKGROUND

A. Extremum Seeking Control

ESC is designed to optimize a cost function in real time,
without any prior knowledge of the input-to-cost mapping.
References [2]–[4] concentrated on developing ESC meth-
ods. Fig. 1 shows a common scheme of ESC. The current
estimate of the optimal state of the system isθ (t) ∈ R

n. A
dither signald1(t) ∈ R

n is added toθ (t) to give the current
stateθ (t). The signald1(t) is typically given by a vector of
sinusoidsai sin(ωit), i = 1. . .n.

The outputy(t)∈R can be expressed by the Taylor Series

y(t) = f (t, θ̄ )+ d1(t)
T ∂ f (t, θ̄ )

∂θ
+H.O.T. (1)

Neglecting higher order terms, passingy(t) through a high
pass filter block gives a signal correlated to the gradient
vector∂ f (t,θ̄ )/∂θ . The gradient is extracted via a demodulation
scheme that multiplies the output of the high-pass filter by
the dither signald2(t)∈R

n, followed by application of a low-
pass filter. The resulting signalζ (t)∈R

n is an estimate of the
gradient. A signed scalar gain termk determines the direction
and speed of motion (i.e. whether we seek maximum or
minimum and the rate of convergence). Integratingkξ gives
the current estimate of the optimal stateθ (t) ∈ R

n.
ESC systems are generally nonlinear. However, when the

dither signal frequenciesωi are large enough, averaging the-
ory [30], [31] can provide a linear system that approximates

Fig. 1. Block Diagram of the Extremum Seeking Loop

Fig. 2. Saliency model

the dynamics of the ESC loop. Using this linear approxi-
mation, reference [3] provides guidelines for selecting dither
signals and filters to ensure closed loop stability of the ESC
loop. In Section III-B we use these guidelines to design an
ESC system for saliency maximization.

B. Saliency

A saliency map is a presentation of visual stimulation in
an image. It is typically the combination of different feature
maps. The use of different channels and the weight of each
feature are decided according to applications and desired
tasks. In this work, the computation of saliency map follows
the bottom-up procedure described in [6].

Fig. 2 shows the saliency model in [6]. Three features are
used for generating the saliency map: intensity, color and ori-
entation. The color image is first converted to monochrome
images in each of the channels. An intensity imageI is
created asI = (r+ g+ b)/3. Four color channels are used

R = r− (g+ b)/2, G = g− (r+ b)/2

B = b− (r+ g)/2, Y = (r+ g)/2−|r− g|/2− b.

Gaussian pyramids are then built for all channels asI(σ),
R(σ), G(σ), B(σ) andY (σ), whereσ ∈ [1..9]. For the ori-
entation channels, four Gaussian pyramidsO(σ ,θ ) are built
by convolving the intensity pyramid with an oriented Gabor
filter [32], whereσ ∈ [1..9] andθ ∈ {0◦,45◦,90◦,135◦}.

After the feature pyramids are created for all channels, fea-
ture maps are obtained by calculating the center surrounded
difference between different levels in the pyramids, whichis
denoted as⊖. Specifically, the center surrounded difference
of a finer scalec and a coarser scales = c + δ is given
by interpolation ofs to the finer scale, followed by point-
by-point subtraction. If multiple scales in the pyramid are
used, multiple feature maps are generated. Feature maps for
Intensity and Orientation are given by:

I (c,s) = |I(c)⊖ I(s)|

O(c,s,θ ) = |O(c,θ )⊖O(s,θ )|.



For color channels, two color maps (i.e. red/green and
blue/yellow) are generated out of the four color pyramids.

RG (c,s) = |(R(c)−G(c))⊖ (G(s)−R(s))|

BY (c,s) = |(B(c)−Y(c))⊖ (B(s)−Y(s))|.

Finally, linear combinations of the feature maps give the
saliency mapI as shown in Fig. 2.

S =∑I (c,s)+∑RG (c,s)+∑BY (c,s)+∑O(c,s,θ ).
In most previous applications,a normalization step is ap-

plied on feature maps when linear combination is performed
in order to convert all maps to the same scale, and eliminate
modality-dependency.

III. ESC DESIGN FORSALIENCY MAXIMIZATION

In this Section, we provide the design parameters of the
ESC loop to steer a camera to maximize the saliency of
captured images. In this initial investigation, robot/camera
motion is limited to a 2D vertical plane. Saliency is maxi-
mized by adjusting the horizontal and vertical position of the
camera. That is, the optimization variables areθ = [x, y]T

wherex andy are the coordinates of the camera in a plane
perpendicular to the ground.

A. Saliency mappings

As mentioned in section II-B, feature maps are normal-
ized when they are combined for building a saliency map.
However, normalization is not done in this work due to a
different use of the saliency map. A saliency valueS of an
image is defined as the sum of the entire saliency map.

S =
width

∑
i=1

height

∑
j=1

S (i, j). (2)

S in (2) is used as the cost function for the extremum
seeking algorithm, and the goal is to find the camera po-
sition that maximize the amount of visual stimulation in
the environment. Therefore, information from all channels
directly contributes to the final saliency map without being
normalized. How much effect a feature has on the saliency
map is controlled by the assigned weight to each feature map.
For example, there are more orientation maps than intensity
maps, so a smaller weight for orientation is used to balance
the effect of orientation channels.

Fig. 3 further illustrates this idea. Comparing the two
scenes in Fig. 3(a) and (c), a higher saliency value for Fig.
3(c) is expected according to our definition ofS. However,
the saliency value in (c) is smaller as can be seen at the
bottom of Fig. 3(a) and (c). This is because the normalized
saliency map reflects only relative strength of visual stimuli
in a single image, and thus provides little information when
comparing with saliency maps of other images. Therefore,
absolute magnitude of each feature map is used for gener-
ating the saliency map in order to search for the maximum
saliency valueS among all possible camera poses.

ESC is an approach for unconstrained optimization, thus
a condition for stability or convergence is that the saliency
value has local maximum in the interior of the camera
workspace. Maps of saliency value as a function of camera

(a) (b)

(c) (d)
Fig. 3. (a) shows a lab environment where no single object visually stands
out. (b) is the saliency map of (a) with all normalization steps proposed in
[6]. (c) and (d) are generated in the same way, but with a manually added
salient object in the field of view. It can be seen that severalregions are
bright in (b) since they have similar amount of visual attraction. However,
the existence of the yellow folder in (c) makes the all the bright regions in
(b) dimmer because the folder visually stands out from the environment.
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Fig. 4. Saliency Mapping with a few maxima

location are generated to verify this condition in two scenar-
ios. A camera is mounted on the end effector of a Staubli
TX90 robot arm. The camera is moved to uniformly sample
images in the environment.

In the first scenario, a monochrome poster board was
placed in front of the robot with a picture taped in the
center. This represents a single area of interest in a largely
uninteresting field. The saliency value, as a function of the
camera position[x,y]T is shown in Fig. 4. A clear global
maximum can be seen in the interior of the workspace.

In the second scenario, the camera looks at normal lab en-
vironment. The saliency mapping is given in Fig. 5. Multiple
local maxima can be observed. The global maximum is close
to the edge but still in interior of the workspace. Simulation
and experiment results for these two scenarios are given in
section V and VI.

B. ESC Design

As shown in [3], there are design variables that affect
the stability and performance of ESC systems. These vari-
ables include the two dither signals, the high-pass filter,
the low-pass filters, and the gaink. The sensor modality
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Fig. 5. Saliency Mapping with multiple local maxima

and system plant, i.e. images from a video camera and a
robot manipulator, place further restrictions on the choice of
design variables. In this section we briefly recap the stability
requirements given in [3] and present our determination of
best practices for the ESC task at hand.

In this initial investigation only two degrees of free-
dom are used, translation in a plane perpendicular to the
ground. Hence we need a dither signal of the formd1(t) =
[a1sin(ω1t), a2sin(ω2t)]T The choice of frequencies for the
dither vector must satisfy the following constraints [3]:

1) ω1 6= ω2

2) ω1 andω2 are in the pass band of the high-pass filter
and stop band of the low-pass filter.

3) ω1 andω2 are smaller than one half the sampling rate.

Video systems generally have frame rate around 30Hz.
After the time required for image processing and control
calculation, the sampling rate is approximately 20Hz. We
employ dither frequencies in the range 5Hz - 9Hz, which
can be tuned for performance using trial and error.

The dither signal amplitudesa1 anda2 affect the seeking
accuracy and convergence speed of the ESC loop. A larger
dither amplitude lowers the time for convergence but de-
creases the accuracy of the final estimate forθ̄ . Designers
must also consider the forces necessary to generate dither
signals with large amplitudes. For the plant employed in this
paper, we must considering the speed limit of robot actuators.
We chosea1 = a2 = 5cm to provide good performance in
speed and accuracy while not stressing the robot.

The cutoff frequency of the high-pass filter should be
lower thanω1 andω2. We employ a second order Chebyshev
type I filter with a cutoff frequency of 3Hz, given by

G1(z) =
0.5768z2−1.1536z+0.5768

z2−1.0900z+0.4735
.

The cutoff frequency of low-pass filter should also be lower
thanω1 andω2. We use an FIR filter with a cutoff frequency
of 1Hz, given by

G2(z) = 0.0100+0.0249z−1+0.0668z−2+0.1249z−3

+0.1756z−6+0.1249z−7+0.1756z−4

+0.1957z−5+0.0668z−8+0.0249z−9.

IV. SIMPLEX GUIDED EXTREMUM SEEKING

As shown in Fig. 5, the saliency function can have multiple
local extrema. ESC is very likely to be trapped at a local
maximum and can never reach the global maximum. There-
fore, the final result can be heavily affected by the initial
position. It has been shown that increasing the amplitude
of dither signal can improve the chance to reach the global
extremum [33]. However, high amplitude signals can saturate
the actuators and make it difficult to demodulate the signal
to gather the gradient information.

Alternately, a multi-directional algorithm that searchesfor
extrema through the whole workspace, is more likely to find
a global maximum [34]–[36]. Multi-directional search algo-
rithms are approaches to linear programming that constructa
point simplex and iteratively optimize the points to converge
to the extremum, therefore they are referred to as simplex
methods. The maximum point in the simplex is always kept,
and a group of linear combinations (reflection, extension, and
contraction) are used to predict points with a better value.
This continues until the best point is located or a termination
condition is met. The downside to simplex methods is poor
dynamic response, in that they are not well suited to changing
maps, such as the saliency of a changing scene.

Therefore, we propose a combined ES algorithm that
can employ simplex methods to make extremum seeking
more global while preserving the dynamic tracking abilities
of ESC. We call this method Simplex Guided Extremum
Seeking (SGES), which uses a simplex method for large scale
searching, and ESC for small-scale local searching. SGES
shows strong promise for optimizing the cost functions that
have many local extrema along with the global one.

For a n dimensional search space, SGES executes ESC
at n+ 1 initial trial points to obtainn+ 1 local maxima.
The maxima are taken as simplex vertices and denoted as
x0

0, x0
1, x0

2...x0
n. The superscript represents iteration time, and

they are ordered after every vertex update, such thatf (xk
0)>

f (xk
i ) for i = 1,2...n in any kth iteration.

As xk
0 is the current best maximum, it is reasonable to

assume this vertex lies in a more optimal region of the
workspace. So we perform reflection to generaten initial
trial pointsr k

i = xk
0−α(xk

i −xk
0) for i = 1,2...n, whereα > 0

is a constant. ESC is performed from each trial point, leading
to a new group of local maxima, denoted asr̂ k

i .
If there is a local maximum̂r k

jr , such thatf (r̂ k
jr )> f (xk

0)
and 0< jr ≤ n, it is possible that better points could be found
further along this direction. So we perform on extension step,
generatingn initial trial points ek

i = xk
0−λ (xk

i − xk
0) for i =

1,2...n, whereλ > α is a constant. ESC is ran from each
trial point, producing one more group of maximaêk

i .
If there is a local maximum̂ek

je , such thatf (êk
je )> f (r̂ k

jr)>

f (xk
0), and 0< je ≤ n, we accept̂ek

i to update the vertices,
i.e. xk+1

i = ek
i for i = 1,2...n, else we accept̂r k

i , i.e. xk+1
i =

r̂ k
i for i = 1,2...n.
If there is nor̂ k

jr , such thatf (r̂ k
jr)> f (xk

0), we accept the
xk

0 as the current global optimal and contract allxk
i for i =

1,2...n towardsxk
0. In this case, generaten initial trial points



X(mm)

Y
(m

m
)

 

 

−300 −200 −100 0 100 200
−300

−200

−100

0

100

200

trajectory
start point
end point
global max

Fig. 6. Simulation result using ESC for the first scenario

ck
i = xk

0 + θ (xk
i − xk

0), for i = 1,2...n, where 0< θ < 1.
Again performing ESC from each trial point leads to one
more group of local maximâck

i . If there is someĉk
jc ,

such that f (ĉk
jc ) > f (xk

0), we accept contraction step and
update vertices asxk+1

i = ĉk
i , for i = 1,2...n. Otherwise, we

update vertices asxk+1
i = ck

i , for i = 1,2...n to guarantee
convergence.

We will show in our future works that, under specific
conditions, all the simplex vertices of SGES will converge to
some optimal local maximum. For better search performance,
the n+1 initial trial points should construct a simplex with
n linear independent edges.

V. SIMULATION RESULTS

In this section, simulations are conducted to demonstrate
the performance of both basic ESC and SGES, using the
saliency mappings shown in Figs. 4 and 5. ESC is tested for
the first map, and simulations of both ESC and SGES are
presented for the second map.

The simulation result using ESC on the saliency value
map with few local maxima very near the global maximum
(shown in Fig. 4), is given by Fig. 6. The background of the
figure is a contour plot of the saliency value mapping. The
initial point is denoted as a red triangle, and the end point
is denoted as a green circle. It can be seen that the camera
trajectory converges to the global maximum, which is shown
as a star on the map. The ”curly” nature of the trajectory is
due to the dither signals necessary for ESC.

In cases where multiple local maxima are widely dis-
tributed on the map, such as shown in Fig. 5, ESC does not
guarantee to converge to the global maximum. Three trials
are done for ESC on the multiple local maxima map with
different starting points:[x, y]T = [−100,−100], [100, 100]
and[0, 100]. The simulation result is given in Fig. 7. For all
three trials, the camera settles at a local maximum instead
of going to the global maximum.

Fig. 8 represents the simulation result of SGES for the
multiple maxima case. The same three initial conditions are
used to construct the initial simplex. The final position of
the camera converges very close to the global maxima. Each
dashed line represents one simplex update step motion. Fig.
9 shows how the simplex is updated. The red and the green
dashed lines are minimum point and medium point in the
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Fig. 7. Simulation result using ESC for the second scenario where multiple
local maxima exists
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Fig. 8. Simulation result using SGES for the second scenariowhere
multiple local maxima exists

simplex set respectively. The solid line is the maximum value
point in the simplex set, which increases monotonically. At
the same time, the area of the triangle constructed by the
three simplex points monotonically decreases, meaning that
the SGES algorithm converges in both space and the value
of S.

The saliency extrema found for each initial condition in
the three simulations is given in Table I. The results show
that the proposed SGES method can improve the ability of
extremum seeking to find the global maximum.

VI. EXPERIMENTAL RESULTS

Experiments are performed to demonstrate the perfor-
mance of the proposed ESC and SGES methods. A Staubli
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Fig. 9. Simplex update for SGES. The simplex points convergein the
measure of saliency. At the same time, the area of the polygonthe simplex
points define gets smaller, indicating they converge in space.



Sim. # Extremum S achieved Global Max. S

1 3643.6 3730.6
2 4631, 4632.8, 4631 4910
3 4891, 4893.4, 4908.3 4910

TABLE I

EXTREMA FOUND IN SIMULATION OF THE DIFFERENT ALGORITHMS
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Fig. 10. ESC Experiment results for single and multiple maxima scenario

TX90 robot arm with 6 degrees of freedom is used. A camera
is mounted on the end effector of the robot. In this initial
investigation, only 2 degrees of freedom are used, that is,
translation in thex− y plane.

In the first experiment, ESC is used for the first scenario
described in Section III-A, featuring a monochrome poster
board with a picture fixed at the center. The camera was
placed at an initial position away from the global maximum.
The experiment result is given in Fig. 10(a). It can be seen
that the camera converges to the position that the maximizes
the saliency value. By maximizing the saliency value, the
camera bring the picture into full view, which is visually
the most interesting thing in the environment. Thex position
is not completely steady after the saliency value converges,
since the saliency value does not change much as long as
the picture stays entirely in the field of view.

Next, SGES is tested using the second scene described in
Section III-A, with three salient objects in front of the cam-
era. Unlike in the first experiment, the saliency mapping has
multiple local maxima distributed widely in the camera work
space. We start SGES with three random simplex points.
At each point, ESC is employed to find the local maxima.
When the system detects a gradient less than 1 for 2 seconds,
the system moves to the next predicted simplex point. This
switch condition can be tuned for desired performance. The
position of the camera and saliency measure over time and
the simplex update plot are shown in Fig. 10(b) and Fig. 11,
respectively. The simplex points both converge in terms of
saliency value, and the area of the polygon defined by the
points becomes smaller, meaning the location of the points
converges. Fig. 12 gives the scenes taken at the starting and
finishing camera locations. At the beginning, the camera only
sees two of the three salient objects on the table. The third
one is brought into full view at the end.

The third experiment explores the dynamic property of
SGES. The camera looks at the lab environment with several
books and a cup placed on a table, as shown in Fig. 13(a).
Fig. 13(b) shows that SGES first converges to a place that
includes the door in the field of view. In Fig. 13(c) another
book is placed on the table, and SGES finally converges to
include the added book into full view in Fig. 13(d). The
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Fig. 11. Simplex update for SGES Experiment

(a) (b)
Fig. 12. Starting and end position for SGES experiment

simplex update is shown in Fig. 14. The simplex area is
very small at the end, showing that the position of simplex
points converges. However, the final minimum and medium
in simplex are not as close to the maximum as in previous
experiments. This could be due to the large gradient around
the global maximum point. The result shows that SGES
works for image scenes that change dynamically.

VII. C ONCLUSION AND FUTURE WORK

We propose a extremum seeking control method to max-
imize the amount of visual stimuli in an image scene. This
method is used to guide the camera to look at interesting
things in the environment. Since the saliency distribution
often has multiple local maxima, a novel Simplex Guided
Extremum Seeking approach is employed that combines
the global properties of simplex optimization methods and
dynamic properties of extremum seeking control. Simula-
tion and experiment results shows strong potential of the
proposed method. SGES efficiently converges to the global

Fig. 13. Critical Scenes for dynamic SGES Experiment
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Fig. 14. Simplex Update for dynamic SGES Experiment

maxima. SGES may have application in many other real time
optimization problems that experience local maxima.

This work is an early investigation, and there are several
avenues open for future work. A formal analysis must
be done to prove the stability and convergence of SGES
approach. Only a subset of the 6 degrees of freedom of
the robot is used in this work. Extensive experiments are
needed to explore the performance of proposed method
adding more degrees of freedom. Finally, more channels
can be added when building saliency map, such as variance,
entropy and visual surprise. Other sensors and information
measures like uniformity can be explored, and may offer
better performance in some circumstances.

REFERENCES

[1] J. Sternby, “Extremum control systems: An area for adaptive control,”
in Preprints of the Joint American Control Conference, 1980.

[2] M. Krstic and H.-H. Wang, “Design and stability analysisof extremum
seeking feedback for general nonlinear systems,”Proc. Conf. Desision
and Control, pp. 1743–1748, Dec. 1997.

[3] M. Rotea, “Analysis of multivariable extremum seeking algorithms,”
in Proc. American Control Conference, vol. 1, no. 6, Sep. 2000, pp.
433 –437.

[4] Y. Tan, D. Nesic, I. Mareels, and A. Astolfi, “On global extremum
seeking in the presence of local extrema,”Automatica, vol. 45, no. 1,
Jan. 2009.

[5] C. Koch and S. Ullman, “Shifts in selective visual attention: towards
the underlying neural circuitry,”Human Neurobiology, vol. 4, no. 4,
pp. 219–227, 1985.

[6] L. Itti, C. Koch, and E. Niebur, “A model of saliency-based visual
attention for rapid scene analysis,”IEEE Trans. on Pattern Analysis
and Machine Intelligence, vol. 20, no. 11, pp. 1254 –1259, Nov. 1998.

[7] J. M. Wolfe, “Guided search 2.0: A revised model of visualsearch,”
Psychonomic Bulletin & Review, vol. 1, no. 2, pp. 202–238, 1994.

[8] E. Niebur and C. Koch, “Control of selective visual attention: modeling
the ’where’ pathway.” inAdvances in Neural Information Processing
Systems, D. S. Touretzky, M. C. Mozer, and M. E. Hasselmo, Eds.
Cambridge, MA: MIT Press, 1996, pp. 802–808.

[9] Z. Li, S. Qin, and L. Itti, “Visual attention guided bit allocation in
video compression,”Image and Vision Computing, vol. 29, no. 1, pp.
1–14, 2011.

[10] S. Frintrop and P. Jensfelt, “Attentional landmarks and active gaze
control for visual slam,”IEEE Trans. on Robotics, vol. 24, no. 5, pp.
1054 –1065, 2008.

[11] C. Siagian and L. Itti, “Biologically inspired mobile robot vision
localization,” IEEE Trans. on Robotics, vol. 25, no. 4, pp. 861–873,
2009.

[12] S. Vijayakumar, J. Conradt, T. Shibata, and S. Schaal, “Overt visual
attention for a humanoid robot,” inProc. IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2001.

[13] M. Bollmann, R. Hoischen, M. Jesikiewicz, C. Justkowski, and
B. Mertsching, “Playing domino: A case study for an active vision
system,” inProc. of the First International Conference on Computer
Vision Systems, 1999.

[14] A. Rotenstein, A. Andreopoulos, E. Fazl, D. Jacob, M. Robinson,
K. Shubina, Y. Zhu, and J. Tsotsos, “Towards the dream of intelli-
gent, visually-guided wheelchairs,” inProc. of the 2nd International
Conference on Technology and Aging, 2007.

[15] J. Ruesch, M. Lopes, A. Bernardino, J. Hornstein, J. Santos-Victor,
and R. Pfeifer, “Multimodal saliency-based bottom-up attention a
framework for the humanoid robot icub,” inIEEE International
Conference on Robotics and Automation, 2008.

[16] A. Borji, “Interactve learning of task-driven visual attention control,”
Ph.D. dissertation, Institute for Research in FundamentalSciences,
School of Cognitive Sciences, 2009.

[17] C. Scheier and S. Egner, “Visual attention in a mobile robot,” in Proc.
of the IEEE International Symposium on Industrial Electronics, 1997.

[18] C. Collewet and E. Marchand, “Photometric visual servoing,” IEEE
Transactions on Robotics, vol. PP, no. 99, pp. 1–7, 2011.

[19] K. Deguchi, “A direct interpretation of dynamic imagesand camera
motion for vision guided robotics,” inIEEE/SICE/RSJ International
Conference on Multisensor Fusion and Integration for Intelligent
Systems, dec 1996, pp. 313 –320.

[20] A. Dame and E. Marchand, “Mutual information-based visual servo-
ing,” IEEE Transactions on Robotics, vol. PP, no. 99, pp. 1 –12, 2011.

[21] A. Howard, M. J. Mataric, and G. S. Sukhatme, “Mobile sensor net-
work deployment using potential field: A distributed scalable solution
to the area coverage problem,” inProc. of the International Conference
on Distributed Autonomous Robotic Systems, 2002, pp. 299–308.

[22] A. T. Murray, K. Kim, J. W. Davis, R. Machiraju, and R. Parent,
“Coverage optimization to support security monitoring,”Computers,
Environment and Urban Systems, vol. 31, no. 2, pp. 133 – 147, 2007.

[23] Y. Zou and K. Chakrabarty, “Sensor deployment and target localization
in distributed sensor networks,”ACM Trans. Embed. Comput. Syst.,
vol. 3, no. 1, pp. 61–91, 2004.

[24] A. Mittal and L. S. Davis, “A general method for sensor planning
in multi-sensor systems: Extension to random occlusio,”International
Journal of Computer Vision, vol. 76, no. 1, pp. 31–52, 2008.

[25] J. Zhao, S.-C. Cheung, and T. Nguyen, “Optimal camera network con-
figurations for visual tagging,”Selected Topics in Signal Processing,
IEEE Journal of, vol. 2, no. 4, pp. 464–479, Aug. 2008.

[26] B. R. Abidi, “Automatic sensor placement,” inIntelligent Robots
and Computer Vision XIV: Algorithms, Techniques, Active Vision, and
Materials Handling, D. P. Casasent, Ed., vol. 2588, no. 1. SPIE,
1995, pp. 387–398.

[27] D. Fehr, L. Fiore, and N. Papanikolopoulos, “Issues andsolutions
in surveillance camera placement,” inProc. IEEE Conf. Intelligent
Robots and Systems, 2009, pp. 3780–3785.

[28] R. Bodor, A. Drenner, P. Schrater, and N. Papanikolopoulos, “Opti-
mal camera placement for automated surveillance tasks,”Journal of
Intelligent and Robotic Systems, vol. 50, no. 3, pp. 257–295, 2007.

[29] A. O. Ercan, D. B. Yang, A. E. Gamal, and L. J. Guibas,Distributed
Computing in Sensor Systems. Springer Berlin, 2006, ch. Optimal
Placement and Selection of Camera Network Nodes for Target Local-
ization, pp. 389 – 404.

[30] H. K. Khalil, Nonlinear Systems, 3rd ed. New Jersey: Prentice Hall,
2002.

[31] J. A. Sanders, F. Verhulst, and J. A. Murdock,Averaging Methods in
Nonlinear Dynamical Systems, ser. Applied Mathematical Sciences.
Springer, 2007, no. 59.

[32] T. S. Hans G. Feichtinger, Ed.,Gabor Analysis and Algorithms: Theory
and Applications. Birkhuser, 1998.

[33] Y. Tan, D. Nesic, and I. Mareels, “On non-local stability properties of
extremum seeking control,”Automatica, vol. 42, Mar. 2006.

[34] G. Dantzig,Linear programming and extensions, ser. Landmarks in
Physics and Mathematics. Princeton University Press, 1998.

[35] J. A. Nelder and R. Mead, “A simplex method for function minimiza-
tion,” Computer Journal, vol. 7, pp. 308–313, 1965.

[36] V. Torczon, “On the convergence of the multidirectional search algo-
rithm,” SIAM Journal on Optimization, no. 1, 1991.


